用户名: 密码: 验证码:
电化学合成聚吡咯膜的电学性能与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚吡咯(polypyrrole, PPy)不仅具有优异的电性能和电化学性能,而且具有合成容易、价格低廉和环境友好等优势,被认为是一种具有广阔应用前景的电子导电高分子(Electronically Conductive Polymer, ECP)材料。大量研究表明,PPy性能容易通过制备条件进行“剪裁”,在各种制备方法中,电化学法兼具原位成膜的便利和膜厚易控制的优势。本文在多种电极(钽、铜和铝阳极体)表面原位电合成PPy膜,着重研究聚合条件对PPy的结构和电化学性能的影响,探索其在超级电容器、防腐和聚合物铝电解电容器的应用。
     在钽电极上实现了0℃下高密度PPy(High Density PPy,HD-PPy)的大电流(10 mA·cm~(-2))制备,获得的PPy膜的密度为1.42 g·cm~(-3)。该密度值和目前报道的在-40℃用低电流密度(0.02~0.05 mA·cm~(-2))时得到的值相当,而本文的制备方法具有容易实现、周期短和成本低的优势,因此更具有应用价值。结构研究表明,HD-PPy的形成机理是高电流密度导致了平面型二维分子链结构的形成。其室温电导率高达200 S·cm-1,比通常的PPy膜具有更优异的热稳定性和能显著地阻碍离子传输,因此将是优异的电极材料和金属防腐材料。
     为了实现无模板法合成特殊微/纳结构的PPy,研究了溶液pH值和电流密度对PPy结构和形貌的影响。在pH=9的溶液中采用大电流密度(>3mA·cm~(-2))首次合成了具有微/纳结构羊角状的PPy(horn-like PPy, h-PPy),其形成机理可能是在高电流密度下形成了一种非平面型的二维分子链结构。h-PPy不仅具有高比表面积和高结晶度,并且室温电导率达到90 S·cm-1,与之相比在该pH下用小电流密度合成的常见椰菜花形状PPy的室温电导率<10 S·cm-1。
     为了提高PPy电极材料的充放电速率和电位窗,采用了聚(3,4-乙撑二氧噻吩)(PEDOT)表面修饰PPy。由于协同效应,PEDOT/PPy复合物具有比单一材料更高的比容量和充放电速率,并具有PEDOT的高电位窗(1V)。特别是在h-PPy表面获得的多孔PEDOT/h-PPy双层复合物,由于多孔结构有利于电解液的扩散,其比容量达到290 F·g~(-1)并具有快速的充放电性能。在浓硫酸/浓硝酸中超声振荡单壁碳纳米管(SWNTs),获取长度小于100 nm并高度离子化的功能化单壁碳纳米管(F-SWNTs),进一步电化学制备了颗粒尺寸约为100 nm的PPy/F-SWNTs复合物。其比容量达到230 F·g~(-1),电荷转移电阻极低(小于0.05Ω),且在电位窗0.8 V下具有稳定的循环性能。通过正交实验优化制备条件,获得了多孔的PPy膜,其电化学性能可以进一步通过掺杂离子剪裁:PPy-Cl具有高比容量,可达到270 F·g~(-1), PPy-TOS(对甲基苯磺酸根)具有快速充放电能力,并都具有稳定的循环性能。为了提高基于PPy的多孔电极的面积比容量,提出了用多次聚合法制备多孔PPy-Cl和PPy-TOS厚膜,其面积比容量高达5 F·cm~(-2),且质量比容量未随膜厚增加而明显降低。因此这四种基于PPy的材料都将是优异的超级电容器电极材料。
     在金属铜电极表面预先电合成PPy-C2O4衬底层,实现了在铜电极上电化学制备HD-PPy和PPy-DBS膜。在3.5wt% NaCl溶液中防腐性能测试表明,由于有效的物理阻隔作用,HD-PPy电极的腐蚀电流比LD-PPy低一个数量级。与PPy-C2O4和PPy-TOS相比,PPy-DBS的有效保护时间为三倍以上,腐蚀电流低两个数量级。其原因在于DBS-体积较大而固定在PPy网格内,通过对腐蚀离子(Cl-)和C_2O_4~(2-)的静电排斥作用,既可以阻碍Cl-穿透PPy膜而腐蚀金属基底,也可以阻碍C_2O_4~(2-)从膜中逃逸而长时间维持电极的“自愈”能力。
     通过在铝阳极体表面用高锰酸钾氧化吡咯单体制备一层导电衬底层以及控制氧化剂浓度和相应的浸渍次数,掌握了在绝缘铝阳极体表面均匀现场电化学被覆PPy的关键技术,采用有效的阻隔材料和优化的电流方案缩短电化学聚合时间突破了该类电容器漏电流大的瓶颈问题。在中试线上,通过引入热处理和后期补形成工艺,进一步降低了该电容器的漏电流,研制出具有自主知识产权的高性能片式化铝固体电解电容器,并通过教育部组织的专家组鉴定,性能达到国际先进水平,目前正在福建国光电子股份有限公司进行工业规模化生产。
Polypyrrole (PPy) has been extensively investigated and was considered as the promising Electronically Conductive polymers (ECP), due to its excellent properties and advantages including environmentally friendly feature, low cost and facile synthesis.
     In the studies, the high density PPy films (HD-PPy), doped by p-toluenesulfonate (TOS-), were prepared on tatanum electrodes at the current density of 10 mA?cm-2 at 0℃. Its density was up to 1.42 g?cm-3, which was slightly larger than the maximum reported value abtained on glass carbon electrodes by 0.02~0.05 mA?cm-2 at -40℃. The method in the studies was of more practical value from the view of application, because it is easy to perform, low cost, time saving, and especially independent of the electrode surface. Its high density was resulted from the formation of plane-type two dimensional (2D) structure of molecular chains. The conductivity of HD-PPy was up to 200 S?cm-1. Furthermore, the thermal stability of HD-PPy films was significantly superior to that of conventional PPy films. In additional, HD-PPy could hinder ions insertion more effectively. It can be concluded that HD-PPy would be an excellent electrode material and anticorrosion material.
     Aiming to explore free-template method to relize micro/nano-PPy, the effects of pH and current density of polymerization on the morphology and structure of PPy were investigated. The horn-like PPy films (h-PPy) with horns in micro/nano size were obtained at pH=9 with current density larger than 3mA?cm-2. The horn might be a kind of non-plane 2D structure of molecure chains resulted from high current density in polymerizaiton. Furthermore, h-PPy was characterized as great specific area, highly ordering, and attractive conductivity up to 90 S?cm-1.
     To improve the charge/discharge rate and cycling stability of PPy-based electode of supercapacitor, the PEDOT/h-PPy composites and the composites of PPy and functionalized single-walled carbon nanotubes (F-SWNTs) were prepared by electrochemical methods. The two kinds of composites were characterized with highly porous structure, which leads to their specific capacitance up to 290 and 230 F?g-1 in 1M KCl aqueous solutions, respectively. Furthermore, they have very fast charge/ discharge rate and good cycle stability at potential window of 1V and 0.8 V, respectively.The porous PPy films were also obtained in the optimized conditions, whose electrochemical properties can be tailored by doping ions. By trying several ions, PPy-Cl had high specific capacitance up to 270 F?g-1, while PPy-TOS had very rapid charge/discharge ability. To achieve PPy with high area specific capacitance, we proposed the multi-step method to prepare porous thick PPy films. The results showed that two kinds of even porous PPy films, PPy-Cl and PPy-TOS with area specific capacitance up to 5 F?cm-2 were obtained by the method. Moreover, their mass specific capacitance could reach 330 F?g-1 and 191 F?g-1 at discharge current of 1 mA?cm-2. In concusion, PEDOT/h-PPy, PPy/F-SWNTs, PPy-Cl and PPy-TOS will be promissing electrode materials for supercapacitors.
     HD-PPy and PPy doped with dodecylbenzenesulfonate (PPy-DBS) were prepared on an underlayer of PPy doped with oxalate (PPy-C2O4) by galvanostatical method for effective copper protection, because PPy-TOS and PPy-DBS could not be obtained directly on copper surface by electrochemical methods. Their anticorrosion performance in 3.5% NaCl solution was signifanctly superior to that of conventional PPy-TOS and the bilayer PPy-C2O4, coatings with equal thickness. The reason is that HD-PPy and PPy-DBS could obstruct the corrosion ions (Cl-) from penetrating the PPy films and hinder the oxalate from escaping so that the healing ability of PPy could be maintained for a long term. The results demonstrate that HD-PPy and PPy-DBS films on an underlayer of PPy-C2O4 have potential application to protect copper.
     The PPy aluminum solid electrolytic capacitors (PA-Cap) were realized by electropolymerization of PPy on the underlayer of PPy/MnO2 prepared by chemical method. The leakage current can be effectively decreased by using coating silicon rubber and shortening polymerization, and can be further dereased by thermal treatment during pilot production. The aluminum electrolytic capacitors with high performance were achieved by optimizing oxidant concentration, dip numbers and current density of polymerization, and had been put into manufacture.
引文
[1] Shirakawa H, Louis EJ, Macdiarmid AG et al. Synthesis of electrically conducting organic polymers: halogen drivatives of polyacetylene[J]. Journal of the Chemical Society, Chemical communications, 1977, 16:578-580.
    [2] Shirakawa H, Zhang YX, Okuda T et al. Various factors affecting the synthesis of highly conducting polyacetylene[J]. Synthetic Metals, 1994, 65(1):93-101.
    [3] Shen YQ, Wan MX. In situ doping polymerization of pyrrole with sulfonic acid as a dopant[J]. Synthetic Metals, 1998, 96(2):127-132.
    [4] Ingram MD, Pappin AJ, Delalande F et al. Development of electrochemical capacitors incorporating processable polymer gel electrolytes[J]. Electrochimica Acta, 1998, 43(10-11):1601-1605.
    [5] Ghosh S, Inganas O. Conducting polymer hydrogels as 3D electrodes: Applications for supercapacitors[J]. Advanced Materials, 1999, 11(14):1214-1218.
    [6] Fusalba F, Gouerec P, Villers D et al. Electrochemical characterization of polyaniline in nonaqueous electrolyte and its evaluation as electrode material for electrochemical supercapacitors[J]. Journal of the Electrochemical Society, 2001, 148(1):A1-a6.
    [7] Suematsu S, Ishikawa T, Hanada M et al. Electrochemical characteristics of polyindole derivatives for redox capacitors[J]. Electrochemistry, 2003, 71(8):695-702.
    [8] White AM, Slade RCT. Redox-composited polymer coatings on carbon paper electrodes and their suitability for use within solid-state super capacitors.[J]. Solid State Chemistry V, 2003, 90-91:595-599.
    [9] Jang J, Bae J, Choi M et al. Fabrication and characterization of polyaniline coated carbon nanofiber for supercapacitor[J]. Carbon, 2005, 43(13):2730-2736.
    [10] Randriamahazaka H, Plesse C, Teyssie D et al. Charging/discharging kinetics of poly (3,4-ethylenedioxythiophene) in 1-ethyl-3-methylimidazolium bis-(trifluoromethylsulfonyl) imide ionic liquid under galvanostatic conditions[J]. Electrochimica Acta, 2005, 50(21):4222-4229.
    [11] Girija TC, Sangaranarayanan MV. Polyaniline-based nickel electrodes for electrochemical supercapacitors - Influence of Triton X-100[J]. Journal of Power Sources, 2006, 159(2):1519-1526.
    [12] Vaillant J, Lira-Cantu M, Cuentas-Gallegos K et al. Chemical synthesis of hybrid materials based on PAni and PEDOT with polyoxometalates for electrochemical supercapacitors[J]. Progress in Solid State Chemistry, 2006, 34(2-4):147-159.
    [13] Zhou CF, Liu T, Wang T et al. PAN/SAN/SWNT ternary composite: Pore size control and electrochemical supercapacitor behavior[J]. Polymer, 2006, 47(16):5831-5837.
    [14] Yesodha SK, Pillai CKS, Tsutsumi N. Stable polymeric materials for nonlinear optics: a review based on azobenzene systems[J]. Progress in Polymer Science, 2004, 29(1):45-74.
    [15] Suzuki Y, Komatsu K, Kaino T et al. Serially grafted optical waveguide fabrication of NLO polyimide and transparent polymers[J]. Optical Materials, 2003, 21(1-3):521-524.
    [16] Ushiwata T, Okamoto E, Komatsu K et al. Novel fluorine-containing second-order NLO polymers with high glass transition temperature[J]. Optical Materials, 2003, 21(1-3):61-65.
    [17] Liu J, Rinzler AG, Dai HJ et al. Fullerene pipes[J]. Science, 1998, 280(5367):1253-1256.
    [18] Kang HC, Geckeler KE. Enhanced electrical conductivity of polypyrrole prepared by chemical oxidative polymerization: effect of the preparation technique and polymer additive[J]. Polymer, 2000, 41(18):6931-6934.
    [19] Yfantis A, Paloumpa I, Schmeier D et al. Novel corrosion-resistant films for Mg alloys[J]. Surface and Coatings Technology, 2002, 151-152:400-404.
    [20] Bonastre J, Garces P, Huerta F et al. Electrochemical study of polypyrrole/ coatings on carbon steel electrodes as protection against corrosion in chloride aqueous solutions[J]. Corrosion Science, 2006, 48(5):1122-1136.
    [21] Chiu JJ, Kei CC, Perng TP et al. Organic semiconductor nanowires for field emission[J]. Advanced Materials, 2003, 15(16):1361-1364.
    [22] Joo J, Lee JK, Baeck JS et al. Electrical, magnetic, and structural properties of chemically and electrochemically synthesized polypyrroles[J]. Synthetic Metals, 2001, 117(1-3):45-51.
    [23] Blinova NV, Stejskal J, Trchova M et al. Polyaniline and polypyrrole: A comparative study of the preparation[J]. European Polymer Journal, 2007, 43(6):2331-2341.
    [24] Barisci JN, Mansouri J, Spinks GM et al. Electrochemical preparation of polypyrrole colloids using a flow cell[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 1997, 126(2-3):129-135.
    [25] Dhanabalan A, Mello SV, Oliveira ON. Preparation of Langmuir-Blodgett films of soluble polypyrrole[J]. Macromolecules, 1998, 31(6):1827-1832.
    [26] Bhat N, Geetha P, Pawde S. Preparation and characterization of composites of polypyrrole[J]. Polymer Engineering and Science, 1999, 39(8):1517-1524.
    [27] Chen ZD, Okimoto A, Kiyonaga T et al. Preparation of soluble polypyrrole composites and their uptake properties for anionic compounds[J]. Analytical Chemistry, 1999, 71(9):1834-1839.
    [28] Song YZ, Xie JM, Shu HM et al. Density-functional theory and ab initio Hartree-Fork studies on the structural parameters and chemical activity of the free radicals generated by benzoquinone and hydroquinone[J]. Bioorganic & Medicinal Chemistry, 2005, 13(19):5658-5667.
    [29] Reut J, Opik A, Idla K. Corrosion behavior of polypyrrole coated mild steel[J]. Synthetic Metals, 1999, 102(1-3):1392-1393.
    [30] Wu JC, Pawliszyn J. Preparation and applications of polypyrrole films in solid-phase microextraction[J]. Journal of Chromatography A, 2001, 909(1):37-52.
    [31] Masuda H, Asano DK. Preparation and properties of polypyrrole[J]. Synthetic Metals, 2003, 135(1-3):43-44.
    [32] Pokrop R, Zagorska M, Kulik M et al. Solution processible sulfosuccinate doped polypyrrole: Preparation, spectroscopic and spectroelectrochemical characterization[J]. Molecular Crystals and Liquid Crystals, 2004, 415:93-104.
    [33] Groenendaal BL, Jonas F, Freitag D et al. Poly(3,4-ethylenedioxythiophene) and its derivatives: Past, present, and future[J]. Advanced Materials, 2000, 12(7):481-494.
    [34] Prieto-Irizarry RJ. Mathematical madeling and optimization of a secondary lithium battery utilizing a fibrillar polypyrrole cathode[D]. Texas: Texas A&M University, 1996.
    [35] Nigrey PJ, MacInnes DJ, Nairns DP et al. Lightweight rechargeable storage batteries using polyacetylene, (CH)x as the cathode-active material[J]. Journal of the Electrochemical Society, 1981, 128(8):1651-1654.
    [36] Kanazawa KK, Diaz AF, Gill WD et al. Polypyrrole: an electrochemically synthesized conducting organic polymers[J]. Synthetic Metals, 1979, 1(3): 329-336.
    [37] Goto F, Okabayashi K, Abe K et al. Polypyrrole positive electrode for second battery[J]. Electrochemical Society Extended Abstracts, 1984, 84(2): 908-909.
    [38] Zotti G, Schiavon G, Comisso N. Anion effects on conductivity of isomorphous polypyrrole charge pinning by nucleophilic anions[J]. Synthetic Metals. 1991, 40(3): 309-316.
    [39] Hwang JH, Pyo M. pH-Dependent mass and volume changes of polypyrrole/poly(styrene sulfonate)[J]. Bulletin of the Korean Chemical Society, 2006, 27(12):2067-2070.
    [40] Saidman SB. Influence of anion and pH on the electrochemical behaviour of polypyrrole synthesised in alkaline media[J]. Electrochimica Acta, 2003, 48(12):1719-1726.
    [41] Hwang JH, Pyo M. pH-induced mass and volume changes of perchlorate-doped polypyrrole[J]. Synthetic Metals, 2007, 157(2-3):155-159.
    [42] Tsai ML, Lu YF, Do JS. High-performance electrolyte in the presence of dextrose and its derivatives for aluminum electrolytic capacitors[J]. Journal of Power Sources, 2002, 112(2):643-648.
    [43] Kojima T, Yoshida K, Fukuyama M et al. A high-rated-voltage aluminum solid electrolytic capacitor with an electroconducting-polymer electrolyte[J]. Denki Kagaku, 1998, 66(4):438-442.
    [44] Yamamoto H, Kanemoto K, Oshima M et al. Self-healing characteristics of solid electrolytic capacitor with polypyrrole electrolyte[J]. Electrochemistry, 1999, 67(8):855-861.
    [45] Yamamoto H, Oshima M, Hosaka T et al. Solid electrolytic capacitors using an aluminum alloy electrode and conducting polymers[J]. Synthetic Metals, 1999, 104(1):33-38.
    [46] Hashmi SA, Upadhyaya HM. Polypyrrole and poly(3-methyl thiophene)-based solid state redox supercapacitors using ion conducting polymer electrolyte[J]. Solid State Ionics, 2002, 152-153:883-889.
    [47] Tsai ML, Chen PJ, Do JS. Preparation and characterization of Ppy/Al2O3/Al used as a solid-state capacitor[J]. Journal of Power Sources, 2004, 133(2):302-311.
    [48] Martins JI, Costa SC, Bazzaoui M et al. Conditions to prepare PPy/Al2O3/Al used as a solid-state capacitor from aqueous malic solutions[J]. Journal of Power Sources, 2006, 160(2):1471-1479.
    [49] Kudoh Y, Akami K, Matsuya Y. Solid electrolytic capacitor with highly stable conducting polymer as a counter electrode[J]. Synthetic Metals, 1999, 102(1-3):973-974.
    [50] Nogami K, Kakimoto M, Hayakawa T et al. Modification of anodized aluminum film by hyperbranched poly(siloxysilane)s in conductive polymer aluminum solid electrolytic capacitor[J]. Chemistry Letters, 2006, 35(1):134-135.
    [51] Toita S, Inoue K. One-pot synthesis of polypyrrole film on an aluminum oxide layer by electropolymerization in the presence of ammonium borodisalicylate in acetonitrile[J]. Journal of Power Sources, 2007, 164(2):905-910.
    [52] Hu CC, Cheng CY. Ideally pseudocapacitive behavior of amorphous hydrous cobalt-nickel oxide prepared by anodic deposition[J]. Electrochemical and Solid State Letters, 2002, 5(3):A43-a46.
    [53] Veeraraghavan B, Paul J, Haran B et al. Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries[J]. Journal of Power Sources, 2002, 109(2):377-387.
    [54] Jiang YF, Guo XW, Wei YH et al. Corrosion protection of polypyrrole electrodeposited on AZ91 magnesium alloys in alkaline solutions[J]. Synthetic Metals, 2003, 139(2):335-339.
    [55] Bengoechea M, Boyano I, Miguel O et al. Chemical reduction method for industrial application of undoped polypyrrole electrodes in lithium-ion batteries[J]. Journal of Power Sources, 2006, 160(1):585-591.
    [56] Song HK, Palmore GTR. Redox-active polypyrrole: Toward polymer-based batteries[J]. Advanced Materials, 2006, 18(13):1764-1768.
    [57] Jurewicz K, Delpeux S, Bertagna V et al. Supercapacitors from nanotubes/polypyrrole composites[J]. Chemical Physics Letters, 2001, 347(1-3):36-40.
    [58] Song S-H, Han D-S, Lee H-J et al. Application of quartz crystal for the supercapacity studies of Ppy/anion composites[J]. Synthetic Metals, 2001, 117(1-3):137-139.
    [59] An KH, Jeon KK, Heo JK et al. High-capacitance supercapacitor using a nanocomposite electrode of single-walled carbon nanotube and polypyrrole[J]. Journal of the Electrochemical Society, 2002, 149(8):A1058-A1062.
    [60] Frackowiak E, Jurewicz K, Delpeux S et al. Synergy of components in supercapacitors based on nanotube/polypyrrole composites[J]. Molecular Crystals and Liquid Crystals, 2002, 387:297-302.
    [61] Hu CC, Lin XX. Ideally capacitive behavior and X-ray photoelectron spectroscopy characterization of polypyrrole - Effects of polymerization temperatures and thickness/coverage[J]. Journal of the Electrochemical Society, 2002, 149(8):A1049-A1057.
    [62] Ingram MD, Staesche H, Ryder KS. `Ladder-doped' polypyrrole: a possible electrode material for inclusion in electrochemical supercapacitors?[J]. Journal of Power Sources, 2004, 129(1):107-112.
    [63] Ingram MD, Staesche H, Ryder KS. `Activated' polypyrrole electrodes for high-power supercapacitor applications[J]. Solid State Ionics, 2004, 169(1-4):51-57.
    [64] Winter M, Brodd RJ. What are batteries, fuel cells, and supercapacitors?[J]. Chemical Reviews, 2004, 104(10):4245-4269.
    [65] Park JH, Ko JM, Park OO et al. Capacitance properties of graphite/polypyrrole composite electrode prepared by chemical polymerization of pyrrole on graphite fiber[J]. Journal of Power Sources, 2002, 105(1):20-25.
    [66] Kato Y, Tada K, Onoda M. Preparation of large-size anisotropic polypyrrole film and its actuation property[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2003, 42(3):1458-1461.
    [67] Tada K, Kato Y, Onoda M. Preparation of sheet polypyrrole with vertical anisotropy: A self-organized bending-beam actuator[J]. Synthetic Metals, 2003, 135(1-3):101-102.
    [68] Yamauchi T, Tansuriyavong S, Doi K et al. Preparation of composite materials of polypyrrole and electroactive polymer gel using for actuating system[J]. Synthetic Metals, 2005, 152(1-3):45-48.
    [69] Berdichevsky Y, Lo YH. Polypyrrole nanowire actuators[J]. Advanced Materials, 2006, 18(1):122-125.
    [70] Pytel R, Thomas E, Hunter I. Anisotropy of electroactive strain in highly stretched polypyrrole actuators[J]. Chemistry of Materials, 2006, 18(4):861-863.
    [71] Madden JD, Rinderknecht D, Anquetil PA et al. Creep and cycle life in polypyrrole actuators[J]. Sensors and Actuators a-Physical, 2007, 133(1):210-217.
    [72] Lu W, Fadeev AG, Qi BH et al. Use of ionic liquids for pi-conjugated polymer electrochemical devices[J]. Science, 2002, 297(5583):983-987.
    [73] Vidal JC, Garcia E, Castillo JR. In situ preparation of a cholesterol biosensor: entrapment of cholesterol oxidase in an overoxidized polypyrrole film electrodeposited in a flow system - Determination of total cholesterol in serum[J]. Analytica Chimica Acta, 1999, 385(1-3):213-222.
    [74] Van CN, Potje-Kamloth K. The influence of thickness and preparation temperature of doped polypyrrole films on the electrical and chemical sensing properties of polypyrrole/gold Schottky barrier diodes[J]. Journal of Physics D-Applied Physics, 2000, 33(18):2230-2238.
    [75] Motonaka J, Yabutani T, Maruyama K et al. Preparation and properties of a glucose biosensor based on an osmium-complex modified polypyrrole[J]. Bunseki Kagaku, 2002, 51(12):1165-1170.
    [76] Breslin CB, Fenelon AM, Conroy KG. Surface engineering: corrosion protection using conducting polymers[J]. Materials & Design, 2005, 26(3):233-237.
    [77] Yasuzawa M, Inoue S, Imai S. Preparation of glucose sensor using polydimethylsiloxane/polypyrrole complex[J]. International Journal of Modern Physics B, 2003, 17(8-9):1217-1222.
    [78] Geng LN, Zhao YQ, Huang XL et al. The preparation and gas sensitivity study of polypyrrole/zinc oxide[J]. Synthetic Metals, 2006, 156(16-17):1078-1082.
    [79] An KH, Jeong SY, Hwang HR et al. Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites[J]. Advanced Materials, 2004, 16(12):1005-1009.
    [80] Yang JH, Kang CG, Jin JF et al. Characterization of Cu-doped PPy based dopamine sensor on n-type silicon substrate[J]. Journal of the Korean Physical Society, 2003, 42:S542-S546.
    [81] Kim JM, Chang SM, Lee HW et al. Study of the dynamic electrochromic behaviors of electrochemically polymerized polypyrrole thin film using QCA and UV spectrophotometer[J]. Synthetic Metals, 1997, 85(1-3):1371-1372.
    [82] Somani P, Radhakrishnan S. Electrochromic response in polypyrrole sensitized by Prussian blue[J]. Chemical Physics Letters, 1998, 292(1-2):218-222.
    [83] Gazotti WA, De Paoli MA, Casalbore-Miceli G et al. A solid-state electrochromic device based on complementary polypyrrole polythiophene derivatives and an elastomeric electrolyte[J]. Journal of Applied Electrochemistry, 1999, 29(6):753-757.
    [84] Smela E. A microfabricated movable electrochromic "pixel" based on polypyrrole[J]. Advanced Materials, 1999, 11(16):1343-1345.
    [85] Shibata M, Kawashita KI, Yosomiya R et al. Electrochromic properties of polypyrrole composite films in solid polymer electrolyte[J]. European Polymer Journal, 2001, 37(5):915-919.
    [86] Argun AA, Cirpan A, Reynolds JR. The first truly all-polymer electrochromic devices[J]. Advanced Materials, 2003, 15(16):1338-1341.
    [87] Ferreira J, Santos MJL, Matos R et al. Structural and electrochromic study of polypyrrole synthesized with azo and anthraquinone dyes[J]. Journal of Electroanalytical Chemistry, 2006, 591(1):27-32.
    [88] Rahman SU, Abul-Hamayel MA, Aleem BJA. Electrochemically synthesized polypyrrole films as primer for protective coatings on carbon steel[J]. Surface and Coatings Technology, 2006, 200(9):2948-2954.
    [89] Hashmi SA, Kumar A, Tripathi SK. Investigations on electrochemical supercapacitors using polypyrrole redox electrodes and PMMA based gel electrolytes[J]. European Polymer Journal, 2005, 41(6):1373-1379.
    [90] Izadi-Najafabadi A, Tan DTH, Madden JD. Towards High Power Polypyrrole/Carbon Capacitors[J]. Synthetic Metals, 2005, 152(1-3):129-132.
    [91] Fan L-Z, Maier J. High-performance polypyrrole electrode materials for redox supercapacitors[J]. Electrochemistry Communications, 2006, 8(6):937-940.
    [92] Khomenko V, Raymundo-Pinero E, Frackowiak E et al. High-voltage asymmetric supercapacitors operating in aqueous electrolyte[J]. Applied Physics a-Materials Science & Processing, 2006, 82(4):567-573.
    [93] Kim JH, Sharma AK, Lee YS. Synthesis of polypyrrole and carbon nano-fiber composite for the electrode of electrochemical capacitors[J]. Materials Letters, 2006, 60(13-14):1697-1701.
    [94] Muthulakshmi B, Kalpana D, Pitchumani S et al. Electrochemical deposition of polypyrrole for symmetric supercapacitors[J]. Journal of Power Sources, 2006, 158(2):1533-1537.
    [95] Krstajic NV, Grgur BN, Jovanovic SM et al. Corrosion protection of mild steel by polypyrrole coatings in acid sulfate solutions[J]. Electrochimica Acta, 1997, 42(11):1685-1691.
    [96] Grgur BN, Krstaji NV, Vojnovi MV et al. The influence of polypyrrole films on the corrosion behavior of iron in acid sulfate solutions[J]. Progress in Organic Coatings, 1998, 33(1):1-6.
    [97] Iroh JO, Su W. Corrosion performance of polypyrrole coating applied to low carbon steel by an electrochemical process[J]. Electrochimica Acta, 2000, 46(1):15-24.
    [98] Su W, Iroh JO. Electrodeposition mechanism, adhesion and corrosion performance of polypyrrole and poly(N-methylpyrrole) coatings on steel substrates[J]. Synthetic Metals, 2000, 114(3):225-234.
    [99] Herrasti P, Ocon P. Polypyrrole layers for steel protection[J]. Applied Surface Science, 2001, 172(3-4):276-284.
    [100] Nguyen Thi Le H, Garcia B, Deslouis C et al. Corrosion protection and conducting polymers: polypyrrole films on iron[J]. Electrochimica Acta, 2001, 46(26-27):4259-4272.
    [101] Bazzaoui M, Martins L, Bazzaoui EA et al. New single-step electrosynthesis process of homogeneous and strongly adherent polypyrrole films on iron electrodes in aqueous medium[J]. Electrochimica Acta, 2002, 47(18):2953-2962.
    [102] Martins JI, Reis TC, Bazzaoui M et al. Polypyrrole coatings as a treatment for zinc-coated steel surfaces against corrosion[J]. Corrosion Science, 2004, 46(10):2361-2381.
    [103] Tuken T, Yazici B, Erbil M. The electrochemical synthesis and corrosion performance of polypyrrole on brass and copper[J]. Progress in Organic Coatings, 2004, 51(2):152-160.
    [104] Bazzaoui M, Martins JI, Reis TC et al. Electrochemical synthesis of polypyrrole on ferrous and non-ferrous metals from sweet aqueous electrolytic medium[J]. Thin Solid Films, 2005, 485(1-2):155-159.
    [105] Garcia MAL, Smit MA. Study of electrodeposited polypyrrole coatings for the corrosion protection of stainless steel bipolar plates for the PEM fuel cell[J]. Journal of Power Sources, 2006, 158(1):397-402.
    [106] Van Schaftinghen T, Deslouis C, Hubin A et al. Influence of the surface pre-treatment prior to the film synthesis, on the corrosion protection of iron with polypyrrole films[J]. Electrochimica Acta, 2006, 51(8-9):1695-1703.
    [107] Yoon CO, Sung HK, Kim JH et al. The effect of low-temperature conditions on the electrochemical polymerization of polypyrrole films with high density, high electrical conductivity and high stability[J]. Synthetic Metals, 1999, 99(3):201-212.
    [108] Appel G, Bohme O, Mikalo R et al. The polaron and bipolaron contributions to the electronic structure of polypyrrole films[J]. Chemical Physics Letters, 1999, 313(3-4):411-415.
    [109] Martin CR. Nanomaterials: A Membrane-Based Synthetic Approach [J]. Science 1994 266: 1961-1966.
    [110] Nair S, Natarajan S, Kim SH. Fabrication of electrically conducting polypyrrole-poly(ethylene oxide) composite nanofibers[J]. Macromolecular Rapid Communications, 2005, 26(20):1599-1603.
    [111] Shi GQ, Li C, Liang YQ. High-strength conducting polymers prepared by electrochemical polymerization in boron trifluoride diethyl etherate solution[J]. Advanced Materials, 1999, 11(13):1145-1148.
    [112] Fenelon AM, Breslin CB. The electropolymerization of pyrrole at a CuNi electrode: corrosion protection properties[J]. Corrosion Science, 2003, 45(12):2837-2850.
    [113] Martins dos Santos LM, Lacroix JC, Chane-Ching KI et al. Electrochemical synthesis of polypyrrole films on copper electrodes in acidic and neutral aqueous media[J]. Journal of Electroanalytical Chemistry, 2006, 587(1):67-78.
    [114] Brandl V, Holze R. Influence of the preparation conditions on the properties of electropolymerised polypyrrole[J]. Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics, 1998, 102(8):1032-1038.
    [115] Garcia B, Belanger D. Electrochemical preparation and characterization of polypyrrole doped with bis(trifluoromethanesulfone)imide anions[J]. Synthetic Metals, 1998, 98(2):135-141.
    [116] Li YF, He GF. Effect of preparation conditions on the two doping structures of polypyrrole[J].Synthetic Metals, 1998, 94(1):127-129.
    [117] Zelenev A, Sonnenberg W, Matijevic E. Preparation, characterization, and adhesion of monodispersed polypyrrole particles[J]. Colloid and Polymer Science, 1998, 276(9):838-841.
    [118] Kassim A, Basar ZB, Mahmud HNME. Effects of preparation temperature on the conductivity of polypyrrole conducting polymer[J]. Proceedings of the Indian Academy of Sciences-Chemical Sciences, 2002, 114(2):155-162.
    [119] Liu YC, Hwang BJ, Jian WJ. Effect of preparation conditions for roughening gold substrate by oxidation-reduction cycle on the surface-enhanced Raman spectroscopy of polypyrrole[J]. Materials Chemistry and Physics, 2002, 73(2-3):129-134.
    [120] Saidman SB, Bessone JB. Electrochemical preparation and characterisation of polypyrrole on aluminium in aqueous solution[J]. Journal of Electroanalytical Chemistry, 2002, 521(1-2):87-94.
    [121] Grzeszczuk M, Kepas A, Zabinska-Olszak G. Electrochemical preparation and redox/ion exchange properties of polypyrrole in aqueous sodium hexafluoroaluminate[J]. Electrochimica Acta, 2004, 49(15):2405-2414.
    [122] Qu LT, Shi GQ, Yuan JY et al. Preparation of polypyrrole microstructures by direct electrochemical oxidation of pyrrole in an aqueous solution of camphorsulfonic acid[J]. Journal of Electroanalytical Chemistry, 2004, 561(1-2):149-156.
    [123] Tuken T, Arslan G, Yazici B et al. The preparation of polypyrrole coated brass and copper electrodes for electrocatalysis[J]. Progress in Organic Coatings, 2004, 49(2):153-159.
    [124] Ugur T, Yucel S, Nusret E et al. Preparation of sulfonated overoxidized polypyrrole film applicable as an SPME tool for cationic analytes[J]. Journal of Electroanalytical Chemistry, 2004, 570(1):6-12.
    [125] Qu LT, Shi GQ, Liu C et al. Preparation, characterization and electrochemical properties of polypyrrole-polystyrene sulfonic acid composite film[J]. Chinese Journal of Polymer Science, 2005, 23(1):37-46.
    [126] Tao WY, Li ZF, Pan DW et al. Preparation, structure, and electrochemistry of a polypyrrole film doped with manganese(III)-substituted Dawson-type phosphopolyoxotungstate[J]. Journal of Physical Chemistry B, 2005, 109(7):2666-2672.
    [127] Chen SJ, Chen W, Si ZH et al. Preparation of size controllable polypyrrole sub-microcapsules using SEBS copolymer as the building block[J]. Macromolecular Rapid Communications, 2006, 27(5):328-332.
    [128] Watanabe M. Preparation of polypyrrole film with well-ordered corrugation[J]. Synthetic Metals, 2006, 156(7-8):597-601.
    [129] Wang J, Xu YL, Chen X et al. Properties of electropolymerized high density polypyrrole films[J]. Acta Physica Sinica, 2007, 56(7):4256-4261.
    [130] Dyreklev P, Granstrom M, Inganas O et al. Influence of polymerization rate on conductivity and crystallinity of electropolymerized polypyrrole[J]. Polymer, 1996, 37(13):2609-2613.
    [131] Hagiwara T, Hirasaka M, Sato K et al. Enhancement of the electrical conductivity of poly-pyrrole film by stretching. Influence of the polymerization conditions[J]. Synthetic Metals, 1990, 36(2): 241-252.
    [132] Mitchell GR, Geri A. Molecular organization of electrochemically preprared conductiong polypyrrole films[J]. Journal of Physics D: Applied Physics, 1987, 20(11):1346-1353.
    [133] Lee K, Reghu M, Yuh EL et al. Infrared reflectance of polypyrrole: 'metal' with a gap in the spectrum of charged excitations[J]. Synthetic Metals, 1995, 68(3): 287-291.
    [134] Schmeisser D, Bartl A, Dunsch L et al. Electronic and magnetic properties of polypyrrole films depending on their one-dimensional and two-dimensional microstructures[J]. Synthetic Metals, 1998, 93(1):43-58.
    [135] Omastova M, Trchova M, Kovarova J et al. Synthesis and structural study of polypyrroles prepared in the presence of surfactants[J]. Synthetic Metals, 2003, 138(3):447-455.
    [136] Tuken T. Polypyrrole films on stainless steel[J]. Surface and Coatings Technology, 2006, 200(16-17):4713-4719.
    [137] Tuken T, Yazici B, Erbil M. Polypyrrole films on nickel-plated copper[J]. Progress in Organic Coatings, 2005, 54(4):372-376.
    [138] Hien NTL, Garcia B, Pailleret A et al. Role of doping, ions in the corrosion protection of iron by polypyrrole films[J]. Electrochimica Acta, 2005, 50(7-8):1747-1755.
    [139] Janata J, Josowicz M. Conducting polymers in electronic chemical sensors[J]. Nature Materials, 2003, 2(1):19-24.
    [140]龙云泽万梅香陈兆甲.导电聚合物维米/纳米结构的制备与性质[J].物理,2004, 33(11): 816-822.
    [141] Wan MX, Liu J, Qiu HJ et al. Template-free synthesized microtubules of conducting polymers[J]. Synthetic Metals, 2001, 119(1-3):71-72.
    [142] Wan MX, Wei ZX, Zhang ZM et al. Studies on nanostructures of conducting polymers via self-assembly method[J]. Synthetic Metals, 2003, 135(1-3):175-176.
    [143] Yang YS, Liu J, Wan MX. Self-assembled conducting polypyrrole micro/nanotubes[J]. Nanotechnology, 2002, 13(6):771-773.
    [144] Long Y, Chen ZJ, Wang NL et al. Electrical conductivity of a single conducting polyaniline nanotube[J]. Applied Physics Letters, 2003, 83(9):1863-1865.
    [145] Jang J. Conducting polymer nanomaterials and their applications[J]. Advanced Polymer Science, 2006, 199:189-259.
    [146] Qu LT, Shi GQ. Electrochemical synthesis of novel polypyrrole microstructures[J]. Chemical Communications, 2003, (2):206-207.
    [147] Gupta S. Template-free synthesis of conducting-polymer polypyrrole micro/nanostructures using electrochemistry[J]. Applied Physics Letters, 2006, 88(6) 063108:1-3.
    [148] Guyard L, Hapiot P, Neta P. Redox chemistry of bipyrroles: Further insights into the oxidative polymerization mechanism of pyrrole and oligopyrroles[J]. Journal of Physical Chemistry B, 1997, 101(29):5698-5706.
    [149] Shimoda S, Smela E. The effect of pH on polymerization and volume change in PPy(DBS)[J]. Electrochimica Acta, 1998, 44(2-3):219-238.
    [150] Pouzet S, Ricard A, Boudet A. Pulsed bed reactor for the preparation of polypyrrole deposited on graphite particles[J]. Electrochimica Acta, 1991, 36(13): 1953-1957.
    [151] Allen NS, Murray, KS, Fleming RJ et al. Physical properties of polypyrrole films containing trisoxalatometallate anions and prepared from aqueous solution[J]. Synthetic Metals, 1997, 87(3) : 237-247.
    [152] Cheah K, Forsyth M, Truong VT. Ordering and stability in conducting polypyrrole[J]. Synthetic Metals, 1998, 94(2):215-219.
    [153] Conway BE. Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications[M]. New York: Kluwer Academic/Plenum Publishers, 1999.
    [154] Weidlich C, Mangold KM, Juttner K. EQCM study of the ion exchange behaviour of polypyrrole with different counterions in different electrolytes[J]. Electrochimica Acta, 2005, 50(7-8):1547-1552.
    [155] Li J, Li J, Lai YQ et al. Influence of KOH activation techniques on pore structure and electrochemical property of carbon electrode materials[J]. Journal of Central South University of Technology, 2006, 13(4):360-366.
    [156] Li LX, Song HH, Chen XH. Pore characteristics and electrochemical performance of ordered mesoporous carbons for electric double-layer capacitors[J]. Electrochimica Acta, 2006,51(26):5715-5720.
    [157] Zhao JC, Lai CY, Dai Y et al. Pore structure control of mesoporous carbon as supercapacitor material[J]. Materials Letters, 2007, 61(23-24):4639-4642.
    [158] Tamai H, Hakoda M, Shiono T et al. Preparation of polyaniline coated activated carbon and their electrode performance for supercapacitor[J]. Journal of Materials Science, 2007, 42(4):1293-1298.
    [159] Pietrzak R, Jurewicz K, Nowicki P et al. Microporous activated carbons from ammoxidised anthracite and their capacitance behaviours[J]. Fuel, 2007, 86(7-8):1086-1092.
    [160] Fuertes AB, Pico F, Rojo JM. Influence of pore structure on electric double-layer capacitance of template mesoporous carbons[J]. Journal of Power Sources, 2004, 133(2):329-336.
    [161] Li HQ, Luo JY, Zhou XF et al. An ordered mesoporous carbon with short pore length and its electrochemical performances in supercapacitor applications[J]. Journal of the Electrochemical Society, 2007, 154(8):A731-A736.
    [162] Lazzari M, Mastragostino M, Soavi F. Capacitance response of carbons in solvent-free ionic liquid electrolytes[J]. Electrochemistry Communications, 2007, 9(7):1567-1572.
    [163] Centeno TA, Hahn M, Fernandez JA et al. Correlation between capacitances of porous carbons in acidic and aprotic EDLC electrolytes[J]. Electrochemistry Communications, 2007, 9(6):1242-1246.
    [164] Jang J, Bae J, Choi M et al. Fabrication and characterization of polyaniline coated carbon nanofiber for supercapacitor[J]. Carbon, 2005, 43(13):2730-2736.
    [165] Gallegos AKC, Rincon ME. Carbon nanofiber and PEDOT-PSS bilayer systems as electrodes for symmetric and asymmetric electrochemical capacitor cells[J]. Journal of Power Sources, 2006, 162(1):743-747.
    [166] Li J, Wang XY, Huang QH et al. Studies on preparation and performances of carbon aerogel electrodes for the application of supercapacitor[J]. Journal of Power Sources, 2006, 158(1):784-788.
    [167] Lee YH, An KH, Lim SC et al. Applications of carbon nanotubes to energy storage devices[J]. New Diamond and Frontier Carbon Technology, 2002, 12(4):209-228.
    [168] Frackowiak E, Metenier K, Bertagna V et al. Supercapacitor electrodes from multiwalled carbon nanotubes[J]. Applied Physics Letters, 2000, 77(15):2421-2423.
    [169] Du CS, Pan N. High power density supercapacitor electrodes of carbon nanotube films by electrophoretic deposition[J]. Nanotechnology, 2006, 17(21):5314-5318.
    [170] Yang CM, Kim YJ, Endo M et al. Nanowindow-regulated specific capacitance of supercapacitor electrodes of single-wall carbon nanohorns[J]. Journal of the American Chemical Society, 2007, 129(1):20-21.
    [171] Reddy ALM, Ramaprabhu S. Nanocrystalline metal oxides dispersed multiwalled carbon nanotubes as supercapacitor electrodes[J]. Journal of Physical Chemistry C, 2007, 111(21):7727-7734.
    [172] Lota G, Lota K, Frackowiak E. Nanotubes based composites rich in nitrogen for supercapacitor application[J]. Electrochemistry Communications, 2007, 9(7):1828-1832.
    [173] Lota G, Frackowiak E, Mittal J et al. High performance supercapacitor from chromium oxide-nanotubes based electrodes[J]. Chemical Physics Letters, 2007, 434(1-3):73-77.
    [174] Cuentas-Gallegos A, Martinez-Rosales R, Baibarac M et al. Electrochemical supercapacitors based on novel hybrid materials made of carbon nanotubes and polyoxometalates[J]. Electrochemistry Communications, 2007, 9(8):2088-2092.
    [175] Bordjiba T, Mohamedi M, Dao LH et al. Enhanced physical and electrochemical properties of nanostructured carbon nanotubes coated microfibrous carbon paper[J]. Chemical Physics Letters,2007, 441(1-3):88-93.
    [176] Zhou CF, Kumar S. Comparison of carbon nanotube based electrochemical supercapacitor electrodes using different electrolytes[J]. Abstracts of Papers of the American Chemical Society, 2006, 231:-.
    [177] Kim YT, Mitani T. Competitive effect of carbon nanotubes oxidation on aqueous EDLC performance: Balancing hydrophilicity and conductivity[J]. Journal of Power Sources, 2006, 158(2):1517-1522.
    [178] Frackowiak E, Jurewicz K, Delpeux S et al. Nanotubular materials for supercapacitors[J]. Journal of Power Sources, 2001, 97-98:822-825.
    [179] Frackowiak E, Jurewicz K, Szostak K et al. Nanotubular materials as electrodes for supercapacitors[J]. Fuel Processing Technology, 2002, 77-78:213-219.
    [180] Niu JJ, Pell WG, Conway BE. Requirements for performance characterization of C double-layer supercapacitors: Applications to a high specific-area C-cloth material[J]. Journal of Power Sources, 2006, 156(2):725-740.
    [181] Frackowiak E, Beguin F. Carbon materials for the electrochemical storage of energy in capacitors[J]. Carbon, 2001, 39(6):937-950.
    [182] Andreas HA, Conway BE. Examination of the double-layer capacitance of an high specific-area C-cloth electrode as titrated from acidic to alkaline pHs[J]. Electrochimica Acta, 2006, 51(28):6510-6520.
    [183] Frackowiak E. Carbon materials for supercapacitor application[J]. Physical Chemistry Chemical Physics, 2007, 9(15):1774-1785.
    [184] Frackowiak E, Khomenko V, Jurewicz K et al. Supercapacitors based on conducting polymers/nanotubes composites[J]. Journal of Power Sources, 2006, 153(2):413-418.
    [185] Wang XF, You Z, Ruan DB. A hybrid metal oxide supercapacitor in aqueous KOH electrolyte[J]. Chinese Journal of Chemistry, 2006, 24(9):1126-1132.
    [186] Jang JH, Machida K, Kim Y et al. Electrophoretic deposition (EPD) of hydrous ruthenium oxides with PTFE and their supercapacitor performances[J]. Electrochimica Acta, 2006, 52(4):1733-1741.
    [187] Arabale G, Wagh D, Kulkarni M et al. Enhanced supercapacitance of multiwalled carbon nanotubes functionalized with ruthenium oxide[J]. Chemical Physics Letters, 2003, 376(1-2):207-213.
    [188] Liang YY,Li HL, Zhang XG. Solid state synthesis of hydrous ruthenium oxide for supercapacitors[J]. Journal of Power Sources, 2007, 173(1):599-605.
    [189] Zhang JR, Chen B, Li WK et al. Electrochemical behavior of amorphous hydrous ruthenium oxide/active carbon composite electrodes for super-capacitor[J]. International Journal of Modern Physics B, 2002, 16(28-29):4479-4483.
    [190] Lee JY, Liang K, An KH et al. Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance[J]. Synthetic Metals, 2005, 150(2):153-157.
    [191] Xu B, Wu F, Wang F et al. Single-walled carbon nanotubes as electrode materials for supercapacitors[J]. Chinese Journal of Chemistry, 2006, 24(11):1505-1508.
    [192] Yang JJ, Huang JJ, Jiang ZY. Supercapacitance of MnO2 thin film electrodes prepared using jet printing method[J]. Acta Physico-Chimica Sinica, 2007, 23(9):1365-1369.
    [193] Wiecek B, Kepas-Suwara A. Charge storage properties of hydrous molybdenum oxide thin films[J]. Polish Journal of Chemistry, 2007, 81(1):129-135.
    [194] Morimoto H, Takeno K, Uozumi Y et al. High-rate charge-discharge performance of composite materials of beta-FeOOH particles and carbon powder prepared in the presence of Ti(IV) ions[J]. Electroceramics in Japan Ix, 2006, 320:215-218.
    [195] Jayalakshmi A, Venugopal N, Raja KP et al. Nano SnO2-Al2O3 mixed oxide and SnO2-Al2O3-carbon composite oxides as new and novel electrodes for supercapacitor applications[J]. Journal of Power Sources, 2006, 158(2):1538-1543.
    [196] Fan Z, Chen JH, Sun F et al. A novel method for the preparation of MnO/C composites as electrode materials for supercapacitors with excellent power characteristics[J]. Bulletin of Electrochemistry, 2006, 22(5):219-223.
    [197] Sivaraman P, Rath SK, Hande VR et al. All-solid-supercapacitor based on polyaniline and sulfonated polymers[J]. Synthetic Metals, 2006, 156(16-17):1057-1064.
    [198] Gupta V, Miura N. Polyaniline/single-wall carbon nanotube (PANI/SWCNT) composites for high performance supercapacitors[J]. Electrochimica Acta, 2006, 52(4):1721-1726.
    [199] Gupta V, Miura N. Influence of the microstructure on the supercapacitive behavior of polyaniline/single-wall carbon nanotube composites[J]. Journal of Power Sources, 2006, 157(1):616-620.
    [200] Carlberg JC, Inganas O. Poly(3,4-ethylenedioxythiophene) as electrode material in electrochemical capacitors[J]. Journal of the Electrochemical Society, 1997, 144(4):L61-L64.
    [201] Sivaraman P, Thakur A, Kushwaha RK et al. Poly(3-methyl thiophene)-activated carbon hybrid supercapacitor based on gel polymer electrolyte[J]. Electrochemical and Solid State Letters, 2006, 9(9):A435-a438.
    [202] Lota K, Khomenko V, Frackowiak E. Capacitance properties of poly(3,4-ethylenedioxythiophene) /carbon nanotubes composites[J]. Journal of Physics and Chemistry of Solids, 2004, 65(2-3): 295-301.
    [203] White AM, Slade RCT. Electrochemically and vapour grown electrode coatings of poly(3,4-ethylenedioxythiophene) doped with heteropolyacids[J]. Electrochimica Acta, 2004, 49(6):861-865.
    [204] Xiao QF, Zhou X. The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor[J]. Electrochimica Acta, 2003, 48(5):575-580.
    [205] Khomenko V, Frackowiak E, Beguin F. Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations[J]. Electrochimica Acta, 2005, 50(12):2499-2506.
    [206] Kim JH, Lee YS, Sharma AK et al. Polypyrrole/carbon composite electrode for high-power electrochemical capacitors[J]. Electrochimica Acta, 2006, 52(4):1727-1732.
    [207] Sivakkumar SR, Ko JM, Kim DY et al. Performance evaluation of CNT/polypyrrole/MnO2 composite electrodes for electrochemical capacitors[J]. Electrochimica Acta, 2007, 52(25):7377-7385.
    [208] D'Angelo JG, Kumar A, Onorato A et al. Chemical stability of conducting polymers: Friedel-Crafts reactions of alcohols with poly (3,4-ethylenedioxythiophene) (PEDOT)[J]. Polymer, 2007, 48(15):4328-4336.
    [209] Cho MS, Seo HJ, Nam JD et al. A solid state actuator based on the PEDOT/NBR system: Effect of anion size of imidazolium ionic liquid[J]. Molecular Crystals and Liquid Crystals, 2007, 464:633-638.
    [210] Peisert H, Petr A, Dunsch L et al. Interface fermi level pinning at contacts between PEDOT: PSS and molecular organic semiconductors[J]. Chemphyschem, 2007, 8(3):386-390.
    [211]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社, 2004.
    [212] Wang SJ, Park HH. Study of PEDOT : PSS-SnO2 nanocomposite film as an anode for polymer electronics[J]. Journal of Electroceramics, 2007, 18(1-2):161-165.
    [213] Zeng YL, Huang YF, Jiang JH et al. Functionalization of multi-walled carbon nanotubes with poly(amidoamine) dendrimer for mediator-free glucose biosensor[J]. ElectrochemistryCommunications, 2007, 9(1):185-190.
    [214] Andersen M, Carle JE, Cruys-Bagger N et al. Transparent anodes for polymer photovoltaics: Oxygen permeability of PEDOT[J]. Solar Energy Materials and Solar Cells, 2007, 91(6):539-543.
    [215] Arena A, Donato N, Saitta G. Electrical characterization of solid-state heterojunctions between PEDOT : PSS and an anionic polyelectrolyte[J]. Microelectronics Journal, 2007, 38(6-7):678-681.
    [216] Kymakis E, Klapsis G, Koudoumas E et al. Carbon nanotube/PEDOT : PSS electrodes for organic photovoltaics[J]. European Physical Journal-Applied Physics, 2006, 36(3):257-259.
    [217] Mu H, Li W, Jones R et al. A comparative study of electrode effects on the electrical and luminescent characteristics of Alq(3)/TPD OLED: Improvements due to conductive polymer (PEDOT) anode[J]. Journal of Luminescence, 2007, 126(1):225-229.
    [218] Patra S, Munichandraiah N. Supercapacitor studies of electrochemically deposited PEDOT on stainless steel substrate[J]. Journal of Applied Polymer Science, 2007, 106(2):1160-1171.
    [219] Zainudeen UL, Careem MA, Skaarup S. The electrochemical Behavior of Bilayers and Multi Layers with Polypyrrole and PEDOT[C]. 4rd International Conference on Materials for Advanced Technologies, Singapore, 2007.
    [220] Zhao YL, Jones WH, Monnat F et al. Mechanisms of thermal decompositions of polysulfones: A DFT and CBS-QB3 study[J]. Macromolecules, 2005, 38(24):10279-10285.
    [221] Hass R, Garcia-Canadas J, Garcia-Belmonte G. Electrochemical impedance analysis of the redox switching hysteresis of poly(3,4-ethylenedioxythiophene) films[J]. Journal of Electroanalytical Chemistry, 2005, 577(1):99-105.
    [222] Wang J, Xu Y, Chen X et al. Electrochemical supercapacitor electrode material based on poly(3,4-ethylenedioxythiophene)/polypyrrole composite[J]. Journal of Power Sources, 2007, 163(2):1120-1125.
    [223] Celzard A, Collas F, Mareche JF et al. Porous electrodes-based double-layer supercapacitors: pore structure versus series resistance[J]. Journal of Power Sources, 2002, 108(1-2):153-162.
    [224] Tuken T, Yazici B, Erbil M. A new multilayer coating for mild steel protection[J]. Progress in Organic Coatings, 2004, 50(2):115-122.
    [225] Cascales JJL, Fernandez AJ, Otero TF. Characterization of the reduced and oxidized polypyrrole/water interface: A molecular dynamics simulation study[J]. Journal of Physical Chemistry B, 2003, 107(35):9339-9343.
    [226] Otero TF, Boyano I. Comparative study of conducting polymers by the ESCR model[J]. Journal of Physical Chemistry B, 2003, 107(28):6730-6738.
    [227] Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348):56.
    [228] Iijima S, Yudasaka M, Nihey F. Carbon nanotube technology[J]. Nec Technical Journal, 2007, 2(1):52-56.
    [229] Gayathri V, Geetha R. Hydrogen adsorption in defected carbon nanotubes[J]. Adsorption-Journal of the International Adsorption Society, 2007, 13(1):53-59.
    [230] Honda Y, Haramoto T, Takeshige M et al. Aligned MWCNT sheet electrodes prepared by transfer methodology providing high-power capacitor performance[J]. Electrochemical and Solid State Letters, 2007, 10(4):A106-A110.
    [231] Bokobza L, Belin C. Effect of strain on the properties of a styrene-butadiene rubber filled with multiwall carbon nanotubes[J]. Journal of Applied Polymer Science, 2007, 105(4):2054-2061.
    [232] Sljukic B, Banks CE, Crossley A et al. Copper oxide - Graphite composite electrodes: Application to nitrite sensing[J]. Electroanalysis, 2007, 19(1):79-84.
    [233] An GM, Yu P, Mao LQ et al. Synthesis of PtRu/carbon nanotube composites in supercritical fluid and their application as an electrocatalyst for direct methanol fuel cells[J]. Carbon, 2007,45(3):536-542.
    [234] Chen XW, Zhu Z, Havecker M et al. Carbon nanotube-induced preparation of vanadium oxide nanorods: Application as a catalyst for the partial oxidation of n-butane[J]. Materials Research Bulletin, 2007, 42(2):354-361.
    [235] Whitten PG, Gestos AA, Spinks GM et al. Free standing carbon nanotube composite bio-electrodes[J]. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2007, 82(1):37-43.
    [236] White AA, Best SM, Kinloch IA. Hydroxyapatite-carbon nanotube composites for biomedical applications: A review[J]. International Journal of Applied Ceramic Technology, 2007, 4(1):1-13.
    [237] Masarapu C, Ok JT, Wei BQ. Thermal stability of carbon-nanotube-based field emission diodes[J]. Journal of Physical Chemistry C, 2007, 111(32):12112-12115.
    [238] Hatton RA, Blanchard NP, Miller AJ et al. A multi-wall carbon nanotube-molecular semiconductor composite for bi-layer organic solar cells[J]. Physica E-Low-Dimensional Systems & Nanostructures, 2007, 37(1-2):124-127.
    [239] Zakhidov AA, Nanjundaswamy R, Obraztsov AN et al. Field emission of electrons by carbon nanotube twist-yarns[J]. Applied Physics a-Materials Science & Processing, 2007, 88(4):593-600.
    [240] Ma RZ, Wei BQ, Xu CL et al. Development of supercapacitors based on carbon nanotubes[J]. Science in China Series E-Technological Sciences, 2000, 43(2):178-182.
    [241] An KH, Kim WS, Park YS et al. Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes[J]. Advanced Functional Materials, 2001, 11(5):387-392.
    [242] An KH, Kim WS, Park YS et al. Supercapacitors using single-walled carbon nanotube electrodes[J]. Advanced Materials, 2001, 13(7):497-500.
    [243] Liu CG, Liu M, Wang MZ et al. Research and development of carbon materials for electrochemical capacitors - II - The carbon electrode[J]. New Carbon Materials, 2002, 17(2):64-72.
    [244] Chatterjee AK, Sharon M, Baneriee R et al. CVD synthesis of carbon nanotubes using a finely dispersed cobalt catalyst and their use in double layer electrochemical capacitors[J]. Electrochimica Acta, 2003, 48(23):3439-3446.
    [245] Frackowiak E, Beguin F. Electrochemical storage of energy in carbon nanotubes and nanostructured carbons[J]. Carbon, 2002, 40(10):1775-1787.
    [246] Tasis D, Tagmatarchis N, Bianco A et al. Chemistry of carbon nanotubes[J]. Chemical Reviews, 2006, 106(3):1105-1136.
    [247] Liu J, Rinzler AG, Dai HJ et al. Fullerene pipes[J]. Science, 1998, 280(5367):1253-1256.
    [248] Weisman RB, Subramoney S. Carbon nanotubes[J]. The Electrochemical Society Interface, 2006, 15(2):42-46.
    [249] Chen GZ, Shaffer MSP, Coleby D et al. Carbon nanotube and polypyrrole composites: Coating and doping[J]. Advanced Materials, 2000, 12(7):522-525.
    [250] Ham HT, Choi YS, Jeong N et al. Singlewall carbon nanotubes covered with polypyrrole nanoparticles by the miniemulsion polymerization[J]. Polymer, 2005, 46(17):6308-6315.
    [251] Zhou CF, Kumar S, Doyle CD et al. Functionalized single wall carbon nanotubes treated with pyrrole for electrochemical supercapacitor membranes[J]. Chemistry of Materials, 2005, 17(8):1997-2002.
    [252] Kim J-H, Sharma AK, Lee Y-S. Synthesis of polypyrrole and carbon nano-fiber composite for the electrode of electrochemical capacitors[J]. Materials Letters, 2006, 60(13-14):1697-1701.
    [253] Hughes M, Shaffer MSP, Renouf AC et al. Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole[J]. Advanced Materials,2002, 14(5):382-385.
    [254]柯伟.中国工业与自然环境腐蚀调查的进展[J].腐蚀与防护,2004,25(1):1-8.
    [255] DeBerry DW. Modification of the electrochemical and corrosion behavior of stainless of stainless steels with an electroactive coationg[J]. Journal of the Electrochemical Society, 1985, 132(5): 1022-1026.
    [256] Kraljic M, Mandic Z, Duic L. Inhibition of steel corrosion by polyaniline coatings[J]. Corrosion Science, 2003, 45(1):181-198.
    [257] Wang YY, Jin XL. Preparation of an expoxy/polyaniline composite coating and its passivation effect on cold rolled steel[J]. Polymer Journal, 2004, 36(5):374-379.
    [258] da Silva JEP, de Torresi SIC, Torresi RM. Polyaniline acrylic coatings for corrosion inhibition: the role played by counter-ions[J]. Corrosion Science, 2005, 47(3):811-822.
    [259] Ocon P, Cristobal AB, Herrasti P et al. Corrosion performance of conducting polymer coatings applied on mild steel[J]. Corrosion Science, 2005, 47(3):649-662.
    [260] Wang T, Tan YJ. Understanding electrodeposition of polyaniline coatings for corrosion prevention applications using the wire beam electrode method[J]. Corrosion Science, 2006, 48(8):2274-2290.
    [261] Gelling VJ, Wiest MM, Tallman DE et al. Electroactive-conducting polymers for corrosion control: 4. Studies of poly(3-octyl pyrrole) and poly(3-octadecyl pyrrole) on aluminum 2024-T3 alloy[J]. Progress in Organic Coatings, 2001, 43(1-3):149-157.
    [262] Tuken T, Dudukcu M, Yazici B et al. The use of polyindole for mild steel protection[J]. Progress in Organic Coatings, 2004, 50(4):273-282.
    [263] Tuken T, Yazici B, Erbil M. The use of polythiophene for mild steel protection[J]. Progress in Organic Coatings, 2004, 51(3):205-212.
    [264] Herrasti P, Recio FJ, Ocon P et al. Effect of the polymer layers and bilayers on the corrosion behaviour of mild steel: Comparison with polymers containing Zn microparticles[J]. Progress in Organic Coatings, 2005, 54(4):285-291.
    [265] Nguyen Thi Le H, Bernard MC, Garcia-Renaud B et al. Raman spectroscopy analysis of polypyrrole films as protective coatings on iron[J]. Synthetic Metals, 2004, 140(2-3):287-293.
    [266] Meneguzzi A, Pham MC, Lacroix JC et al. Electroactive poly(aromatic amine) films for iron protection in sulfate medium[J]. Journal of the Electrochemical Society, 2001, 148(4):B121-B126.
    [267] Camalet JL, Lacroix JC, Aeiyach S et al. Electrodeposition of protective polyaniline films on mild steel[J]. Journal of Electroanalytical Chemistry, 1996, 416(1-2):179-182.
    [268] Camalet JL, Lacroix JC, Aeiyach S et al. Electrosynthesis of adherent polyaniline films on iron and mild steel in aqueous oxalic acid medium[J]. Synthetic Metals, 1998, 93(2):133-142.
    [269] Aeiyach S, Chane-Ching KI, Lacroix JC et al. Conjugated organic polymers for anticorrosion coating[J]. Conducting Polymers and Polymer Electrolytes: From Biology to Photovoltaics, 2003, 832:128-140.
    [270] Tuken T, Ozyilmaz AT, Yazici B et al. Electrochemical synthesis of polyaniline on mild steel in acetonitrile-LiClO4 and corrosion performance[J]. Applied Surface Science, 2004, 236(1-4):292-305.
    [271] Tuken T, Yazici B, Erbil M. Polypyrrole/polythiophene coating for copper protection[J]. Progress in Organic Coatings, 2005, 53(1):38-45.
    [272] Sathiyanarayanan S, Muthukrishnan S, Venkatachari G. Synthesis and anticorrosion properties of polydiphenylamine blended vinyl coatings[J]. Synthetic Metals, 2006, 156(18-20):1208-1212.
    [273] Tuken T. Zinc modified polypyrrole coating on mild steel[J]. Surface & Coatings Technology, 2006, 201(6):2782-2790.
    [274] Grgur BN, Zivkovic P, Gvozdenovic MM. Kinetics of the mild steel corrosion protection by polypyrrole-oxalate coating in sulfuric acid solution[J]. Progress in Organic Coatings, 2006, 56(2-3):240-247.
    [275] Reut J, Opik A, Idla K. Corrosion behavior of polypyrrole coated mild steel[J]. Synthetic Metals, 1999, 102(1-3):1392-1393.
    [276] Truong VT, Lai PK, Moore BT et al. Corrosion protection of magnesium by electroactive polypyrrole/paint coatings[J]. Synthetic Metals, 2000, 110(1):7-15.
    [277] Fenelon AM, Breslin CB. The electrochemical synthesis of polypyrrole at a copper electrode: corrosion protection properties[J]. Electrochimica Acta, 2002, 47(28):4467-4476.
    [278] Martins JI, Bazzaoui M, Reis TC et al. Electrosynthesis of homogeneous and adherent polypyrrole coatings on iron and steel electrodes by using a new electrochemical procedure[J]. Synthetic Metals, 2002, 129(3):221-228.
    [279] Hammache H, Makhloufi L, Saidani B. Corrosion protection of iron by polypyrrole modified by copper using the cementation process[J]. Corrosion Science, 2003, 45(9):2031-2042.
    [280] Lenz DM, Delamar M, Ferreira CA. Application of polypyrrole/TiO2 composite films as corrosion protection of mild steel[J]. Journal of Electroanalytical Chemistry, 2003, 540:35-44.
    [281] Herrasti P, Diaz L, Ocon P et al. Electrochemical and mechanical properties of polypyrrole coatings on steel[J]. Electrochimica Acta, 2004, 49(22-23):3693-3699.
    [282] Hermas AA, Nakayama M, Ogura K. Formation of stable passive film on stainless steel by electrochemical deposition of polypyrrole[J]. Electrochimica Acta, 2005, 50(18):3640-3647.
    [283] Hien NTL, Garcia B, Pailleret A et al. Role of doping ions in the corrosion protection of iron by polypyrrole films[J]. Electrochimica Acta, 2005, 50(7-8):1747-1755.
    [284] Malik MA, Wlodarczyk R, Kulesza PJ et al. Protective properties of hexacyanoferrate containing polypyrrole films on stainless steel[J]. Corrosion Science, 2005, 47(3):771-783.
    [285] Tuken T, Yazici B, Erbil M. Polypyrrole films on nickel-plated copper[J]. Progress in Organic Coatings, 2005, 54(4):372-376.
    [286] Bazzaoui M, Martins JI, Costa SC et al. Sweet aqueous solution for electrochemical synthesis of polypyrrole: Part 2. On ferrous metals[J]. Electrochimica Acta, 2006, 51(21):4516-4527.
    [287] Bazzaoui M, Martins JI, Costa SC et al. Sweet aqueous solution for electrochemical synthesis of polypyrrole: Part 1-A. On non-ferrous metals[J]. Electrochimica Acta, 2006, 51(12):2417-2426.
    [288] Lehr IL, Saidman SB. Characterisation and corrosion protection properties of polypyrrole electropolymerised onto aluminium in the presence of molybdate and nitrate[J]. Electrochimica Acta, 2006, 51(16):3249-3255.
    [289] Tuken T, Yazic B, Erbil M. Polypyrrole modified nickel coating on mild steel[J]. Materials & Design, 2007, 28(1):208-216.
    [290] Geetha S, Trivedi DC. Studies on polypyrrole film in room temperature melt[J]. Materials Chemistry and Physics, 2004, 88(2-3):388-397.
    [291] Xing SX, Zhao GK. Morphology, structure, and conductivity of polypyrrole prepared in the presence of mixed surfactants in aqueous solutions[J]. Journal of Applied Polymer Science, 2007, 104(3):1987-1996.
    [292] Shaktawat V, Jain N, Saxena R et al. Electrical conductivity and optical band gap studies of polypyrrole doped with different acids[J]. Journal of Optoelectronics and Advanced Materials, 2007, 9(7):2130-2132.
    [293] Pini N, Siegrist M, Busato S et al. Influence of processing parameters on the electric conductivity and on the mechanical properties of thick polypyrrole films[J]. Polymer Engineering and Science, 2007, 47(5):662-666.
    [294] Mo ZL, Zuo DD, Chen H et al. Synthesis and conductivity of graphite nanosheets/polypyrrolecomposites[J]. Chinese Journal of Inorganic Chemistry, 2007, 23(2):265-269.
    [295] Tamayo JP, del Rosario EJ. Computational and experimental studies on the electrical conductivity of doped polyaniline, polyanisidine and polypyrrole[J]. Materials Research Innovations, 2006, 10(3):90-93.
    [296] Hulea IN, Brom HB, Mukherjee AK et al. Doping, density of states, and conductivity in polypyrrole and poly(p-phenylene vinylene)[J]. Physical Review B, 2005, 72(5):054208-4.
    [297] West K, Bay L, Nielsen MM et al. Electronic conductivity of polypyrrole-dodecyl benzene sulfonate complexes[J]. Journal of Physical Chemistry B, 2004, 108(39):15001-15008.
    [298] Eftekhari A. Enhanced stability and conductivity of polypyrrole film prepared electrochemically in the presence of centrifugal forces[J]. Synthetic Metals, 2004, 142(1-3):305-308.
    [299] Liu YC, Yang KH, Wang CC. Enhancements in conductivity and Raman spectroscopy of polypyrrole electropolymerized on electrochemically roughened Au substrates[J]. Journal of Electroanalytical Chemistry, 2003, 549:151-155.
    [300] Liu YC, Chung KC. Characteristics of conductivity-improved polypyrrole films via different procedures[J]. Synthetic Metals, 2003, 139(2):277-281.
    [301] Tada K, Satake K, Onoda M. In situ polymerization of polypyrrole in alcohols: Controlling deposition rate and electrical conductivity[J]. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 2002, 41(11A):6586-6590.
    [302] Harada D. Self-healing mechanism of NEOCAPACITOR[J]. Nec Research & Development, 1997, 38(3):301-305.
    [303] Chiu HT, Cheng JO, Tao YC et al. Effect of chemically synthesized aluminum foil on solid state polypyrrole capacitor[J]. Polymer-Plastics Technology and Engineering, 2007, 46(4):335-343.
    [304] Satoh M, Ishikawa H, Yageta H et al. Structure and properties of polypyrrole synthesized under air and oxygen-free conditions[J]. Synthetic Metals, 1997, 84(1-3):167-168.
    [305] Prymak JD. Improvements with Polymer Cathodes in Aluminum and Tantalum Capacitors[J]. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2001, 2: 1210-1218

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700