用户名: 密码: 验证码:
FTY720对CD4~+记忆T细胞介导的移植物排斥反应的抑制作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的探讨建立小鼠腹部异位心脏移植模型的手术方法及技术改进。
     方法实验分为2组:同系移植组,供、受体均为C57BL/6小鼠;同种异基因移植组,供体为C3H小鼠,受体为C57BL/6小鼠;每组各50对小鼠。采用供心主动脉与受体腹主动脉、供心肺动脉与受体下腔静脉端侧吻合的方法,对小鼠进行腹部心脏移植术,术后记录两组小鼠供心的存活时间,观察供心的组织学改变。结果2组小鼠行腹部心脏移植手术共100对,存活91对,建模成功率为91%。同种异基因移植组供心平均存活时间为(7.7±0.8)d;而在同系移植组中,除2只小鼠在术后第7天因出现暖风机意外死亡之外,其余受体小鼠的供心在移植后第40天(观察终点)均存活,两组之间有显著性差异(P<0.01)。结论利用小鼠腹部异位心脏移植的手术方法可建立稳定可靠的心脏移植模型,适用于移植免疫学方面的研究。
     目的研究同种反应性CD4+记忆T细胞(Tmm)的免疫磁珠分离方法,以及检测其表型及功能。方法利用小鼠皮肤移植模型,通过免疫磁珠技术分离同种反应性CD4+Tm,应用台盼蓝染色法和流式细胞技术检测细胞活性、纯度和鉴定表型,并在体外借助ELISPOT检测CD4+Tm在不同抗原刺激时IFN-γ的分泌频数。结果上述方法分离所得的活细胞百分率为(98.9±0.3)%,其中CD4+CD44+CD62L-CCR7-细胞的比例约为95%,符合CD4+Tm的表型特征,且经检测其IFN-γ的分泌具有良好的供体特异性。结论通过小鼠皮肤移植模型和免疫磁珠分离技术,制备高纯度的CD4+Tm,同时使其细胞活力不受影响,并具有良好的供体特异性,可作为稳定可靠的分离Tm的方法,为深入研究其在移植免疫方面的作用奠定了基础。
     目的探讨小剂量FTY720对CD4+记忆T细胞介导的小鼠心脏移植物排斥反应的影响,并探讨其机制。方法通过皮肤移植模型和免疫磁珠技术分离同种反应性CD4+记忆T细胞(Tm),经尾静脉过继性输入,借助小鼠腹部异位心脏移植模型,研究小剂量FTY720对CD4+Tm介导的同种异体移植物的存活时间、移植物组织病理学、Th细胞因子分泌等的影响。用免疫荧光技术检测移植心脏中CD4+T淋巴细胞的浸润情况,以及颗粒酶B和FasL的表达情况。实验分为4组:A.同种异基因移植组,即阳性对照组;B.阴性对照组,利用RAGl-/-小鼠(体内无成熟的T、B淋巴细胞)作为移植受体;C.Tm组,RAG1-/-小鼠在移植前1天经尾静脉过继性输入CD4+Tm;D.FTY720处理组,RAG1-/-小鼠在移植前4天开始FTY720灌胃0.3mg/kg/d,术前1天经尾静脉过继性输入CD4+Tm。结果在同种异基因抗原的刺激下,CFSE标记的CD4+Tm在体内出现明显的增殖。与未输注Tm的阴性对照组相比,Tm组移植物的平均存活时间明显缩短;心肌的中环层有较多CD4+T淋巴细胞浸润:仅冠脉周围有少量颗粒酶B表达;但有大量的FasL阳性细胞浸润,主要分布于心外膜及心内膜下,尤以血管周围较为明显。各组之间的差异有显著性(P<0.01)。FTY720组供心的存活时间比Tm组延长,移植物内未见明显CD4+T淋巴细胞浸润,以及颗粒酶B和FasL的表达,同时显著抑制了IFN-γ、IL-2、IL-4、IL-10细胞因子的分泌(P<0.01)。结论同种反应性CD4+Tm能直接浸润至移植物,缩短其存活时间,在此过程中可能以FasL-Fas为代表的非分泌性杀伤性途径发挥了主要作用;同时使Th1和Th2类细胞因子都明显上调,介导同种异体排斥反应的发生。持续小剂量应用FTY720后,可以明显减少移植物内CD4+T淋巴细胞的浸润,同时抑制Th细胞因子的分泌,减弱其对Tm的趋化作用,从而抑制了排斥反应的发生,使移植物存活时间延长。FTY720的免疫抑制作用可能还与诱导Treg的生成有关。
Objective To build the animal model of murine ventral heterotopic cardiac transplantation and explore the improved technique.
     Methods All abdominal heterotopic heart transplantation models were divided into tow groups as follows, allograft group and isograft group. The donor heart aorta and the recipient ventral aorta, as well as the donor pulmonary artery and the recipient inferior caval vein, were anastomosed by using the end-to-side suture technique respectively. In each group, mean survival times (MST) of transplanted hearts and their pathologic histological changes at respective rejection point or observation termination were analyzed.
     Results The succeeding rate was 91%(91/100). All heart allografts in isograft group survive more than 40d, except for 2 cases (7d), significantly longer than group A, in which the MST of allograft group is (7.7±0.8)d, P<0.05. At postoperative 7th day, the lymphocyte significantly increased in allograft group, with obvious necrosis changes, and the pathologic histological change was Grade 3R. At postoperative 28th day, transplanted hearts in isograft group were hardly damaged with a Grade OR pathologic histological change, and there was no lymphocytes infiltrated.
     Conclusions The method to build the murine ventral heterotopic cardiac transplantation model is stable and reliable, so it can be used for the study of transplantation immunity.
     Objective To explore the role of the activity, purity and the alloreactivity of the CD4+ memory T isolated from skin grafts.
     Methods With use of the mouse skin transplantation model, the CD4+Tm were isolated by magnetic activated cell sorting (MACS). The activity, purity and the alloreactivity of the CD4+Tm cells were detected.
     Results The activity of the CD4+Tm cells was (98.9±0.3)%, and the proportion of CD4+CD44+CD62L-CCR7- lymphocytes was approximately 95%. The IFN-γsecreted by CD4+Tm cells was detected by ELISPOT, and its function was donor specific.
     Conclusions Magnetic activated cell sorting isolation kit could used to isolate CD4+Tm lymphocytes from skin allografts effectively. The CD4+Tm was detected with good activity and high purity, as well as the alloreactivity. The isolate CD4+Tm lymphocytes could used to do other research in transplantation immunity.
     Objective To explore the role of alloreactive CD4+memory T cells in survival of allografts and the mechanisms of survival prolongation of FTY720 in the CD4+memory T cells mediated allograft rejection.
     Methods With use of the mouse skin transplantation model, the CD4+Tm were isolated by magnetic activated cell sorting (MACS) from recipients. And then these cells were transferred into RAG-/-recipients to explore that how CD4+Tm influenced the survival of allografts and the role of FTY720 on CD4+Tm in allografts.
     Results The fluorescence intensity of alloreactive CD4+Tm cells labeled with CFSE fell off gradually after transferred into recipents via tail vein injection 1 day before operation. The mean survival time (MST) of allografts in Tm group was shorter than negative group (no transferred Tm) and FTY720 treatment group (a dose of 0.3 mg/kg/d was started on day 4 before surgery and administered throughout the duration of the experiment). There were more CD4+lymphocytes and FasL+lymphocytes infiltrating into the allografts in Tm group compared with negative group and FTY720 treatment group. And the CD4+were mainly in the middle layer especially, the FasL+infiltrated near epicardium, endocardium and around the vessels. The expression level of granzyme B in allografts was much lower in Tm group than positive group. And the secretion of Th1 and Th2 cytokines was down regulated in FTY720 treatment group than Tm group.
     Conclusions The alloreactive CD4+Tm from skin allograft could mediate allograft rejection and shorten the survival time of allografts, the main mechanism of which might contain the FasL-Fas non-secreting pathway. And the transplantation rejection could be suppressed by use of low-dose FTY720.
引文
[1]Nat han MJ, Mold J E, Wood SC, et al. Requirement for donor and recipient CD40 expression in cardiac allograft rejection:induction of Thl responses and influence of donor-derived dendritic cells. J Immunol,2004,172:6626-6633.
    [2]Ogawa H, Mohiuddin MM, Yin DP, et al. Mouse heart grafts expressing an incompatible carbohydrate antigen Ⅱ Transition from accommodation to tolerance. Transplantation,2004,77:366-373.
    [3]Ono K, Lindsey S. Improved technique of heart transplantation. J Thorac Cardiovasc Surg,1969,57:2252229.
    [4]朱鹏,陈义发,陈孝平.建立小鼠腹部心脏移植模型的体会.中国普通外科杂志,2007,16:133-135.
    [5]Chen ZH. New technique of cervical heterotopic heart transplantation in mice. Transplantation.1991,52:1099.
    [6]Steinbruchel DA, Nielsen B, Salomon S, et al. A new model for heterotopic heart transplantation in rodents. Transplantation Proceedings.1994,26:1298-1299.
    [7]Corry RJ, Winn HJ, Russell PS. Primarily vascularized allografts of heart in mice. Transplantation.1973,16:343.
    [8]Chen Y, Demir Y, Valujskikh A, et al. The male minor transplantation antigen preferentially activates recipient CD4+T cells through the indirect presentation pathway in vivo. J Immunol.2003,171 (12):6510-6518.
    [9]Demir Y, Chen Y, Metz C, et al. Cardiac allograft rejection in the absence of macrophage migration inhibitory factor. Transplantation.2003,76 (1):244-247.
    [10]Chen Y, Demir Y, Valujskikh A, et al. Antigen location contributes to the pathological features of a transplanted heart graft. Am J Pathol.2004,164 (4):1407-1415.
    [11]Chen Y, Heeger PS, Valujskikh A. In vivo helper functions of alloreactive memory CD4+T cells remain intact despite donor-specific transfusion and anti-CD40 ligand therapy. J Immunol.2004,172 (9):5456-5466.
    [12]Ensminger SM, Billing JS, Morris PJ, et al. Development of a combined cardiac and aortic transplant model to investigate the development of transplant arteriosclerosis in the mouse. J Heart Lung Transplant.2000,19:1039-1046.
    [13]Mann FC, Priestly JR, Markowitz J and Yates WM. Transplantation of the intact mammalian heart. Arch Surg.1933,26:219.
    [1]van Besouw NM, van der Mast BJ, de Kuiper P, et al. Donor-specific T-cell reactivity identifies kidney transplant patients in whom immunosuppressive therapy can be safely reduced. Transplantation,2000,70:136-143.
    [2]Pantenburg B, Heinzel F, Das L, et al. T cells primed by Leishmania major infection cross-react with alloantigens and alter the course of allograft rejection. J Immunol, 2002,169:3686-3693.
    [3]Berg LP, James MJ, Alvarez-Iglesias M, et al. Functional consequences of noncognate interactions between CD4+memory T lymphocytes and the endothelium. J Immunol, 2002,168:3227-3234.
    [4]Zhai Y, Meng L, Gao F, et al. Allograft rejection by primed/memory CD8+T cells is CD 154 blockade resistant:therapeutic implications for sensitized transplant recipients. J Immunol,2002,169:4667-673.
    [5]戴振鹏,赵金存,张岩,等.人CD4+CD25+调节性T细胞系的建立与功能分析.中国免疫学杂志,2003,1(1):5-8.
    [6]Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets:function, generation, and maintenance. Annu Rev Immunol,2004,22: 745-763.
    [7]Sallusto F, Lenig D, Forster R, et al. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature,1999,401:708-712.
    [1]Masopust D., Vezys V., Marzo A. and Lefrancois L. Preferential localization of effector memory cells in nonlymphoid tissue. Science,2001,291,2413-2417.
    [2]Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions [see comments]. Nature 1999; 401:708-712.
    [3]Seder R. A. and Ahmed R. Similarities and differences in CD4+and CD8+effector and memory T cell generation. Nat. Immunol.2003,4,835-842.
    [4]Fujita, T.; Inoue, K.; Yamamoto, S.; Ikumoto, T.; Sasaki, S.; Toyama, R.; Chiba, K. Hoshino, Y.; Okumoto, T. J. Antibiot. Tokyo.,1994,47,208.
    [5]Kiuchi, M.; Adachi, K.; Kohara, T.; Teshima, K.; Masubuchi, Y.; Mishina, T.; Fujita, T. Bioorg. Synthesis and biological evaluation of 2,2-disubstituted 2-aminoethanols: analogues of FTY720.Med. Chem. Lett.,1998,8,101.
    [6]Kiuchi, M.; Adachi, K.; Kohara, T.; Minoguchi, M.; Hanano, T.; Aoki, Y.; Mishina, T.; Arita, M.; Nakao, N.; Ohtsuki, M.; Hoshino, Y.; Teshima, K.; Chiba, K.; Sasaki, S.; Fujita, T. J. Synthesis and immunosuppressive activity of 2-substituted2-aminopropane-1,3-diols and 2-aminoethanols.Med. Chem.,2000,43, 2946.
    [7]Neujahr D. C., Chen C., Huang X., Markmann J. F., Cobbold S., Waldmann H., Sayegh M. H., Hancock W. W. and Turka L. A. Accelerated memory cell homeostasis during T cell depletion and approaches to overcome it. J. Immunol.,2006,176,4632-4639.
    [8]Minamimura K., Gao W. and Maki T. CD4+regulatory T cells are spared from deletion by antilymphocyte serum, a polyclonal anti-T cell antibody. J. Immunol.2006,176, 4125-4132.
    [9]Sharpe AH, Freeman GJ. The B7-CD28 superfamily. Nat Rev Immunol.2002,2(2): 116-126.
    [10]Russell JH, Ley TJ. Lymphocyte-mediated cytotoxicity. Annu Rev Immunol,2002,20: 323-370.
    [11]Barry M, Bleackley RC. Cytotoxic T lymphocytes:all roads lead to death. Nat Rev Immunol,2002,2(6):401-409.
    [12]de Groot-Kruseman HA, Baan CC, Zondervan PE, de Weger RA, Niesters HG, Balk AH, et al. Apoptotic death of infiltrating cells in human cardiac allografts is regulated by IL-2, FASL, and FLIP. Transplant Proc,2004,36(10):3143-3148.
    [13]Perez EC, Shulzhenko N, Morgun A, Diniz RV, Almeida DR, Musatti CC, et al. Expression of Fas, FasL, and soluble Fas mRNA in endomyocardial biopsies of human cardiac allografts. Hum Immunol,2006,67(1-2):22-26.
    [14]Zhai Y, Meng LZ, Gao F, Busuttil RW, Kupiec-Weqlinski JW. Allograft rejection by primed/memory CD8+T cells is CD154 blockade resistant:therapeutic implications for sensitized transplant recipients. J Immunol.2002,169(8):4667-4673.
    [15]Valujskikh A, Pantenburg B, Heeger PS. Primed allospecific T cells prevent the effects of costimulatory blockade on prolonged cardiac allograft survival in mice. Am J Transplant.2002,2(6):501-509.
    [16]Jiang H, Chess L. An integrated view of suppressor T cell subsets in immunoregulation. J Clin Invest,2004,114:1198-208.
    [17]Bach JF. Regulatory T cells under scrutiny. Nat Rev Immunol,2003,3:189-98.
    [18]Peng SL. Translating regulatory t cells in rheumatoid arthritis:revisiting the past. Arthritis Rheum,2007,56:395-8.
    [19]Groux H, O'Garra A, Bigler M, et al. A CD4+T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature,1997,389:737-42.
    [20]CotTregez F, Hurst SD, Coffman RL, et al. T regulatory cells 1 inhibit a Th2-specific response in vivo. J Immunol,2000,165:4848-53
    [21]Furtado GC, Lafaille MAC, Kutchukhidze N, et al. Interleukin 2 signaling is required for CD4+regulatory T cell function. J Exp Med,2002,196:851-857.
    [1]Wang XN, Proctor SJ, Dickinson AM. Frequency analysis of recipient-reactive helper and cytotoxic T lymphocyte precursors using a combined single limiting dilution assay. Transpl Immunol 1996; 4:247-251.
    [2]Ford WL, Atkins RC. The proportion of lymphocytes capable of recognizing strong transplantation antigens in vivo. Adv Exp Med Biol 1973; 29:255-262.
    [3]Deacock SJ, Lechler RI. Positive correlation of T cell sensitization with frequencies of alloreactive T helper cells in chronic renal failure patients. Transplantation 1992; 54: 338-343.
    [4]Merkenschlager M, Terry L, Edwards, R Beverley, PC Limiting dilution analysis of proliferative responses in human lymphocyte populations defined by the monoclonal antibody UCHL1:implications for differential CD45 expression in T cell memory formation. Eur J Immunol 1988; 18:1653-1661.
    [5]Lombardi G, Sidhu S, Daly M, Batchelor JR, Makgoba W, Lechler RI. Are primary alloresponses truly primary? Int Immunol 1990; 2:9-13.
    [6]Brehm MA, Markees TQ Daniels KA, Greiner DL, Rossini AA, Welsh RM. Direct visualization of cross-reactive effector and memory allo-specific CD8 T cells generated in response to viral infections. J Immunol 2003; 170:4077-4086.
    [7]Pantenburg B, Heinzel F, Das L, Heeger PS, Valujskikh A. T cells primed by Leishmania major infection cross-react with alloantigens and alter the course of allograft rejection. J Immunol 2002; 169:3686-3693.
    [8]Adams AB, Williams MA, Jones TR et al. Heterologous immunity provides a potent barrier to transplantation tolerance. J Clin Invest 2003; 111:1887-1895.
    [9]Burrows SR, Khanna R, Burrows JM, Moss DJ. An alloresponse in humans is dominated by cytotoxic T lymphocytes (CTL) crossreactive with a single Epstein-Barr virus CTL epitope:implications for graft-versus-host disease. J Exp Med 1994; 179: 1155-1161.
    [10]Burrows SR, Silins SL, Khanna R et al. Cross-reactive memory T cells for Epstein-Barr virus augment the alloresponse to common human leukocyte antigens: degenerate recognition of major histocompatibility complex-bound peptide by T cells and its role in alloreactivity. Eur J Immunol 1997; 27:1726-1736.
    [11]Lombardi G, Sidhu S, Lamb JR., Batchelor JR, Lechler RI. Corecognition of endogenous antigens with HLA-DR1 by alloreactive human T cell clones. J Immunol 1989;142:753-759.
    [12]Bathe OF, Dalyot Herman N, Malek TR. IL-2 during in vitro priming promotes subsequent engraftment and successful adoptive tumor immunotherapy by persistent memory phenotypic CD8+T cells [J]. J Immunol.,2001,167 (8):4511-4517.
    [13]Busch DH, Kerksiek KM,Pamer EG. Differing roles of inflammation and antigen in T cell proliferation and memory generation [J]. J Immunol,2000,164 (8): 4063-4070.
    [14]Opferman JT, Ober BT, Narayanan R, et al. Suicide induced by cytolytic activity controls the differentiation of memory CD8+T lymphocytes [J]. Int Immunol,2001,13 (4):411-419.
    [15]Lee WT, Vitetta ES. Limiting dilution analysis of CD45 Rhi and CD45Rlo T cells: further evidence that CD45 Rlo cells are memory cells. Cell Immunol,1990; 130: 459-471.
    [16]Murali-Krishna K, Altman JD, Suresh M et al. Counting antigenspecific CD8 T cells:a reevaluation of bystander activation during viral infection. Immunity,1998; 8: 177-187.
    [17]Neujahr D. C., Chen C., Huang X., Markmann J. F., Cobbold S., Waldmann H., Sayegh M. H., Hancock W. W. and Turka L. A. Accelerated memory cell homeostasis during T cell depletion and approaches to overcome it. J. Immunol.,2006,176,4632-4639.
    [18]Minamimura K., Gao W. and Maki T. CD4+regulatory T cells are spared from deletion by antilymphocyte serum, a polyclonal anti-T cell antibody. J. Immunol.2006,176, 4125-4132.
    [19]Seder R. A. and Ahmed R. Similarities and differences in CD4+and CD8+effector and memory T cell generation. Nat. Immunol.2003,4,835-842.
    [20]Masopust D., Vezys V., Marzo A. and Lefrancois L. Preferential localization of effector memory cells in nonlymphoid tissue. Science,2001,291,2413-2417.
    [21]Chalasani G., Dai Z., Konieczny B. T., Baddoura F. K. andLakkis F. G. Recall and propagation of allospecific memory T cells independent of secondary lymphoid organs. Proc. Natl. Acad. Sci. USA 2002,99,6175-6180.
    [22]Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions [see comments]. Nature 1999; 401:708-712.
    [23]Kedl RM, Mescher MF. Qualitative differences between naive and memory T cells make a major contribution to the more rapid and efficient memory CD8+T cell response. J Immunol 1998; 161:674-683.
    [24]Cho BK, Wang C, Sugawa S, Eisen H, Chen J. Functional differences between memory and naive CD8 T cells. Proc Natl Acad Sci U S A 1999; 96:2976-2981.
    [25]Croft M, Bradley LM, Swain SL. Naive versus memory CD4 T cell response to antigen: memory cells are less dependent on accessory cell costimulation and can respond to many APC types including resting B cells. J Immunol 1994; 152:2675-2685.
    [26]Dengler TJ, Pober JS. Human vascular endothelial cells stimulate memory but not naive CD8+T cells to differentiate into CTL retaining an early activation phenotype. J Immunol 2000; 164:5146-5155.
    [27]Lau LL, Jamieson BD,Somasundaram T, et al. Cytotoxic T cell memory without antigen [J]. Nature,1994,369 (6482):648-652.
    [28]Murali-Krishna K,Lau LL,Sambhara S,et al. Persistence of memory CD8 T cells in MHC class I-deficient mice [J]. Science,1999,286 (5443):1377-1381.
    [29]Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets:function,generation,and maintenance [J]. Annu Rev Immunol,2004, 22:745-763.
    [30]Wherry EJ,McElhaugh MJ, Eisenlohr LC. Generation of CD8+T cell memory in response to low, high, and excessive levels of epitope [J]. J Immunol,2002,168 (9): 4455-4461.
    [31]Di Rosa F, Matzinger P. Long-lasting CD8 T Cell memory in the absence of CD4 T Cell or B cells [J]. J Exp Med,1996,183 (5):2153-2163.
    [32]Gao FG, Khammanivong V, Liu WJ, et al. Antigen-specific CD4+T cell help is required to activate a memory CD8+T cell to a fully functional tumor killer cell [J]. Cancer Res,2002,62 (22):6438-6441.
    [33]Janssen EM, Lemmens EE, Wolfe T, et al. CD4+T cells are required for secondary expansion and memory in CD81 T lymphocytes [J]. Nature,2003,421 (6925):852-856.
    [34]Shedlock DJ, Shen H. Requirement for CD4 T cell help in generating functional CD8 T cell memory [J]. Science,2003,300 (5617):337-339.
    [35]Sun JC, Bevan MJ. Defective CD8 T cell memory following acute infection without CD4 T cell help [J]. Science,2003,300 (5617):339-342.
    [36]Lakkis F. G. and Sayegh M. H. Memory T cells:a hurdle to immunologic tolerance. J. Am. Soc. Nephrol.2003,14,2402-2410.
    [37]Obhrai J. S., Oberbarnscheidt M. H., Hand T. W., Diggs L., Chalasani G. and Lakkis F. G. Effector T cell differentiation and memory T cell maintenance outside secondary lymphoid organs. J. Immunol.2006,176,4051-4058.
    [38]Selin L. K. and Brehm M. A. Frontiers in nephrology:heterologous immunity, T cell cross-reactivity, and alloreactivity. J. Am. Soc. Nephrol.2007,18,2268-2277.
    [39]Valujskikh A., Pantenburg B. and Heeger P. S. Primed allospecific T cells prevent the effects of costimulatory blockade on prolonged cardiac allograft survival in mice. Am. J. Transplant.2002,2,501-509.
    [40]Vu M. D., Clarkson M. R., Yagita H., Turka L. A., Sayegh M. H. and Li X. C. Critical, but conditional, role of OX40 in memory T cell-mediated rejection. J. Immunol.2006, 176,1394-1401.
    [41]Wu Z., Bensinger S. J., Zhang J., Chen C., Yuan X., Huang X., Markmann J. F., Kassaee A., Rosengard B. R., Hancock W. W., Sayegh M. H. and Turka L. A. Homeostatic proliferation is a barrier to transplantation tolerance. Nat. Med.2004,10, 87-92.
    [42]Hancock WW, Gao W, Shemmeri N, et al. Immunopathogenesis of accelerated allograft rejection in sensitized recipients:humoral and nonhumoral mechanisms. Transplantation 2002; 73:1392-1397.
    [43]Cecka JM. Living donor transplants. Clin Transpl 1995:363-377.
    [44]Kobashigawa JA, Sabad A, Drinkwater D, et al. Pre-transplant panel reactive-antibody screens. Are they truly a marker for poor outcome after cardiac transplantation? Circulation 1996; 94:294-7.
    [45]Kupiec-Weglinski JW. Graft rejection in sensitized recipients. Ann Transplant 1996; 1: 34-40.
    [46]Heeger PS, Valujskikh A, Lehmann PV. Comprehensive assessment of determinant
    specificity, frequency, and cytokine signature of the primed CD8 cell repertoire induced by a minor transplantation antigen. J Immunol 2000; 165:1278-1284.
    [47]Kersh EN, Kaech SM, Onami TM et al. TCR Signal Transduction in Antigen-Specific Memory CD8 T Cells. J Immunol 2003; 170:5455-5463.
    [48]Krishnan S,Warke VG, Nambiar MP,Wong HK, Tsokos GC, Farber DL. Generation and biochemical analysis of human effector CD4 T cells. alterations in tyrosine phosphorylation and loss of CD3 expression. Blood 2001; 97:3851-3859.
    [49]Hussain SF, Anderson CF, Farber DL. Differential SLP-76 Expression and TCR-Mediated Signaling in Effector and Memory CD4 T Cells. J Immunol 2002; 168: 1557-1565.
    [50]Robinson AT, Miller N, Alexander DR. CD3 antigen-mediated calcium signals and protein kinase C activation are higher in CD45RO+than in CD45RA+human T lymphocyte subsets. Eur J Immunol 1993; 23:61-68.
    [51]Gupta M, Satyaraj E, Durdik JM, Rath S, Bal V. Differential regulation of T cell activation for primary versus secondary proliferative responses. J Immunol 1997; 158: 4113-4121.
    [52]Ogawa N., List J. F., Habener J. F. and Maki T. Cure of overt diabetes in NOD mice by transient treatment with anti-lymphocyte serum and exendin-4. Diabetes.2004,53, 1700-1705.
    [53]Pearl J. P., Parris J., Hale D. A., Hoffmann S. C., Bernstein W. B., McCoy K. L., Swanson S. J., Mannon R. B., Roederer M. and Kirk A. D. Immunocompetent T-cells with a memory-like phenotype are the dominant cell type following antibody-mediated T-cell depletion. Am. J. Transplant.2005,5,465-474.
    [54]Sprent J. and Surh C. D. Generation and maintenance of memory T cells. Curr. Opin. Immunol.,13,248-254.35. Surh C. D., Boyman O., Purton J. F. and Sprent J. (2006): Homeostasis of memory T cells. Immunol. Rev.2001,211,154-163.
    [55]Valujskikh A. and Li X. C. Frontiers in nephrology:T cell memory as a barrier to transplant tolerance. J. Am. Soc. Nephrol.2007,18,2252-2261.
    [56]Zhai Y, Meng L., Gao F., Busuttil R. W. and Kupiec Weglinski J. W. Allograft rejection by primed/memory CD8+T cells is CD 154 blockade resistant:therapeutic implications for sensitized transplant recipients. J. Immunol.2002,169,4667-4673.
    [57]Hancock WW, Wang L, YeQ. Han R, Lee I. Chemokines and their receptors as markers of allograft rejection and targets for immunosuppression. Curr Opin Immunol 2003; 15: 479-486.
    [58]Sayegh MH, Turka LA. The role of T-cell costimulatory activation pathways in transplant rejection. N Engl J Med 1998; 338:1813-1821.
    [59]London CA, Lodge MP, Abbas AK. Functional responses and costimulator dependence of memory CD4+T cells. J Immunol 2000; 164:265-272.
    [60]Sachs DH, Tolerance of mice and men. J Clin Invest 2003; 111:1819-1821.
    [61]Makhlouf L, Kishimoto K, Smith RN et al. The role of autoimmunity in islet allograft destruction:major histo-compatibility complex class Ⅱ matching is necessary for autoimmune destruction of allogeneic islet transplants after T-cell costimulatory blockade. Diabetes 2002; 51:3202-3210.
    [62]Okitsu T, Bartlett ST, Hadley GA, Drachenberg CB, Farney AC. Recurrent autoimmunity accelerates destruction of minor and major histoincompatible islet grafts in nonobese diabetic (NOD) mice. Am J Transplant 2001; 1:138-145.
    [63]Cooke A, Phillips JM, Parish NM. Tolerogenic strategies to halt or prevent type 1 diabetes. Nat Immunol 2001; 2:810-815.
    [64]Kreuwel HT, Aung S, Silao C, Sherman LA. Memory CD8 (+) T cells undergo peripheral tolerance. Immunity 2002; 17:73-81.
    [65]Mirshahidi S, Huang CT, Sadegh-Nasseri S. Anergy in peripheral memory CD4 (+) T cells induced by low avidity engagement of T cell receptor. J Exp Med 2001; 194: 719-731.
    [66]Ahmadzadeh M, Farber DL. Functional plasticity of an antigenspecific memory CD4 T cell population. Proc Natl Acad Sci USA 2002; 99:11802-11807.
    [67]Dai Z, Li Q, Wang Y, Gao G, et al. CD4+CD25+regulatory T cells suppress allograft rejection mediated by memory CD8+T cells via a CD30-dependent mechanism. J Clin Invest 2004; 113:310-317.
    [68]Dawicki W., Bertram E. M., Sharpe A. H. and Watts T. H.4-1BB and OX40 act independently to facilitate robust CD8 and CD4 recall responses. J. Immunol.2004, 173,5944-5951.
    [69]Harada H., Salama A. D., Sho M., Izawa A., Sandner S. E., Ito T., Akiba H., Yagita H., Sharpe A. H., Freeman G. J. and Sayegh M. H. The role of the ICOS-B7h T cell costimulatory pathway in transplantation immunity. J. Clin. Invest.2003,112, 234-243.
    [70]Prell R. A., Evans D. E., Thalhofer C., Shi T., Funatake C. and Weinberg A. D. OX40-mediated memory T cell generation is TNF receptor-associated factor 2 dependent. J. Immunol.2003,171,5997-6005.
    [71]Salek-Ardakani S., Song J., Halteman B. S., Jember A. G.-H., Akiba H., Yagita H. and Croft M. OX40 (CD 134) controls memory T helper 2 cells that drive lung inflammation. J. Exp. Med.2003,198,315-324.
    [72]Prlic M., Blazar B. R., Khoruts A., Zell T. and Jameson S. C. Homeostatic expansion occurs independently of costimulatory signals. J. Immunol.2001,167,5664-5668.
    [73]Rothstein D. M. and Sayegh M. H. T-cell costimulatory pathways in allograft rejection and tolerance. Immunol. Rev.2003,196,85-108.
    [74]Yuan X., Salama A. D., Dong V., et al. The role of the CD134-CD134 ligand costimulatory pathway in alloimmune responses in vivo. J. Immunol.2003,170, 2949-2955.
    [75]Zhang Q., Chen Y, Fairchild R. L., Heeger P. S. and Valujskikh A. Lymphoid sequestration of alloreactive memory CD4 T cells promotes cardiac allograft survival. J. Immunol.2006,176,770-777.
    [1]Fujita,T.;Inoue,K.;Yamamoto,S.;Ikumoto,T.;Sasaki,S.;Toyama,R.;Chiba,K.; Hoshino,Y.;Okumoto,T.J.Antibiot.Tokyo.,1994,47,208.
    [2]Miyake,Y.;Kozutsumi,Y.;Nakamura,S.;Fujita,T.;Kawasaki,T.Biochem. Biophys.Res.Commun.,1995,211,396.
    [3]Kiuchi,M.;Adachi,K.;Kohara,T.;Teshima,K.;Masubuchi,Y.;Mishina,T.;Fujita, T.Bioorg.Synthesis and biological evaluation of 2,2-disubstituted 2-aminoethanols: analogues of FTY720.Med.Chem.Lett.,1998,8,101.
    [4]Kiuchi,M.;Adachi,K.;Kohara,T.;Minoguchi,M.;Hanano,T.;Aoki,Y.;Mishina, T.;Arita,M.;Nakao,N.;Ohtsuki,M.;Hoshino,Y.;Teshima,K.;Chiba,K.;Sasaki, S.; Fujita, T. J. Synthesis and immunosuppressive activity of 2-substituted2-aminopropane-1,3-diols and 2-aminoethanols.Med.Chem.,2000,43, 2946.
    [5]Chen,J.K.;Lane,W.S.;Schreiber,S.L.The identification of myriocin-binding proteins.Chem.Biol.,1999,6,221.
    [6]Paugh,S.W.;Payne,S.G.;Barbour,S.E.;Milstien,S.;Spiegel,S.FEBS Lett.,2003, 554,189.
    [7]Mandala,S.;Hajdu,R.;Bergstrom,J.;Quackenbush,E.;Xie,J.;Milligan,J.; Thornton,R.;Shei,G.J.;Card,D.;Keohane,C.;Rosenbach,M.;Hale,J.;Lynch,C.L Rupprecht,K.;Parsons,W.;Rosen,H.Science,2002,296,346.
    [8]Brinkmann,V.;Davis,M.D.;Heise,C.E.;Albert,R.;Cottens,S.;Hof,R.;Bruns,C.; Prieschl,E.;Baumruker,T.;Hiestand,P.;Foster,C.A.;Zollinger,M.;Lynch,K.R.J. Biol.Chem.,2002,277,21453.
    [9]Kimura,T.;Sato,K.;Kuwabara,A.;Tomura,H.;Ishiwara,M.;Kobayashi,Ⅰ.;Ui,M.; Okajima,F.J.Biol.Chem.,2001,276,31780.
    [10]English,D.;Welch,Z.;Kovala,A.T.;Harvey,K.;Volpert,O.V.;Brindley,D.N.; Garcia,J.G.FASEB J.,2000,14,2255.
    [11]Prieschl,E.E.;Csonga,R.;Novotny,V.;Kikuchi,G.E.;Baumruker,T.J.Exp.Med., 1999,190,1.
    [12]Ancellin,N.;Colmont,C.;Su,J.;Li,Q.;Mittereder,N.;Chae,S.S.;Stefansson,S.; Liau,G.;Hla,T.J.Biol.Chem.,2002,277,6667.
    [13]Hla,T.;Lee,M.J.;Ancellin,N.;Paik,J.H.;Kluk,M.J.Science,2001,294,1875.
    [14]Pyne,S.;Pyne,N.Pharmacol.Ther.,2000,88,115.
    [15]Kiuchi,M.;Adachi,K.;Tomatsu,A.;Chino,M.;Takeda,S.;Tanaka,Y.;Maeda,Y.; Sato,N.;Mitsutomi,N.;Sugahara,K.;Chiba,K.Bioorg.Med.Chem.,2005,13,425.
    [16]Cyster,J.G.Annu.Rev.Immunol.,2005,23,127.21.
    [17]Chiba,K.Pharmacol.Ther.,2005,108,308.
    [18]Matloubian,M.;Lo,C.G.;Cinamon,G.;Lesneski,M.J.;Xu,Y.;Brinkmann,Ⅴ.; Allende,M.L.;Proia,R.L.;Cyster,J.G.Nature,2004,427,355.
    [19]Lo,C.G.;Xu,Y.;Proia,R.L.;Cyster,J.G.J.Exp.Med.,2005,201,291.
    [20]Graler,M.H.;Goetzl,E.J.FASEB J.,2004,18,551.
    [21]Hale,J.J.;Neway,W.;Mills,S.G.;Hajdu,R.;Ann Keohane,C.;Rosenbach,M.; Milligan,J.;Shei,G.J.;Chrebet,G.;Bergstrom,J.;Card,D.;Koo,G.C.;Koprak,S.L. Jackson,J.J.;Rosen,H.;Mandala,S.Bioorg.Med.Chem.Lett.,2004,14,3351.
    [22]Brinkmann,V.;Cyster,J.G.;Hla,T.Am.J.Transplant.,2004,7,1019.
    [23]Zemann,B.;Kinzel,B.;Muller,M.;Reuschel,R.;Mechtcheriakova,D.;Urtz,N.; Bornancin,F.;Baumruker,T.;Billich,A.Blood,2006,107,1454.
    [24]Kharel,Y.;Lee,S.;Snyder,A.H.;Sheasley-O'neill,S.L.;Morris,M.A.;Setiady,Y.; Zhu,R.;Zigler,M.A.;Burcin,T.L.;Ley,K.;Tung,K.S.;Engelhard,V.H.; Macdonald,T.L.;Pearson-White,S.;Lynch,K.R.J.Biol.Chem.,2005,280,36865.
    [25]Gardell,S.E.;Dubin,A.E.;Chun,J.Trends Mol.Med.,2006,2,65.
    [26]Brinkmann,V.Yonsei Med.J.,2004,45,991.
    [27]Chiba,K.;Yanagawa,Y.;Masubuchi,Y.;Kataoka,H.;Kawaguchi,T.;Ohtsuki,M.; Hoshino,Y.J.Immunol.,1998,160,5037.
    [28]Chiba,K.;Hoshino,Y.;Suzuki,C.;Masubuchi,Y.;Yanagawa,Y.;Ohtsuki,M.; Sasaki,S.;Fujita,T.Transplant Proc.,1996,28,1056.
    [29]Chiba,K.;Yanagawa,Y.;Kataoka,H.;Kawaguchi,T.;Ohtsuki,M.;Hoshino,Y. Transplant Proc.,1999,31,1230.
    [30]Yanagawa,Y.;Masubuchi,Y.;Chiba,K.Immunology,1998,95,591.
    [31]Yagi,H.;Kamba,R.;Chiba,K.;Soga,H.;Yaguchi,K.;Nakamura,M.;Itoh,T.Eur.J. Immunol.,2000,30,1435.
    [32]Pinschewer,D.D.;Ochsenbein,A.F.;Odermatt,B.;Brinkmann,V.;Hengartner,H.; Zinkernagel,R.M.J.Immunol.,2000,164,5761.
    [33]Sawicka,E.;Dubois,G.;Jarai,G.;Edwards,M.;Thomas,M.;Nicholls,A.;Albert,R. Newson,C.;Brinkmann,V.;Walker,C.J.Immunol.,2005,175,7973.
    [34]Suzuki,S.;Li,X.K.;Enosawa,S.;Shinomiya,T.Immunology,1996,89,518:
    [35]Suzuki,S.;Enosawa,S.;Kakefuda,T.;Shinomiya,T.;Amari,M.;Naoe,S.;Hoshino, Y.;Chiba,K.Transplantation,1996,61,200.
    [36]Singer,II.;Tian,M.;Wickham,L.A.;Lin,J.;Matheravidathu,S.S.;Forrest,M.J.; Mandala,S.;Quackenbush,E.J.J.Immunol.,2005,175,7151.
    [37]Rausch,M.;Hiestand,P.;Foster,C.A.;Baumann,D.R.;Cannet,C.;Rudin,M.J. Magn.Reson.Imaging.,2004,20,16.
    [38]Kaneider,N.C.;Lindner,J.;Feistritzer,C.;Stum,D.H.;Mosheimer,B.A.;Djanani, A.M.:Wiedermann,C.J.FASEB J.,2004,18.1309.
    [39]Allende,M.L.;Yamashita,T.;Proia,R.L.Blood,2003,102,3665.
    [40]Yamasaki,T.;Inoue,K.;Hayashi,H.;Gu,Y.;Setoyama,H.;Ida,J.;Cui,W.; Kawakami,Y.;Kogire,M.;Imamura,M.Cell Transplant.,1998,7,403.
    [41]Lee,M.J.;Thangada,S.;Claffey,K.P.;Ancellin,N.;Liu,C.H.;Kluk,M.;Volpi,M.; Sha'afi,R.I.;Hla,T.Cell,1999,99,301.
    [42]Sanchez,T.;Estrada-Hernandez,T.;Paik,J.H.;Wu,M.T.;Venkataraman,K.; Brinkmann,Ⅴ.;Claffey,K.;Hla,T.J.Biol.Chem.,2003,278,47281.
    [43]Peng,X.;Hassoun,P.M.;Sammani,S.;McVerry,B.J.;Burne,M.J.;Rabb,H.;Pearse, D.;Tuder,R.M.;Garcia,J.G.Am.J.Respir.Crit.Care Med.,2004,169,1245.
    [44]Ho,J.W.;Man,K.;Sun,C.K.;Lee,T.K.;Poon,R.T.;Fan,S.T.Mol.Cancer Ther., 2005,4,1430.
    [45]LaMontagne,K.;Littlewood-Evans,A.;Schnell,C.;O'Reilly,T.;Wyder,L.;Sanchez, T.;Probst,B.;Butler,J.;Wood,A.;Liau,G.;Billy,E.;Theuer,A.;Hla,T.;Wood,J. Cancer Res.,2006,66,221.
    [46]Czeloth,N.;Bernhardt,G.;Hofmann,F.;Genth,H.;Forster,R.J.Immunol.,2005, 175,2960.
    [47]Lan,Y.Y.;De Creus,A.;Colvin,B.L.;Abe,M.;Brinkmann,V.;Coates,P.T. Thomson,A.W.Am.J.Transplant.,2005,5,2649.
    [48]Muller, H.; Hofer, S.; Kaneider, N.; Neuwirt, H.; Mosheimer, B.; Mayer, G.; Konwalinka, G.; Heufler, C.; Tiefenthaler, M. Eur. J. Immunol,2005,35,533.
    [49]Dragun, D.; Bohler, T.; Nieminen-Kelha, M.; Waiser, J.; Schneider, W.; Haller, H.; Luft, F.C.; Budde, K.; Neumayer, H.H. Kidney Int.,2004,65,1076.
    [50]Chen, Y.J.; Kyles, A.E.; Gregory, C.R. Am. J. Vet. Res.,2006,67,588.
    [51]Kovarik, J.M.; Schmouder, R.; Barilla, D.; Wang, Y.; Kraus, G. Br. J. Clin. Pharmacol.,2004,57,586.
    [52]Schmouder, R.; Serra, D.; Wang, Y.; Kovarik, J.M.; DiMarco, J.; Hunt, T.L.; Bastien, M.C.J. Clin. Pharmacol.,2006,46,895.
    [53]Sanna, M.G.; Liao,J.; Jo, E.; Alfonso, C.; Ahn, M.Y.; Peterson, M.S.; Webb, B.; Lefebvre, S.; Chun,J.; Gray, N.; Rosen, H. J. Biol. Chem.,2004,279,13839.
    [54]Mazurais, D.; Robert, P.; Gout, B.; Berrebi-Bertrand, I.; Laville, M.P.; Calmels, T. J. Histochem. Cytochem.,2002,50,661.
    [55]Chiba K, Yanagawa Y, Masubuchi Y, et al FTY720, a novel immunosuppressant, induces sequestration of circulating mature lymphocytes by acceleration of lymphocyte homing in rats. I. FTY720 selectively decreases the number of circulating mature lymphocytes by acceleration of lymphocyte homing. J Immunol 1998; 160: 5037.
    [56]Suzuki S, Li T, Shinomiya S, et al. Induction of lymphocyte apoptosis and prolongation of allograft survival by FTY720. Transplant Proc 1996; 28:2049
    [57]Xu M, Pirenne J, Antoniou EA, Afford SC, D'Silva M, McMaster P. Effect of peritransplant FTY720 alone or in combination with post-transplant tacrolimus in a rat model of cardiac allotransplantation. Transpl Int 1998; 11:288.
    [58]Xu M, Pirenne J, Antoniou S, et al. FTY720 compares with FK506 as rescue therapy in rat heterotopic cardiac transplantation. Transplant Proc 1998; 30:2221.
    [59]Chiba K, Hoshino Y, Susuki C, et al. FTY720, a novel immunosuppressant possessing unique mechanisms. Ⅰ. Prolongation of skin allograft survival and synergistic effect in combination with CsA in rats. Transplant Proc 1996; 28:1056.
    [60]Hoshino Y Suzuki C, Ohtsuki M, Masubuchi Y, Amano Y, Chiba K. FTY720, a novel immunosuppressant possessing unique mechanisms.Ⅱ. Long-term graft survival induction in rat heterotopic cardiac allografts and synergistic effect in combination with cyclosporin A. Transplant Proc 1996; 28:1060.
    [61]Wang ME, Tejpal N, Qu X, et al. Immunosuppressive effects of FTY720 alone or in combination with cyclosporine and/or sirolimus. Transplantation 1998; 65:899.
    [62]Suzuki S, Kakefuda T, Amemiya H, et al. An immunosuppressive regimen using FTY720 combined with cyclosporin in canine kidney transplantation. Transpl Int 1998; 11:95.
    [63]Troncoso P, Stepkowski SM, Wang ME, et al. Prophylaxis of acute renal allograft rejection using FTY720 in combination with subtherapeutic doses of cyclosporine. Transplantation 1999; 67:145.
    [64]Stepkowski SM, Wang M, Qu X, et al. Synergistic interaction of FTY720 with cyclosporin or sirolimus to prolong heart allograft survival. Transplant Proc 1998; 30: 2214.
    [65]Nikolova Z, Hof A, Baumlin Y, et al. The peripheral lymphocyte count predicts graft survival in DA to Lewis heterotopic heart transplantation treated with FTY720 and SDZ RAD. Transplant Immunol 2000; 8:115.
    [66]Quesniaux V, Menninger K, Audet M, et al. FTY720 is efficacious in monkey kidney transplantation. Transplant Proc 2001; 33:2374.
    [67]Tamura A, Li XK, Funeshima N, et al. Combination effect of tacrolimus and FTY720 in liver transplantation in rats. Transplant Proc 1999; 31:2785.
    [68]Hoshino Y, Yanagawa Y, Ohtsuki M, Nakayama S, Hashimoto T, Chiba K. FTY720, a novel immunosuppressant, shows a synergistic effect in combination with FK506 in rat allograft models. Transplant Proc 1999; 31:1224.
    [69]Hayry P. Chronic rejection:risk factors, regulation, and possible sites of therapeutic intervention. Transplant Proc 1998; 30:2407.
    [70]Hancock WW. Basic science aspects of chronic rejection:induction of protective genes to prevent development of transplant arteriosclerosis. Transplant Proc 1998; 30: 1585.
    [71]Nikolova Z, Hof A, Baumlin Y, Hof R. Prevention of graft vessel disease by combined FTY720 and Cyclosporin A treatment in the DA to Lewis rat carotid artery transplantation model. Transplantation 2000; 69:2525.
    [72]Kappos, L.; Antel, J.; Comi, G.; Montalban, X.; O'Connor, P.; Polman, C.H.; Haas, T. Korn, A.A.; Karlsson, G.; Radue, E.W.; FTY720 D2201 Study Group. N. Engl. J. Med.,2006,355,1124.
    [73]Korbutt GS, Warlock GL, Rajotte RV. Islet transplantation. Adv Exp Med Biol 1997; 426:397.
    [74]Shapiro AM, Lakey JR, Ryan EA, et al. Islet transplantation in seven patients with type 1 diabetes mellitus using aglucocorticoid-free immunosuppressive regimen. N Engl J Med 2000; 343:230.
    [75]Yamasaki T, Inoue K, Hayashi H, et al. Effect of a new immunosuppressive agent, FTY720, on survival of islet allografts. Cell Transplant 1998; 7:403.
    [76]Fu F, Hu S, Li S, et al. FTY720, a novel immunosuppressive agent with insulinotropic activity, prolongs graft survival in a mouse islet transplantation model. Transplant Proc 2001;33:672.
    [77]Pinschewer DD, Ochsenbein AF, Odermatt B, Brinkmann V, Hengartner H, Zinkernagel RM. FTY720 immunosuppression impairs effector T-cell peripheral homing without affecting induction, expansion, and memory. J Immunol 2000; 164: 5761.
    [78]Matsuura M, Imayoshi T, Okumoto T. Effect of FTY720, a novel immunosuppressant, on adjuvant-and collagen-induced arthritis in rats. Int J Immunopharmacol 2000; 22: 323.
    [79]Kitabayashi H, Isobe M, Watanabe N, Suzuki J,. Yazaki Y, Sekiguchi M. FTY720 prevents development of experimental autoimmune myocarditis through reduction of circulating lymphocytes. J Cardiovasc Pharmacol 2000; 35:410.
    [80]Kurose S, Ikeda E, Tokiwa M, Hikita N, Mochizuki M. Effects of FTY720, a novel immunosuppressant, on experimental autoimmune uveoretinitis in rats. Exp Eye Res 2000; 70:7.
    [81]Ogretmen, B.; Hannun, Y.A. Nat. Rev. Cancer.,2004,4,604.
    [82]Wang, J.D.; Takahara, S.; Nonomura, N.; Ichimaru, N.; Toki, K.; Azuma, H.; Matsumiya, K.; Okuyama, A.; Suzuki, S. Prostate,1999,40,50.
    [83]Permpongkosol, S.; Wang, J.D.; Takahara, S.; Matsumiya, K.; Nonomura, N.; Nishimura, K.; Tsujimura, A.; Kongkanand, A.; Okuyama, A. Int. J. Cancer,2002,98, 167.
    [84]Sonoda,Y.;Yamamoto,D.;Sakurai,S.;Hasegawa,M.;Aizu-Yokota,E.;Momoi,T. Kasahara,T.Biochem.Biophys.Res.Commun.,2001,281,282.
    [85]Azuma,H.;Takahara,S.;Ichimaru,N.;Wang,J.D.;Itoh,Y.;Otsuki,Y.;Morimoto,J.; Fukui,R.;Hoshiga,M.;Ishihara,T.;Nonomura,N.;Suzuki,S.;Okuyama,A.; Katsuoka,Y.Cancer Res.,2002,62,1410.
    [86]Azuma,H.;Horie,S.;Muto,S.;Otsuki,Y.;Matsumoto,K.;Morimoto,J.;Gotoh,R.; Okuyama,A.;Suzuki,S.;Katsuoka,Y.;Takahara,S.Anticancer Res.,2003,23, 3183.
    [87]Matsuoka,Y.;Nagahara,Y.;Ikekita,M.;Shinomiya,T.Br.J.Pharmacol.,2003,138, 1303.
    [88]Azuma,H.;Takahara,S.;Horie,S.;Muto,S.;Otsuki,Y.;Katsuoka,Y.J.Urol.,2003, 169,2372.
    [89]Lee,T.K.;Man,K.;Ho,J.W.;Sun,C.K.;Ng,K.T.;Wang,X.H.;Wong,Y.C.;Ng, I.O.;Xu,R.;Fan,S.T.Carcinogenesis,2004,25,2397.
    [90]Lee,T.K.;Man,K.;Ho,J.W.;Wang,X.H.;Poon,R.T.;Sun,C.K.;Ng,K.T.;Ng,I.O.; Xu,R.;Fan,S.T.Carcinogenesis,2005,26,681.
    [91]Yasui,H.;Hideshima,T.;Raje,N.;Roccaro,A.M.;Shiraishi,N.;Kumar,S.; Hamasaki,M.;Ishitsuka,K.;Tai,Y.T.;Podar,K.;Catley,L.;Mitsiades,C.S.; Richardson,P.G.;Albert,R.;Brinkmann,V.;Chauhan,D.;Anderson,K.C.Cancer Res.,2005,65.7478.
    [92]Lee,T.K.;Man,K.;Ho,J.W.;Wang,X.H.;Poon,R.T.;Xu,Y.;Ng,K.T.;Chu,A.C.; Sun,C.K.;Ng,I.O.;Sun,H.C.;Tang,Z.Y.;Xu,R.;Fan,S.T.Clin.Cancer Res.,2005, 11,8458.
    [93]Chua,C.W.;Lee,D.T.;Ling,M.T.;Zhou,C.;Man,K.;Ho,J.;Chan,F.L.;Wang,X.; Wong,Y.C.Int.J.Cancer,2005,117,1039.
    [94]Schmid,G.;Guba,M.;Papyan,A.;Ischenko,I.;Bruckel,M.;Bruns,C.J.;Jauch, K.W.;Graeb,C.Transplant Proc.,2005,37,110.
    [95]Azuma,H.;Takahara,S.;Horie,S.;Muto,S.;Otsuki,Y.;Katsuoka,Y.J.Urol.,2003, 169,2372.
    [96]Yanagawa Y,Hoshino Y, Kataoka H,et al.FTY720,a novel immunosuppressant possessing unique mechanisms.Ⅱ.FTY720 prolongs skin allograft survival by decreasing T-cell infiltration into grafts but not cytokine production in vivo. J Immunol 1998; 160:5493.
    [97]Suzuki S, Li XK, Shinomiya T, et al. The in vivo induction of lymphocyte apoptosis in MRL-lpr/lpr mice treated with FTY720. Clin Exp Immunol 1997; 107:103.
    [98]Matsuda S, Minowa A, Suzuki S, Koyasu S. Differential activation of c-Jun NH2-terminal kinase and p38 pathways during FTY720-induced apoptosis of T lymphocytes that is suppressed by the extracellular signalregulated kinase pathway. J Immunol 1999; 162:3321.
    [99]Hwang MW, Matsumori A, Furukawa Y, et al. FTY720, a new immunosuppressant, promotes long term graft survival and inhibits the progression of graft coronary artery disease in a murine model of cardiac transplantation. Circulation 1999; 100:1322.
    [100]Suzuki S, Enosawa S, Kakefuda T, et al. Immunosuppressive effect of a new drug, FTY720, on lymphocyte responses in vitro and cardiac allograft survival in rats. Transplant Immunol 1996; 4:252.
    [101]Brinkmann V, Pinschewer D, Feng L, Chen S, Nikolova Z, Hof R. FTY720 alters lymphocyte homing and protects allografts without inducing general immunosuppression. Transplant Proc 2001; 23:530.
    [102]Yuzawa K, Stepkowski SM, Wang M, Kahan BD. FTY720 blocks allograft rejection by homing of lymphocytes in vivo. Transplant Proc 2000; 32:269.
    [103]Sallusto F, Mackay CR, Lanzavecchia A. The role of chemokine receptors in primary, effector, and memory immune responses. Annu Rev Immunol 2000; 18:593.
    [104]Hla T, Lee MJ, Ancellin N, et al. Sphingosine-1-phosphate signaling via the EDG-1 family of G-protein-coupled receptors. Ann NY Acad Sci.2000; 905:16.
    [105]Chen S, Brinkmann V, Bacon KB, Nakano H, Matsuzawa A, Feng L. Enhanced chemokine-dependent lymphocyte chemotaxis by FTY720 results in immunosuppression. Transplantation 2000; 69:S194.
    [106]Halin C, Scimone ML, Bonasio R, et al. The S1P-analog FTY720 differentially modulates T-cell homing via HEV:T-cell-expressed S1P1 amplifies integrin activation in peripheral lymph nodes but not in Peyer patches. Blood,2005,106(4): 1314-1322.
    [107]Foerster R, Schubel A, Breitfeld D, et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 1999; 99:23.
    [108]Pabst O, Herbrand H, Willenzon S, et al. Enhanced FTY720-mediated lymphocyte homing requires G alpha i signaling and depends on beta 2 and beta 7 integrin. J Immunol,2006,176(3):1474-80.
    [109]Halin C, Scimone ML, Bonasio R, et al. The SIP-analog FTY720 differentially modulates T-cell homing via HEV:T-cell-expressed S1P1 amplifies integrin activation in peripheral lymph nodes but not in Peyer patches. Blood,2005,106(4): 1314-1322.
    [110]Bohler T, Schutz M, Budde K, et al. Differential effects of single dose FTY720 on CD62L+B-cells in stable renal allograft recipients. Int Immunopharmacol,2007,7: 88-95.
    [111]Fujii R, Kanai T, Nemoto Y, et al. FTY720 suppresses CD4+CD44highCD62L-effector memory T cell-mediated colitis. Am J Physiol Gastrointest Liver Physiol, 2006,291(2):267-274.
    [112]Bohler T, Waiser J, Schutz M, et al. FTY720 mediates apoptosis-independent lymphopenia in human renal allograft recipients:different effects on CD62L+and CCR5+T lymphocytes. Transplantation,2004,77:1424-1432.
    [113]Pham TH, Okada T, Matloubian M, et al. S1P1 receptor signaling overrides retention mediated by G alpha i-coupled receptors to promote T cell egress. Immunity,2008, 28(1):122-133.
    [114]Yopp AC, Fu S, Honig SM, et al. FTY720-enhanced T cell homing is dependent on CCR2, CCR5, CCR7, and CXCR4:evidence for distinct chemokine compartments. J Immunol,2004,173:855-865.
    [115]Hofmann M, Brinkmann V, Zerwes HG. FTY720 preferentially depletes naive T cells from peripheral and lymphoid organs.Int Immunopharma,2006,6:1902-1910.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700