用户名: 密码: 验证码:
黄河口碳的输运特征及通量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河口是陆海相互作用最活跃的场所,在全球碳循环中发挥着重要作用。由于强烈的生物活动以及复杂的沉积动力学过程等,河口区往往对陆源入海物质起到“过滤”或“缓冲”的作用,使得入海物质的形态和量在河口区发生改变。了解河口过程对各形态碳分布的影响,对于研究河流向海洋的碳输运过程十分重要。黄河作为中纬度干旱半干旱地区高浑浊度河流的典型代表,对其河口区碳输运行为及影响因素的探讨,对于讨论同类河口碳输运行为具有重要的借鉴意义。
     本文根据2010.7-2011.7对利津站的逐月连续观测资料;2005-2013年间积累的各形态碳的观测数据;2005-2010年6个航次对黄河口的采样调查;以及2009-2010年4个航次对河口区pCO2的走航调查,对黄河口淡水端各形态碳的季节变化,上世纪50年代以来淡水端碳输运通量的改变,淡咸水混合过程对各形态碳输运的影响,以及河口区pCO2分布的影响因素和水-气界面CO2通量进行探讨。主要结果与结论如下:
     1.与世界多数河流不同的是,黄河入海(利津站)各形态碳的输运通量无机碳大于有机碳,颗粒态碳大于溶解态碳。2010-2011水文年利津站DIC、DOC及POC的年输运通量分别为56.2×104tC、3.97×104tC、35.0×104tC。各形态碳输运通量在夏季(夏季黄河经历调水调沙)时最高,DIC、DOC通量分别占全年的55.6%,58.4%,POC则高达全年的88.6%。黄河淡水端多年累积数据的统计显示:DIC、DOC浓度随径流量的增加,悬浮物中PIC%、POC%随中值粒径的增大呈负对数型降低趋势。以此为依据,反演的1950-2012年黄河利津站各形态碳的输运通量总体呈现下降趋势,其中由于径流量和输沙量的减少,2000年以后较上世纪50年代DIC、PIC、POC年输运通量则分别下降了60%,90%,91%。
     2.黄河口低盐区存在DIC的亏损现象,河流输入的DIC未被有效输入海洋。研究证明,生物活动和碳酸钙沉降是导致黄河口低盐区DIC的亏损的主要原因,并且Chl a含量及淡水输入DIC浓度越高,碳酸钙过饱和程度越大,河口淡咸水混合时间越长,DIC亏损程度及亏损区间越大。在世界河口区已报道的DIC非保守现象研究中,黄河口是目前唯一一个碳酸钙沉降起了重要作用的实例。黄河DOC含量(2.39mg L-1)低于世界河流平均值(5.0mgL-1),然而黄河口低盐区存在DOC的盈余现象,以淡水端浓度评估的DOC入海通量偏低。
     3.与世界多数河口一致,pCO2在淡咸水混合过程中总体呈降低趋势。然而不同的是,黄河口在盐度小于0.5的区域内随TSS、PIC的沉降,pCO2呈现急剧下降。浮游生物活动是水体pCO2主要清除机制,黄河输入极高DIC浓度的碳酸盐体系是河口CO2的主要来源。只有当黄河下游普遍降雨,大量有机物冲刷进入河流时,耗氧呼吸提供CO2所占的比例才会增大。黄河口虽然整体上表现为大气CO2的源,但其CO2释放通量低于世界中纬度地区河口CO2释放通量的平均值,在世界大河中处于较低的水平。
Estuaries are regions of active land-ocean interaction and very important toglobal carbon cycles. Due to strong internal biogeochemical activities and a numberof complex sedimentary dynamic processes, mass transported into estuaries usuallyexhibits nonconservative behavior during estuarine mixing. As a result, riverinecarbon fluxes can be over-or underestimated if these physical and biogeochemicalprocesses are not considered. The Yellow River represents typically rivers which arelocated in arid and semiarid regions and hold high turbidity. Studies on carbon cyclesand influence factors in the Yellow River estuary can provide some meaningfuladvice to other rivers with the same characteristics.
     Using data from monthly investigation at the Lijin station during July2010toJuly2011, six cruises in the Yellow River estuary during2005-2010, within four ofwhich pCO2data were investigated between2009and2010, we discussed seasonalvariations of carbon in the freshwater end member, long time-scale carbon flux from1950s, behaviors of carbon in the estuarine mixing processes, pCO2distribution andair-sea flux in the Yellow River Estuary. Conclusions are as follows:
     1. Carbon transported in the Yellow River is mainly in inorganic and particulateforms. DIC, DOC and POC flux amonted to56.2×104t C yr-1,3.97×104t C yr-1and35.0×104t C yr-1respectively, from Auguest2010to July2011. Fluxes ofDIC, DOC and POC in summer were much higher than those in other seasons,accounting for55.6%,58.4%,88.6%of the whole year, respectively. In the longtime-scale (1950-2012), fluxes of discharge, sediment and all kinds of carbon areall showing decreasing trend. Compared with1950s, fluxes of discharge,sediment dropped67%,90%respectively in the first decade in21stcentury. As aresult,fluxes of DIC, POC, PIC are decreasing60%,90%and91%, respectively.
     2. DIC acts non-conservatively and some of it is removed in the estuarine mixingzone. CaCO3precipitation and biological activities are the main reasons for thisphenomenon. Longer freshwater-seawater mixing distances and times, andhigher DIC concentrations in the freshwater end member promote net biologicalproduction and CaCO3precipitation, thus encouraging DIC removal. To our bestknowledge, the Yellow River Estuary is the only example where CaCO3precipitation has been demonstrated to play a very important role in estuarine DIC removal. DOC concentration in the Yellow River (2.39mg L-1) are muchlower than the world average (5.0mg L-1), but it increases in the estuary mixingprocess. Therefore, DOC flux is under-estimated using DOC concentration in thefreshwater.
     3. Agreed with other estuaries, pCO2in the Yellow River estuary decreased sharplyin the very low salinity area (S<0.5), due to the severe deposition of TSS.Photosynthesis is the main removal mechanism for pCO2while carbonate system(high DIC) in the freshwater end member acts as the dominant factor sustainingthe high pCO2in the Yellow River Estuary. During the heavy rains, lots oforganic materials flushed into the estuary, which may cause biological respirationenhanced and pCO2increased. The Yellow River acts as a CO2source comparedwith atmosphere, but its flux is much lower than other large river estuaries.
引文
[1] Houghton J, Jenkins G, and Ephraums J,1990. The IPCC Scientific Assessment, Cambridge,UK.
    [2] Zeebe R E. History of seawater carbonate chemistry, atmospheric CO2, and oceanacidification[J]. Annual Review of Earth and Planetary Sciences,2012,40:141-165.
    [3] IGBP, IHDP, WCRP. The carbon challenge: An IGBP-IHDP-WCRP Joint Project. Stockholm:International Geosphere and Biospere Program,2001:3-12.
    [4] Houghton R A. Balancing the global carbon budget[J]. Annu. Rev. Earth Planet. Sci.,2007,35:313-347.
    [5] Takahashi T, Sutherland S C, Sweeney C, et al. Global sea-air CO2flux based onclimatological surface ocean pCO2, and seasonal biological and temperature effects[J]. DeepSea Research Part II: Topical Studies in Oceanography,2002,49(9-10):1601-1622.
    [6] Borges A V. Do we have enough pieces of the jigsaw to integrate CO2fluxes in the coastalocean?[J]. Estuaries,2005,28(1):3-27.
    [7] Borges A V, Delille B, Frankignoulle M. Budgeting sinks and sources of CO2in the coastalocean: Diversity of ecosystems counts[J]. Geophysical Research Letters,2005,32(14).
    [8] Cai W J, Dai M, Wang Y, et al. The biogeochemistry of inorganic carbon and nutrients in thePearl River estuary and the adjacent Northern South China Sea[J]. Continental ShelfResearch,2004,24(12):1301-1319.
    [9] Cai W J, Dai M, Wang Y. Air‐sea exchange of carbon dioxide in ocean margins: A province‐based synthesis[J]. Geophysical Research Letters,2006,33(12).
    [10] Ducklow H W, McCallister S L. The biogeochemistry of carbon dioxide in the coastaloceans[J]. The sea,2004,13:269-315.
    [11] Kempe S. Coastal seas: a net source or sink of atmospheric carbon dioxide?[M]. LOICZ CoreProject, Netherlands Institute for Sea Research,1995.
    [12] Smith S V, Hollibaugh J T. Coastal metabolism and the oceanic organic carbon balance[J].Reviews of Geophysics,1993,31(1):75-89.
    [13] Smith S V, Mackenzie F T. The ocean as a net heterotrophic system: implications from thecarbon biogeochemical cycle[J]. Global Biogeochemical Cycles,1987,1(3):187-198.
    [14] Thomas H, Bozec Y, Elkalay K, et al. Enhanced open ocean storage of CO2from shelf seapumping[J]. Science,2004,304(5673):1005-1008.
    [15] Tsunogai S, Watanabe S, Sato T. Is there a “continental shelf pump” for the absorption ofatmospheric CO2?[J]. Tellus B,1999,51(3):701-712.
    [16] Gattuso J, Frankignoulle M, Wollast R. Carbon and carbonate metabolism in coastal aquaticecosystems[J]. Annual Review of Ecology and Systematics,1998:405-434.
    [17] Cai W J. Estuarine and coastal ocean carbon paradox: CO2sinks or sites of terrestrial carbonincineration?[J]. Annual Review of Marine Science,2011,3:123-145.
    [18] Chen C, Borges A V. Reconciling opposing views on carbon cycling in the coastal ocean:Continental shelves as sinks and near-shore ecosystems as sources of atmospheric CO2[J].Deep Sea Research Part II: Topical Studies in Oceanography,2009,56(8-10):578-590.
    [19] Takahashi T, Sutherland S C, Wanninkhof R, et al. Climatological mean and decadal changein surface ocean pCO2, and net sea-air CO2flux over the global oceans[J]. Deep SeaResearch Part II: Topical Studies in Oceanography,2009,56(8-10):554-577.
    [20]童钧安.莱州湾主要污染物来源及分布特征[J].黄渤海海洋,1994,12(4):16-20.
    [21] Yang D, Li C, Hu H, et al. Analysis of water resources variability in the Yellow River ofChina during the last half century using historical data[J]. Water Resources Research,2004,40(6).
    [22] Xu J X. The water fluxes of the Yellow River to the sea in the past50years, in response toclimate change and human activities[J]. Environmental Management,2005,35(5):620-631.
    [23]毕乃双,杨作升,王厚杰,等.黄河调水调沙期间黄河入海水沙的扩散与通量[J].海洋地质与第四纪地质,2010(2):27-34.
    [24] Hu C H, Ji Z W, Wang T. Dynamic characteristics of sea currents and sediment dispersion inthe Yellow River Estuary[J]. International Journal of Sediment Research,1998,13(2):20-30.
    [25] Qiao S, Shi X, Zhu A, et al. Distribution and transport of suspended sediments off the YellowRiver (Huanghe) mouth and the nearby Bohai Sea[J]. Estuarine, Coastal and Shelf Science,2010,86(3):337-344.
    [26]张向上.黄河口碳输运过程及其对莱州湾的影响:[博士学位论文].青岛:中国海洋大学,2007.
    [27]张经.中国主要河口的生物地球化学研究[M].海洋出版社,1997.
    [28] Regnier P, Wollast R, Steefel C I. Long-term fluxes of reactive species in macrotidal estuaries:Estimates from a fully transient, multicomponent reaction-transport model[J]. MarineChemistry,1997,58(1):127-145.
    [29] Dürr H H, Laruelle G G, van Kempen C M, et al. Worldwide typology of nearshore coastalsystems: defining the estuarine filter of river inputs to the oceans[J]. Estuaries and coasts,2011,34(3):441-458.
    [30] Oviatt, C.A.. Impacts of nutrients on Narragansett Bay productivity: a gradient approach. Sci.Ecosyst-based Manage,2008,523-543.
    [31] Lee D I, Choi J M, Lee Y G, Lee M O, Lee W C, Kim J K. Coastal environmentalassessment and management by ecological simulation in Yeoja Bay, Korea. EstuarineCoastal Shelf Sci.,2008,80(4):495-508.
    [32] Xu J, Yin K, Lee J, Liu H, Ho A, Yuan X, Harrison P J. Long-term and seasonal changes innutrients, phytoplankton biomass, and dissolved oxygen in Deep Bay, Hong Kong. EstuariesCoasts,2010,33(2):399-416.
    [33]郭香会.珠江及密西西比河口碳酸盐系统的比较研究:[博士学位论文].厦门:厦门大学,2010.
    [34] Demaster D J, Pope R H. Nutrient dynamics in Amazon shelf waters: Results fromAMASSEDS[J]. Continental Shelf Research,1996,16(3):263-289.
    [35] Abril G, Etcheber H, Le Hir P, et al. Oxic/anoxic oscillations and organic carbonmineralization in an estuarine maximum turbidity zone (The Gironde, France)[J]. Limnologyand Oceanography,1999,44(5):1304-1315.
    [36] Tang A, Liu R, Ling M, et al. Distribution characteristics and controlling factors of solubleheavy metals in the Yellow River Estuary and adjacent Sea[J]. Procedia EnvironmentalSciences,2010,2:1193-1198.
    [37] Cai W J. Riverine inorganic carbon flux and rate of biological uptake in the Mississippi Riverplume[J]. Geophysical Research Letters,2003,30(2).
    [38] Boyle E, Collier R, Dengler A T, et al. On the chemical mass-balance in estuaries[J].Geochimica et Cosmochimica Acta,1974,38(11):1719-1728.
    [39] álvarez-Salgado X A, Miller A E J. Dissolved organic carbon in a large macrotidal estuary(the Humber, UK): behaviour during estuarine mixing[J]. Marine Pollution Bulletin,1999,37(3):216-224.
    [40] Regnier P, Mouchet A, Wollast R, et al. A discussion of methods for estimating residualfluxes in strong tidal estuaries[J]. Continental Shelf Research,1998,18(13):1543-1571.
    [41] Degens E T, Kempe S, Richey J E. Summary: Biogeochemistry of the major world rivers.1991. In: E.T.Degens, S.Kempe,and J.E. Richey(Editors), Biogeochemistry of Major WorldRivers(SCOPE42).JohnWiley&Sons,Chichester,New York,pp.323-347.
    [42] Ludwig W, Probst J L, Kempe S. Predicting the oceanic input of organic carbon bycontinental erosion[J]. Global Biogeochemical Cycles,1996,10(1):23-41.
    [43] Mackenzie F T, Lerman A, Andersson A J. Past and present of sediment and carbonbiogeochemical cycling models[J]. Biogeosciences Discussions,2004,1(1):27-85.
    [44] Lerman A, Wu L, Mackenzie F T. CO2and H2SO4consumption in weathering and materialtransport to the ocean, and their role in the global carbon balance [J]. Marine Chemistry,2007,106(1):326-350.
    [45] Cai W J, Guo X, Chen C T A, et al. A comparative overview of weathering intensity andHCO-3fux in the world’s major rivers with emphasis on the Changjiang, Huanghe,Zhujiang(Pearl) and Mississippi Rivers.[J]. Continental Shelf Research,2008,28(12):1538-1549.
    [46] Ternon J F, Oudot C, Dessier A, et al. A seasonal tropical sink for atmospheric CO2in theAtlantic ocean: the role of the Amazon River discharge[J]. Marine Chemistry,2000,68(3):183-201.
    [47] Cooley S R, Yager P L. Physical and biological contributions to the western tropical NorthAtlantic Ocean carbon sink formed by the Amazon River plume[J]. Journal of GeophysicalResearch: Oceans (1978–2012),2006,111(C8).
    [48] Lohrenz S E, Cai W J, Chen F, et al. Seasonal variability in air-sea fluxes of CO2in ariver-influenced coastal margin[J]. Journal of Geophysical Research: Oceans (1978–2012),2010,115(C10).
    [49]张龙军.东海海-气界面CO2通量研究:[博士学位论文].青岛:中国海洋大学,2007.
    [50] Caffrey J M. Factors controlling net ecosystem metabolism in US estuaries[J]. Estuaries,2004,27(1):90-101.
    [51] Frankignoulle M, Bourge I, Wollast R. Atmospheric CO2fluxes in a highly polluted estuary(the Scheldt)[J]. Limnology and Oceanography,1996,41(2):365-369.
    [52] Raymond P A, Bauer J E, Cole J J. Atmospheric CO2evasion, dissolved inorganic carbonproduction, and net heterotrophy in the York River estuary[J]. Limnology and Oceanography,2000,45(8):1707-1717.
    [53] Guo X, Cai W J, Zhai W, et al. Seasonal variations in the inorganic carbon system in the PearlRiver (Zhujiang) estuary[J]. Continental Shelf Research,2008,28(12):1424-1434.
    [54] Zeebe R E, Zachos J C, Caldeira K, et al. Carbon emissions and acidification[J].SCIENCE-NEW YORK THEN WASHINGTON-,2008,321(5885):51.
    [55] Raymond P A, Bauer J E, Cole J J. Atmospheric CO2evasion, dissolved inorganic carbonproduction, and net heterotrophy in the York River estuary[J]. Limnology and Oceanography,2000,45(8):1707-1717.
    [56] Abril G, Etcheber H, Delille B, et al. Carbonate dissolution in the turbid and eutrophic Loireestuary[J]. Marine Ecology Progress Series,2003,259:129-138.
    [57] Guo X, Cai W J, Huang W J, et al. Carbon dynamics and community production in theMississippi River plume[J]. Limnol. Oceanogr,2012,57(1):1-17.
    [58] Huang W J, Cai W J, Powell R T, et al. The stochiometric ratio during biological removal ofinorgannic carbon and nutrient in the Mississippi River plume and adjacent continentalshelf[J]. Biogeosciences,2012,9:2781-2792.
    [59] Ortega T, Ponce R, Forja J, et al. Fluxes of dissolved inorganic carbon in three estuarinesystems of the Cantabrian Sea (north of Spain)[J]. Journal of Marine Systems,2005,53(1):125-142.
    [60] Hellings L, Dehairs F, Van Damme S, et al. Dissolved inorganic carbon in a highly pollutedestuary (the Scheldt)[J]. Limnology and Oceanography,2001,46(6):1406-1414.
    [61]陶澍,梁涛,徐尚平,等.伊春河河水溶解态有机碳含量和输出通量的时空变化[J].地理学报,1997,52(3):254-261.
    [62] Tipping E, Marker A F H, Butterwick C, et al. Organic carbon in the Humber rivers[J].Science of the Total Environment,1997,194:345-355.
    [63] Raymond P A, Bauer J E. Bacterial consumption of DOC during transport through atemperate estuary[J]. Aquatic Microbial Ecology,2000,22(1):1-12.
    [64] Hedges J I, Keil R G, Benner R. What happens to terrestrial organic matter in the ocean?[J].Organic Geochemistry,1997,27(5-6):195-212.
    [65] Wang X C, Chen R F, Gardner G B. Sources and transport of dissolved and particulateorganic carbon in the Mississippi River estuary and adjacent coastal waters of the northernGulf of Mexico[J]. Marine Chemistry,2004,89(1):241-256.
    [66] Kempe S, Pettine M, Cauwet G. Biogeochemistry of European rivers[J]. Biogeochemistry ofmajor world rivers,1991,42:169-211.
    [67] Veyssy E, Etcheber H, Lin R G, et al. Seasonal variations and origins of particulate organiccarbon in the lower Garonne River at La Re′ole (SW France)[J]. Hydrobiologia,1999,391:113-126.
    [68] Abril G, Nogueira M, Etcheber H, et al. Behaviour of organic carbon in nine contrastingEuropean estuaries[J]. Estuarine, Coastal and Shelf Science,2002,54(2):241-262.
    [69] Heip C H R, Goosen N K, Herman P M J, et al. Production and consumption of biologicalparticles in temperate tidal estuaries[J]. Oceanography and Marine Biology-an AnnualReview,1995,33.
    [70] Hopkinson C S, Buffam I, Hobbie J, et al. Terrestrial inputs of organic matter to coastalecosystems: An intercomparison of chemical characteristics and bioavailability[J].Biogeochemistry,1998,43(3):211-234.
    [71] Moran M A, Sheldon W M, Sheldon J E. Biodegradation of riverine dissolved organic carbonin five estuaries of the southeastern United States[J]. Estuaries,1999,22(1):55-64.
    [72] Shiller A M. The effect of recycling traps and upwelling on estuarine chemical fluxestimates[J]. Geochimica et cosmochimica acta,1996,60(17):3177-3185.
    [73] Officer C B, Lynch D R. Dynamics of estuarine mixing. Estuary Coastal Shelf Science,1981,12:525-533.
    [74] Servais P, Billen G, Hasco t M C. Determination of the biodegradable fraction of dissolvedorganic matter in waters[J]. Water research,1987,21(4):445-450.
    [75]谭丽菊,王江涛,付强.溶解有机碳在混合水中的行为研究[J].中国海洋大学学报:自然科学版,2007,37(5):811-814.
    [76] Miller A E J. Seasonal investigations of dissolved organic carbon dynamics in the TamarEstuary, UK[J]. Estuarine, Coastal and Shelf Science,1999,49(6):891-908.
    [77] álvarez-Salgado X A, Miller A E J. Dissolved organic carbon in a large macrotidal estuary(the Humber, UK): behaviour during estuarine mixing[J]. Marine Pollution Bulletin,1999,37(3):216-224.
    [78]唐文魁,高全洲.河口二氧化碳水-气交换研究进展[J].地球科学进展,2013,28(9):1007-1014.
    [79] Cai W J, Wang Y. The chemistry, fluxes, and sources of carbon dioxide in the estuarine watersof the Satilla and Altamaha Rivers, Georgia[J]. Limnology and Oceanography,1998,43(4):657-668.
    [80] Borges A V, Schiettecatte L S, Abril G, et al. Carbon dioxide in European coastal waters[J].Estuarine, Coastal and Shelf Science,2006,70(3):375-387.
    [81] Raymond P A, Caraco N F, Cole J J. Carbon dioxide concentration and atmospheric flux inthe Hudson River[J]. Estuaries,1997,20(2):381-390.
    [82] Zhai W, Dai M, Guo X. Carbonate system and CO2degassing fluxes in the inner estuary ofChangjiang (Yangtze) River, China[J]. Marine Chemistry,2007,107(3):342-356.
    [83] Mukhopadhyay S K, Biswas H, De T K, et al. Seasonal effects on the air–water carbondioxide exchange in the Hooghly estuary, NE coast of Bay of Bengal, India[J]. Journal ofEnvironmental Monitoring,2002,4(4):549-552.
    [84] Zhai W, Dai M, Cai W J, et al. High partial pressure of CO2and its maintaining mechanism ina subtropical estuary: the Pearl River estuary, China[J]. Marine Chemistry,2005,93(1):21-32.
    [85] Frankignoulle M, Abril G, Borges A, et al. Carbon dioxide emission from Europeanestuaries[J]. Science,1998,282(5388):434-436
    [86] Borges A V, Abril G. Carbon dioxide and methane dynamics in estuaries[M]. Waltham:Elsevier Academic Press,2011:119-161.
    [87] KonéY J M, Abril G, Kouadio K N, et al. Seasonal variability of carbon dioxide in the riversand lagoons of Ivory Coast (West Africa)[J]. Estuaries and Coasts,2009,32(2):246-260.
    [88] Chen C T A, Huang T H, Chen Y C, et al. Review article "Air-sea exchanges of CO2inworld's coastal seas"[J]. Biogeosciences Discuss.,2013,10(3):5041-5105.
    [89] Liu Z, Dreybrodt W, Wang H. A new direction in effective accounting for the atmosphericCO2budget: Considering the combined action of carbonate dissolution, the global watercycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews,2010,99(3):162-172.
    [90] Gordon, L. L.and Jones, L. B.. The effect of temperature on carbon dioxide partial pressure inseawater. Marine Chemistry,1973, Vol.1:317~322
    [91] Lyman J.. Buffer Mechanism of Seawater. Ph. D. Thesis. Univ. California, Los Angeles, CA,1956, pp:196
    [92] Dickson, A. G. and Millero, F. J.. A comparison of the equilibrium constants for thedissociation of carbonic acid in seawater media. Deep-sea Research,1987, Vol.34:1733~1743
    [93] Takahashi T, Olafsson J, Goddard J G, et al. Seasonal variation of CO2and nutrients in thehigh-latitude surface oceans: a comparative study[J]. Global Biogeochemical Cycles,1993,7(4):843-878.
    [94]焦树林,刘昆,高全洲.2008.西江河口段秋季表层水体CO2分压的变化特征.环境科学学报,28(2):356~361
    [95] Bozec Y, Merlivat L, Baudoux A C, Beaumont L, Blain S, Bucciarelli E, Danguy T,Grossteffan E, Guillot A, Guillou J, Répécaud M&Tréguer P. Diurnal to inter-annualdynamics of pCO2recorded by a CARIOCA sensor in a temperate coastal ecosystem(2003-2009). Marine Chemistry,2011,126:13-26.
    [96] Shadwick E H, Thomas H, Azetsu-Scott K, Greenan B J W, Head E&Horne E. Seasonalvariability of dissolved inorganic carbon and surface water pCO2in the Scotian Shelf regionof the Northwestern Atlantic. Marine Chemistry,2011,124(1-4):23-37
    [97] L ffler A, Schneider B, Perttil M and Rehder G. Air-sea CO2exchange in the Gulf ofBothnia, Baltic Sea. Cont. Shelf Res,2012, doi:10.1016/j.csr.2012.02.002
    [98] Abril G, Etcheber H, Borges A V, et al. Excess atmospheric carbon dioxide transported byrivers into the Scheldt estuary[J]. Comptes Rendus de l'Academie des Sciences-SeriesIIA-Earth and Planetary Science,2000,330(11):761-768.
    [99] Abril G, Borges A V. Carbon dioxide and methane emissions from estuaries[M]//GreenhouseGas Emissions—Fluxes and Processes. Springer Berlin Heidelberg,2005:187-207.
    [100] Chen C T A, Zhai W, Dai M. Riverine input and air–sea CO2exchanges near the Changjiang(Yangtze River) Estuary: Status quo and implication on possible future changes in metabolicstatus[J]. Continental Shelf Research,2008,28(12):1476-1482.
    [101] Savenkoff C, Vézina A F, Chanut J P, et al. Respiratory activity and CO2production rates ofmicroorganisms in the lower St Lawrence Estuary[J]. Continental Shelf Research,1995,15(6):613-631.
    [102] Kemp W M, Smith E M, Marvin-DiPasquale M, et al. Organic carbon balance and netecosystem metabolism in Chesapeake Bay[J]. Oceanographic Literature Review,1997,44(9):936-937.
    [103] Gattuso J P, Frankignoulle M, Wollast R. Carbon and carbonate metabolism in coastalaquatic ecosystems[J]. Annual Review of Ecology and Systematics,1998,29(1):405-434.
    [104] Casamayor E O, García-Cantizano J, Mas J, et al. Primary production in estuarineoxic/anoxic interfaces: contribution of microbial dark CO2fixation in the Ebro River SaltWedge Estuary[J]. Marine Ecology Progress Series,2001,215:49-56.
    [105] Richey J E, Melack J M, Aufdenkampe A K, et al. Outgassing from Amazonian rivers andwetlands as a large tropical source of atmospheric CO2[J]. Nature,2002,416(6881):617-620.
    [106] Borges A V, Abril G. Carbon dioxide and methane dynamics in estuaries[C]//EGU GeneralAssembly Conference Abstracts.2010,12:10812.
    [107] Milliman J D, Meade R H. World-wide delivery of river sediment to the oceans[J]. TheJournal of Geology,1983:1-21.
    [108] Ludwig W, Amiotte-Suchet P, Munhoven G, et al. Atmospheric CO2consumption bycontinental erosion: present-day controls and implications for the last glacial maximum[J].Global and Planetary Change,1998,16:107-120.
    [109] Cole J J, Prairie Y T, Caraco N F, et al. Plumbing the global carbon cycle: integrating inlandwaters into the terrestrial carbon budget[J]. Ecosystems,2007,10(1):172-185.
    [110] Chen J, Zheng Y, Yu T, et al. A study on dissolution and bio-degradation of organic matter insediments from the Yellow River [J]. Acta Scientiae Circumstantiae,2004,1:1-5.
    [111] Richey J E, Brock J T, Naiman R J, et al. Organic carbon: oxidation and transport in theAmazon River[J]. Science,1980,207(4437):1348-1351.
    [112] Mantoura R F C, Woodward E M S. Conservative behaviour of riverine dissolved organiccarbon in the Severn Estuary: chemical and geochemical implications[J]. Geochimica etCosmochimica Acta,1983,47(7):1293-1309.
    [113] Schlesinger W H, Melack J M. Transport of organic carbon in the world's rivers[J]. Tellus,1981,33(2):172-187.
    [114] Schlünz B, Schneider R R. Transport of terrestrial organic carbon to the oceans by rivers:re-estimating flux-and burial rates[J]. International Journal of Earth Sciences,2000,88(4):599-606.
    [115] Depetris P J, Kempe S. Carbon dynamics and sources in the ParanáRiver[J]. Limnology andOceanography,1993,38(2):382-395.
    [116] Richey J E, Field C B, Raupach M R. Pathways of atmospheric CO2through fluvialsystems[J]. The global carbon cycle: integrating humans, climate and the natural world,2004:329-340.
    [117]蔡德陵.黄河与长江河口区有机碳的同位素地球化学[A].张经.中国主要河口的生物地球化学研究[M].北京:海洋出版社,1996.160-187.
    [118] Zhang S, Gan W B, Ittekkot V. Organic matter in large turbid rivers: the Huanghe and itsestuary[J]. Marine Chemistry,1992,38(1):53-68.
    [119] Cauwet G, Mackenzie F T.1993. Carbon inputs and distribution in estuaries of turbid rivers:the Yang Tze and Yellow rivers (China). Mar. Chem.43:235-246.
    [120]张龙军,张向上,王晓亮,等.黄河口有机碳的时空输运特征及其影响因素分析[J].水科学进展,2007,18(5):674-682.
    [121]张向上,张龙军.黄河口无机碳输运过程对pH异常增高现象的响应[J].环境科学.2007,28(6),1216-1222.
    [122] Wang X, Ma H, Li R, et al. Seasonal fluxes and source variation of organic carbontransported by two major Chinese Rivers: The Yellow River and Changjiang (Yangtze)River[J]. Global Biogeochemical Cycles,2012,26(2).
    [123] Ran L, Lu X X, Sun H, et al. Spatial and seasonal variability of organic carbon transport inthe Yellow River, China[J]. Journal of Hydrology,2013,498:76-88.
    [124] Wright L D, Nittrouer C A. Dispersal of river sediments in coastal seas: six contrastingcases[J]. Estuaries,1995,18(3):494-508.
    [125]孙效功,杨作升,陈彰榕.黄河三角洲冲淤定量计算及其机制讨论[J].海洋学报,1993,15(1):129-136.
    [126]陈彰榕.现行黄河口拦门沙的形态和演化[J].青岛海洋大学学报:自然科学版,1997,27(4):539-545.
    [127]王厚杰,杨作升,毕乃双.黄河口泥沙输运三维数值模拟I—黄河口切变锋泥沙研究[J].泥沙研究,2006,2:1-9.
    [128] Walling D E, Fang D. Recent trends in the suspended sediment loads of the world's rivers[J].Global and Planetary Change,2003,39(1):111-126.
    [129]黄胜.河口动力学[M].水利电力出版社,1995.
    [130]胡春宏,曹文洪.黄河口水沙变异与调控I—黄河口水沙运动与演变基本规律[J].泥沙研究,2003,10(5):1~8.
    [131]秦宏国.枯、洪季黄河水沙输运的三维数值模拟机特征分析:[博士学位论文].青岛:中国海洋大学,2005
    [132]陈静生,王飞跃,何大伟.黄河水质地球化学[J].地学前缘,2006,13(1):58-73.
    [133] Zhang L J, Wang L, Cai W J, et al. Impact of human activities on organic carbon transport inthe Yellow River[J]. Biogeosciences,2013,10:2513-2524.
    [134] Zhang L, Xue L, Song M, et al. Distribution of the surface partial pressure of CO2in thesouthern Yellow Sea and its controls[J]. Continental Shelf Research,2010,30(3):293-304.
    [135] Zhang L, Xue M, Liu Q. Distribution and seasonal variation in the partial pressure of CO2during autumn and winter in Jiaozhou Bay, a region of high urbanization[J]. Marine pollutionbulletin,2012,64(1):56-65.
    [136] Jiang L Q, Cai W J, Wanninkhof R, et al. Air‐sea CO2fluxes on the US South AtlanticBight: Spatial and seasonal variability[J]. Journal of Geophysical Research: Oceans(1978–2012),2008,113(C7).
    [137] Weiss R F, Price B A. Nitrous oxide solubility in water and seawater[J]. Marine Chemistry,1980,8(4):347-359.
    [138] DOE. Handbook of methods for the analysis of the various parameters of the carbon dioxidesystem in sea water; version2, Dickson A. G.&C. Goyet [eds.],1994,ORNL/CDIAC-74.
    [139] Redfield A C, Ketchum B H, and Rechards F A. The influence of organisms on thecomposition of seawater, p.26–77. In M. N. Hill [ed.],1963,The sea (2). Interscience.
    [140] Liss P S, Merlivat L. Air-sea gas exchange rates: introduction and synthesis, In: the role ofair-sea exchange in geochemical cycling. Adv. Sci. Inst. Ser. P. Buat-Menard, Ed. Reidel, D.,1986, Norwell, Mass
    [141] Wanninkhof, R.. Relationship Between Wind Speed and Gas Exchange Over the Ocean.Geophys. Res.,1992,97(C5):7373-7382.
    [142] Tans P P, Fung I Y, Takahashi T. Observational constraints on the global atmospheric CO2budget. Science,1990,247:1431~1438
    [143] Wanninkhof R, McGillis W M. A cubic relationship between gas transfer and wind speed.Geophysical Research Letter.1999,26:1889-1893.
    [144] Cole J, Nina J, Caraco F. Atmospheric exchange of carbon dioxide in a low-windoligotrophic lake measured by the addition of SF6[J]. Limnology and Oceanography,1998,43:647-656.
    [145] Nightingale P D Maling G, Lawcs C S, et al. In situ evaluation of air-sea gas exchangeparameterizations using novel conservative andvolatile tracers. Global BiogeochemicalCycles,2000,14(1):373-387.
    [146] Borges A V, Vanderborght J P, Schiettecatte L S, et al. Variability of the gas transfer velocityof CO2in a macrotidal estuary (the Scheldt)[J]. Estuaries,2004,27(4):593-603.
    [147] McGillis W R, Edson J B, Zappa C J, et al. Air‐sea CO2exchange in the equatorialPacific[J]. Journal of Geophysical Research: Oceans (1978–2012),2004,109(C8).
    [148] Sweeney C, Gloor E, Jacobson A R, et al. Constraining global air-sea gas exchange for CO2with recent bomb14C measurements[J]. Global Biogeochemical Cycles,2007,21(2).
    [149] Weiss, R. F.. Carbon dioxide in water and seawater: the solubility of a non ideal gas. MarineChemistry,1974,2:203~215
    [150]孙超,张龙军,江春波.黄河调水调沙与雨致洪水导致水体pCO2控制机制的差异[J].中国海洋大学学报(自然科学版),2007,37(4s):78-82.
    [151] Chen J, Wang F, Meybeck M, et al. Spatial and temporal analysis of water chemistry records(1958–2000) in the Huanghe (Yellow River) basin[J]. Global biogeochemical cycles,2005,19(3).
    [152]邱爽,刘志媛,肖纯超,等.黄河利津站碳输运年内变化及入海通量估算[J].海洋环境科学,2013,32(004):486-490.
    [153] Liu Z Y, Zhang L J, Cai W J, et al. Removal of dissolved inorganic carbon in the YellowRiver Estuary[J]. Limnol. Oceanogr,2014,59(2):413-426.
    [154]陈静生,张宇,于涛,等.对黄河泥沙有机质的溶解特性和降解特性的研究—再论黄河水的COD值不能真实反映其污染状况[J].环境科学学报,2004,24(1):1-5.
    [155] Chen J, He D, Zhang Y. Is COD a suitable parameter to evaluate the water pollution in theyellow river?[J]. ENVIRONMENTAL CHEMISTRY-BEIJING,2003,22(6):614-617.
    [156]张龙军,张向上,王晓亮,等.黄河口有机碳的时空输运特征及其影响因素分析[J].水科学进展,2007,18(5):674-682.
    [157] Bouillon S, Abril G, Borges A V, et al. Distribution, origin and cycling of carbon in the TanaRiver (Kenya): a dry season basin-scale survey from headwaters to the delta[J].Biogeosciences Discussions,2009,6(3).
    [158]黄河水利委员会.黄河水资源公报[R].,郑州:黄河水利委员会,2010.
    [159]黄河水利委员会.黄河水资源公报[R].,郑州:黄河水利委员会,2011.
    [160]黄河水利委员会.黄河泥沙公报[R].,郑州:黄河水利委员会,2010.
    [161]黄河水利委员会.黄河泥沙公报[R].,郑州:黄河水利委员会,2011.
    [162]徐雪梅.秋季黄河主流碳的输运特征:[博士学位论文].青岛:中国海洋大学,2008.
    [163] Milliman J D, Farnsworth K L, Jones P D, et al. Climatic and anthropogenic factorsaffecting river discharge to the global ocean,1951–2000[J]. Global and planetary change,2008,62(3):187-194.
    [164] Wang H, Yang Z, Bi N, et al. Rapid shifts of the river plume pathway off the Huanghe(Yellow) River mouth in response to water-sediment regulation scheme in2005[J]. ChineseScience Bulletin,2005,50(24):2878-2884.
    [165] Ternon J F, Oudot C, Dessier A, et al. A seasonal tropical sink for atmospheric CO2in theAtlantic ocean: the role of the Amazon River discharge[J]. Marine Chemistry,2000,68(3):183-201.
    [166] Bouillon S, Frankignoulle M, Dehairs R, et al. Inorganic and organic carbonbiogeochemistry in the Gartami Godavari estuary (Andhra Pradesh, India) duringpre-monsoon: The local impact of extensibe mangrove forests[J]. Global BiogeochemicalCycles,2003,17(4):1-12.
    [167] Gan,W.B.,Chen,H.M. and Han,Y.F.. Carbon transport by the Yangtze (at Nanjing) andHuanghe (at Jinan) rivers, People’s Republic of China. In:E.T.Degens (Editor),Transport ofCarbon and Minerals in Major World Rivers,Part2. Mitt.Geol.Palaontol.Inst.Univ. Hamburg,SCOPE/UNEP Sonderd.,1983,55:459-470.
    [168] Mucci A. The solubility of calcite and aragonite in seawater at various salinities,temperatures, and one atmosphere total pressure[J]. Am. J. Sci,1983,283(7):780-799.
    [169] Neal C. Calcite saturation in eastern UK rivers[J]. Science of the total environment,2002,282:311-326.
    [170]杨丽阳,吴莹,张经,等.长江口邻近陆架区表层沉积物的木质素分布和有机物来源分析.海洋学报.2008,30(5):35-42.
    [171]谭丽菊,王江涛,付强.溶解有机碳在混合水中的行为研究[J].中国海洋大学学报:自然科学版,2007,37(5):811-814.
    [172]吴许为.长江口泥沙絮凝沉降特性和动力学研究[M].海洋沉积物—海水界面过程研究,北京:海洋出版社,1999,376-390.
    [173] Davis J M. Adsorption of natural dissolved organic matter at the oxside/waterinterface. Geochim Cosmochim Acta,1982,46:2386-2393.
    [174] Jardine P M, Wilson G V. Mechanisms of dissolved organic carbon adsorption on soil. SoilSoc Am J,1989,58:1378-1385.
    [175]张龙军,徐雪梅,温志超.秋季黄河pCO2控制因素及水-气界面通量[J].水科学进展,2009,20(2):227-235.
    [176] Xue L, Xue M, Zhang L, et al. Surface partial pressure of CO2and air–sea exchange in thenorthern Yellow Sea. Journal of Marine Systems,2012,105-108:194-206
    [177] Bozec Y, Merlivat L, Baudoux A C, Beaumont L, Blain S, Bucciarelli E, Danguy T,Grossteffan E, Guillot A, Guillou J, Répécaud M&Tréguer P. Diurnal to inter-annualdynamics of pCO2recorded by a CARIOCA sensor in a temperate coastal ecosystem(2003-2009). Marine Chemistry,2011,126:13~26
    [178] Shadwick E H, Thomas H, Azetsu-Scott K, Greenan B J W, Head E&Horne E. Seasonalvariability of dissolved inorganic carbon and surface water pCO2in the Scotian Shelf regionof the Northwestern Atlantic. Marine Chemistry,2011,124(1-4):23-37
    [179] L ffler A, Schneider B, Perttil M, et al. Air–sea CO2exchange in the Gulf of Bothnia,Baltic Sea[J]. Continental Shelf Research,2012,37:46-56.
    [180]张龙军,徐雪梅,温志超.秋季黄河pCO2控制因素及水-气界面通量[J].水科学进展,2009,20(2):227-235.
    [181]张正斌,陈镇东,刘莲生等.海洋化学原理与应用.北京:海洋出版社,1999,112-116.
    [182] Chen, C.T.. Oxygen solubility in seawater. In: Battino, R.(Ed.), Solubility Data series, Vol.7, Oxygen and Ozone. Pergamon Press, Oxford, pp.,1981,41-44.
    [183] Biddanda B, Opsahl S, Benner R. Plankton respiration and carbon flux throughbacterioplankton on the Louisiana shelf[J]. Limnol Oceanogr,1994,39(6):1259-1275.
    [184] Chen,C, Lin T A, Huang C M, et al. Stoichiometry of carbon, hydrogen, nitrogen, sulfur andoxygen in the particulate matter of the western North Pacific marginal seas [J]. Mar. Chem.,1996,54:179–190.
    [185] Taylor G T, Way J, Scranton M I. Planktonic carbon cycling and transport in surface watersof the highly urbanized Hudson River estuary [J]. Limnol, Oceanogr,2003,48:1779–1795.
    [186] Mukhopadhyay S K, Biswas H, De T K, et al. Seasonal effects on the air–water carbondioxide exchange in the Hooghly estuary, NE coast of Bay of Bengal, India[J]. Journal ofEnvironmental Monitoring,2002,4(4):549-552.
    [187] Sarma V V S S, Kumar M D, Manerikar M. Emission of carbon dioxide from a tropicalestuarine system, Goa, India[J]. Geophysical Research Letters,2001,28(7):1239-1242.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700