用户名: 密码: 验证码:
黑素皮质素受体-2在斑秃组织中表达异常及其可能机制的探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斑秃(alopecia areata, AA)是在一定遗传背景下,多种因素诱发的局限于毛囊的自身免疫性疾病。应激可诱发和加重斑秃,目前认为斑秃是一种应激相关的炎症性皮肤病。应激反应与下丘脑-垂体-肾上腺轴(hypothalamic-pituitary-adrenal axis, HPA axis)、交感神经系统、免疫系统紧密相关,其中被称为应激轴(stress axis)的HPA轴,是介导应激反应的重要途径。HPA轴系统反应缺陷将导致糖皮质激素缺乏状态,可增加自身免疫性疾病的易感性,是应激相关的自身免疫性疾病的重要致病因素之一。
     目前发现除了经典的中枢HPA轴,外周组织皮肤及其附属器也存在着与中枢HPA轴相似的HPA轴。皮肤及毛囊的HPA轴与中枢HPA轴不但具有相同的环路分子而且具有相似的神经内分泌功能,与神经递质、其它神经肽以及神经营养素共同调控生理病理状态下皮肤的神经内分泌及免疫功能。近来一些研究显示,中枢及外周的HPA轴活动缺陷均参与应激相关的斑秃的发病,但其具体机制尚未完全阐明。
     HPA轴的组成分子也被称为应激激素(stress hormones),包括促皮质激素释放激素(corticotropin-releasing hormone,CRH)、促肾上腺皮质激素(adrenocorticotropic hormone,ACTH)和皮质醇(cortisol)。CRH信号必须经过ACTH/MC2R途径刺激皮质醇生成,ACTH被称为“内分泌第二信使”;而且ACTH在几个黑素皮质激素原肽(proopiomelanocortin, POMC)衍生肽中,是主要调节毛发生长的POMC衍生肽,因此ACTH及其特异性的受体黑素皮质素受体2(melanocortin receptor type 2,MC2R或adrenocorticotropic hormone receptor, ACTHR)在应激相关的斑秃中可能发挥重要作用。我们对MC2R基因及其蛋白在斑秃皮损中的表达情况进行研究,以阐明HPA轴在斑秃发病中的可能机制,并探讨影响MC2R分子功能的可能调控机制。
     目前认为斑秃也是一多基因决定的复杂性疾病,因此斑秃的遗传学研究也是阐释斑秃发病机制的途径之一。斑秃家族的全基因扫描发现最大多点LOD值位于18号染色体的10-30CM之间,我们通过GenBank搜索该区域的基因,发现MC2R恰恰位于这个区域。已证实MC2R启动子一些位点的多态性可降低ACTH/MC2R连接敏感性,导致ACTH/MC2R介导的HPA轴信号传导障碍,皮质醇生产减少。认为MC2R基因的这种单个基因的单个硷基突变导致肾上腺皮质醇生成减少,是机体HPA轴活动调控的重要机制之一。中国汉族人群中MC2R启动子这些位点的多态性降低ACTH与MC2R结合能力的研究已有报道。综合斑秃患者异常的HPA轴活动和MC2R基因结构功能特点,我们运用病例对照研究方法,对重庆地区斑秃患者MC2R基因启动子两个位点的多态性进行了检测,统计学分析MC2R基因启动子多态性与斑秃的关联性,尝试阐明影响斑秃HPA轴异常的可能因素。
     首先我们应用Thomas Holmes和Richard Rahe社会再适应量表调查斑秃患者病情活动期前6个月的应激状态,探讨应激生活事件与斑秃发生风险的相关性。然后,采用免疫组织化学技术检测了MC2R蛋白在斑秃皮损及健康对照头皮组织的原位表达情况,并且应用Western blotting方法对斑秃皮损与健康对照头皮组织MC2R蛋白的总体水平做了定量检测,定位定量地对MC2R蛋白水平在斑秃皮损中的改变进行了全面研究。进而,我们进行了斑秃皮损与健康对照头皮组织MC2R的基因水平的检测与比较研究,求证MC2R是否在头皮组织中合成,探讨斑秃皮损是否存在MC2R基因水平的改变。最后,我们用连接酶检测方法对MC2R启动子区的两个位点的SNP做了研究,从遗传学角度探讨MC2R与斑秃发病的关联性。
     研究主要结果如下:
     1.50.95%的斑秃患者在病情活动前6个月经历过3个及以上的应激生活事件,32.05%的健康对照在填表前6个月经历过3个及以上的应激生活事件,斑秃患者罹患应激事件百分率明显高于健康对照(P<0.001);斑秃患者的SRRS评分显著高于健康对照组(Z=6.628, P<0.001),斑秃患者与健康对照人群在应激感受上存在显著差异。经多因素logistic回归分析,睡眠改变、个人习惯改变、家庭问题、学习工作问题及财政问题是与斑秃发生及加重相关的主要应激生活事件,提示应激与斑秃活动相关。
     2.免疫组化示:MC2R在表皮、附属器及真皮组织中均广泛表达,在附属器表达最明显,主要为细胞膜上与细胞浆内表达。斑秃患者皮损MC2R表达较健康对照头皮在皮肤全层组织,包括表皮、毛囊、皮脂腺及真皮中的表达普遍降低(P<0.05),尤其在毛囊的外毛根鞘(outer root sheath, ORS)、毛母质及表皮的棘细胞层与颗粒细胞层中表达降低显著。MC2R蛋白表达在斑秃表皮及间充质组织均广泛改变,提示MC2R蛋白可能参与斑秃皮损包括表皮及真皮成分的组织病理学改变,显著的表皮表达改变提示MC2R在斑秃表皮病理改变中发挥更重要的作用。
     3.Western blotting示:斑秃患者皮损中MC2R总蛋白水平较健康头皮组织表达降低(P<0.05),半定量显示了斑秃皮损与健康对照头皮MC2R蛋白表达差异。
     4.MC2R mRNA在健康头皮的表达量不高,而斑秃皮损MC2R mRNA表达较健康头皮表达增加将近5倍,统计学检验具有显著性(P<0.01)。
     基于3与4的结果,我们认为斑秃皮损中MC2R基因与蛋白水平均发生改变,MC2R基因与蛋白水平表达的不一致性,提示转录后调控可能在MC2R的基因表达中发挥重要作用,MC2R mRNA不能完全有效翻译为MC2R蛋白可能是形成斑秃组织中HPA轴功能缺陷的关键因素之一。
     5.利用生物信息学方法,选择MC2R基因启动子的-759A>C(rs1893220)及-2T>C(rs79533878)位点进行SNP研究。首先证实这些位点在中国人群确实存在基因多态性,然后比较发现斑秃患者与正常对照MC2R基因-759A>C、-2T>C等位基因频率无明显统计学差异(P>0.05)。但当我们将斑秃患者按照应激状态分层分析,发现明显应激组的斑秃患者与健康对照者MC2R基因的-2T>C的等位基因频率相比有统计学差异(41.1%比27.8%,P=0.009, OR=1.252, 95%CI= 1.045~1.501)。将结果以非参数Logistic回归校正年龄及性别因素后分析,显示明显应激组的斑秃患者与MC2R基因的-2T>C位点的C等位基因携带有相关性(P=0.002, OR=1.576, 95%CI=1.148~2.162)。我们的研究结果提示MC2R基因-2T>C多态性与斑秃患者的应激感受有关联性,推测MC2R基因-2T>C位点T→C单个硷基的突变降低了ACTH/MC2R连接敏感性,从而不能有效下传HPA系统的CRH信号,造成糖皮质激素生成不足,使自身免疫性疾病斑秃的易感性增加,斑秃患者的精神症状易感性增加。
     综上所述:我们的研究发现应激生活事件是斑秃发生的风险因素之一,斑秃患者与健康对照人群在应激感受上存在显著性差异。斑秃皮损区MC2R基因及蛋白表达水平与健康对照头皮组织表达有明显差异,HPA轴表达异常参与斑秃的发病。过度应激刺激下,为维护机体正常机能,HPA轴首先发生过度的中枢及外周应激反应,表现为MC2R基因在皮肤中合成增加。而缺陷的转录后调控使MC2R基因不能完全表达为MC2R蛋白,导致MC2R蛋白表达降低。下调的MC2R蛋白致使HPA轴信号不能有效下传,糖皮质激素生成缺乏,增加自身免疫性疾病斑秃的易感性。我们推想MC2R的转录后调控机制可能是形成斑秃组织中缺陷的HPA轴功能的关键机制之一。MC2R基因启动子的某些位点能够影响ACTH/MC2R连接敏感性导致缺陷的HPA轴活动。我们调查发现MC2R基因启动子-2T>C(rs79533878)位点SNP与斑秃患者的应激感受关联,推测MC2R基因启动子区-2位点基因突变能够引起ACTH/MC2R连接敏感性降低,导致HPA轴CRH信号不能有效下传,致使糖皮质激素生成缺陷,增加自身免疫病及炎症的易感性,增加个体精神症状易感性,从遗传学角度探讨了MC2R与应激相关的斑秃患者缺陷的HPA轴的关联性。总之,我们的研究对应激相关的斑秃发病机制的阐明以及从神经内分泌免疫遗传学方面制定防治斑秃措施提供了理论依据。
Alopeica areata (AA) is a hair follicle-specific autoimmune disease with genetic predisposition and environmental trigger and AA is gradually accepted as an inflammatory skin disease responding to stress. Stress response is mediated by the stress system involved hypothalamic-pituitary-adrenal axis (HPA axis), sympathetic nervous system and immune system, in which HPA axis called stress axis plays a cardinal role. Growing studies showed that a decreased HPA axis response could cause increased susceptibility to autoimmune and inflammatory disease just as the glucocorticoid-deficient state.
     Except the classical central HPA axis, CRF and related peptides can act as local modulators of stress in the peripheral organs such as skin, gestational tissues, immune system, pancreas, liver, gastrointestinal tract, skeletal muscle, heart, lung and endocrine organs (ovaries, testes, adrenals, thyroid glands and ocular tissue. It has been grdually acknowledged that skin and hair follicle display peripheral HPA-axis-like signaling systems and the equivalent components of the HPA axis coordinate with neurotransmitters, neuropeptides and neurotrophins effectively modulate skin and immune cell functions such as cell proliferation, cytokine production and the hair cycle under normal and pathological conditions. Recently some studies showed that an insufficient HPA axis response involved in the pathogenesis of AA in spite that the pathology of stress-associated AA has not been well recognized.
     The HPA axis is organized in a hierarchical manner with feedback operating at several points along the axis. The elements of HPA axis titled stress hormones include corticotropin-releasing hormone (CRH), adrenocorticotropin (ACTH) and corticosteroids. Stress stimulates the HPA axis activity with an elevated secretion of CRH leading to increased ACTH secretion and corticosteroid production. These stress hormones binding with their cognate receptors activate the signaling hierarchy to respond stress. ACTH intermediates the HPA axis from CRH signal to cortisol secretion and is recognized to have a strongest effect on hair growth among all of the POMC peptides, so the ACTH specific recptor melanocortin receptor type 2 (MC2R or adrenocorticotropic hormone receptor, ACTHR) with its binding affinity restricted to ACTH may present a link between the physiological response to stressors and hair follicle-restricted immunological inflammation AA. To answer this critical question, we assessed AA lesions and normal human scalp tissue for the expression of MC2R.
     It is now generally accepted that AA fits the paradigm of a complex genetic trait, therefore genetic studies can be applied in study on AA pathogenesis. A genome-wide search revealed that a maximum multipoint LOD (logarithm of odds) score with most significant susceptibility position is in the region from 10cM to 30cM on chromosome 18. We searched genes of this region in GenBank and found the MC2R is just located in the range. Emerging evidences that single base mutation in the promoter region of MC2R gene can result in significantly reduced adrenal ACTH sensitivity and lowed glucocorticoid serum levels during ACTH infusion indicates that the polymorphism of the positions of the ACTH receptor gene may have a determining role in controlling glucocorticoid production in human. Furthermore several polymorphisms in promoter region of MC2R gene resulting in a lower ligand affinity with ACTH has also been reported in Chinese Han people. So our research is to investigate whether there was any association between MC2R promoter SNPs and stress-associated AA to decode the genetic mechanism of AA.
     Firstly we used Thomas Holmes and Richard Rahe’s social readjustment rating scale to assess the association of psychosocial stress with AA patients, secondly MC2R protein was determined by immunohistochemistry in situ and western blotting quantificationally, thirdly MC2R mRNA level was detected with quantitative real-time RT-PCR, finally two SNPs were assessed by LDR at positions -759A>C and -2T>C in the MC2R promoter.
     The main results and conclusions were summarized as follows:
     1. 50.95% of patients with AA experienced at least three stressful events at the time and up to 6 months prior hair loss compared with 32.05% of controls within the six months before the enrolling (P<0.001). The SRRS results show patients with AA have a higher depression scores than controls (Z=6.628,P<0.01). The main stressful life events at risks for AA patients were changes of sleep, modification of habits, family troubles, problems of work and school as well as involvement of finance by logistic regression analysis. Our studies demonstrated that a significant elevation of psychological stress was felt by AA patients and there was a closely relationshiop between risk of AA and severe perception of some main stressful events in Chinese population.
     2. Immunohistochemistry demonstrated the MC2R protein was widely expressed on cell membrane and in cytoplasm in nearly all cutaneous compartments and was most prominently detectable in adnexal structures. Average MC2R protein levels in every section of skin were lower in AA lesions than in scalp tissue from normal controls and the most differences were showed in outer root sheath, hair bulb and the stratum spinosum and stratum granulosum of epidermis. The reduced expression of MC2R in the epithelium of AA lesions is remarkable. Thus we suggested that the modified expression of MC2R is almost comprehensively participated in the histopathology of AA and particularly involved in epithelial pathology of AA.
     3. Western blotting results demonstrated that the expression of total MC2R protein was decreased in lesions of AA than scalp tissues from healthy controls (P<0.05). The data confirmed the findings of immunohistochemistry quantificationally.
     4. There was low expression of MC2R mRNA in normal scalp tissue. About 5-fold increased MC2R mRNA expression in lesion from patients with AA was detected compared with that in scalp tissue from cortols (P<0.01).
     The findings 3, 4 demonstrated that there were robust differences in MC2R expression between healthy controls with AA patients. While mRNA levels were increased in lesions from AA patients compared with scalp tissues from normal controls, the protein levers of MC2R were decreased. We hypothesized that the contrary expression of MC2R on gene and protein lever just coincided with the evidence that an over-responsive HPA activity coexists with a deficient HPA response in AA. We proposed that the failed translation of MC2R mRNA to protein may be a crucial factor for the local insufficient HPA response in AA.
     5. Two SNPs were selected at position -759A>C and -2T>C in the MC2R promoter with accession numbers of rs1893220 and rs79533878. There was a significant difference between AA patients with stress and controls in the frequency of the MC2R rs79533878 (-2T>C) genotype CC+TC (41.1% vesus 27.8%,P=0.009, OR=1.252, 95%CI= 1.045~ 1.501). The novel MC2R promoter variants rs79533878 (-2T>C) significantly associated with the stress-associated AA (P=0.002, OR=1.576, 95%CI=1.148~2.162). However the allele frequencies at position -759A>C in the MC2R promoter did not show statistically differences between the patients and control groups. Our findings implicated that the polymorphism of the rs79533878 (-2T>C) in MC2R gene may be one important factor that are correlated with the modified HPA axis response to stress in AA patients in China.
     In conclusion: Our results demonstrated that AA in some patients was associated with stress. We suggested an over-responsiveness of HPA axis to stress might trigger the first episode of AA considering the reportedly elevated CRH, ACTH and the high MC2R mRNA expressin in lesion of AA, but the lower levels of MC2R protein, resulting in a deficit of ACTH/MC2R activity in skin could attenuate CRH singnal transmission and reduce HPA axis response locally in AA. We proposed the deficient translation of MC2R mRNA to protein may be a key factor for the local insufficient HPA response and shortage of cortisol. Our investigation also showed the novel MC2R promoter variant rs79533878 (-2T>C) significantly associates with some stress-associated AA and we suggested that the polymorphism of the MC2R rs79533878 (-2T>C) in promoter might be one critical factor that influences the altered HPA axis activity in AA. Our research would bring new knowledge into understanding of stress-associated hair-loss and would help design new approaches for the treatment of stress-associated AA in future.
引文
1. King Jr LE, McElwee KJ, Sundberg JP: Alopecia areata. Current directions in autoimmunity 2008;10:280-312.
    2. Picardi A, Pasquini P: Toward a biopsychosocial approach to skin diseases. Adv Psychosom Med. 2007;28:109-126.
    3. Ghanizadeh A: Comorbidity of psychiatric disorders in children and adolescents with alopecia areata in a child and adolescent psychiatry clinical sample. Int J Dermatol. 2008;47:1118-1120.
    4. Manolache L, Benea V: Stress in patients with alopecia areata and vitiligo. Journal of the European Academy of Dermatology and Venereology 2007;21:921-928.
    5. Cutolo M, Straub RH: Stress as a risk factor in the pathogenesis of rheumatoid arthritis. Neuroimmunomodulation. 2006;13:277-282. Epub 2007 Aug 2006.
    6. Chrousos GP, Kino T, Charmandari E: Evaluation of the hypothalamic-pituitary- adrenal axis function in childhood and adolescence. Neuroimmunomodulation. 2009;16:272-283. Epub 2009 Jun 2029.
    7. Bao AM, Meynen G, Swaab DF: The stress system in depression and neurodegeneration: focus on the human hypothalamus. Brain Res Rev. 2008;57:531-553. Epub 2007 Apr 2027.
    8. Tsigos C, Chrousos GP: Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res. 2002;53:865-871.
    9. Zmijewski MA, Sharma RK, Slominski AT: Expression of molecular equivalent of hypothalamic-pituitary-adrenal axis in adult retinal pigment epithelium. J Endocrinol. 2007;193:157-169.
    10. Slominski A, Wortsman J, Paus R, Elias PM, Tobin DJ, Feingold KR: Skin as an endocrine organ: implications for its function. Drug Discov Today Dis Mech. 2008;5:137-144.
    11. Ito N, Ito T, Kromminga A, Bettermann A, Takigawa M, Kees F, Straub RH, Paus R: Human hair follicles display a functional equivalent of the hypothalamic-pituitary- adrenal axis and synthesize cortisol. Faseb J. 2005;19:1332-1334. Epub 2005 Jun 1339.
    12. Slominski A, Wortsman J, Tuckey RC, Paus R: Differential expression of HPA axis homolog in the skin. Mol Cell Endocrinol. 2007;265-266:143-149. Epub 2006 Dec 2029.
    13. Slominski A, Zbytek B, Szczesniewski A, Semak I, Kaminski J, Sweatman T, Wortsman J: CRH stimulation of corticosteroids production in melanocytes is mediated by ACTH. American Journal of Physiology - Endocrinology and Metabolism 2005;288:E701-E706.
    14. Slominski AT: Proopiomelanocortin signaling system is operating in mast cells. J Invest Dermatol. 2006;126:1934-1936.
    15. Rousseau K, Kauser S, Pritchard LE, Warhurst A, Oliver RL, Slominski A, Wei ET, Thody AJ, Tobin DJ, White A: Proopiomelanocortin (POMC), the ACTH/ melanocortin precursor, is secreted by human epidermal keratinocytes and melanocytes and stimulates melanogenesis. Faseb J. 2007;21:1844-1856. Epub 2007 Feb 1822.
    16. Harbuz MS, Richards LJ, Chover-Gonzalez AJ, Marti-Sistac O, Jessop DS: Stress in autoimmune disease models. Ann N Y Acad Sci. 2006;1069:51-61.
    17. Heesen C, Gold SM, Huitinga I, Reul JM: Stress and hypothalamic-pituitary-adrenal axis function in experimental autoimmune encephalomyelitis and multiple sclerosis - a review. Psychoneuroendocrinology. 2007;32:604-618. Epub 2007 Jun 2029.
    18. Sternberg EM: Neuroendocrine regulation of autoimmune/inflammatory disease. J Endocrinol. 2001;169:429-435.
    19. Ganceviciene R, Graziene V, Fimmel S, Zouboulis CC: Involvement of the corticotropin-releasing hormone system in the pathogenesis of acne vulgaris. Br J Dermatol. 2009;160:345-352. Epub 2008 Dec 2010.
    20. Slominski A, Wortsman J, Luger T, Paus R, Solomon S: Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol Rev. 2000;80:979-1020.
    21. Slominski A: On the role of the corticotropin-releasing hormone signalling system in the aetiology of inflammatory skin disorders. Br J Dermatol. 2009;160:229-232.
    22. Lytinas M, Kempuraj D, Huang M, Boucher W, Esposito P, Theoharides TC: Acute stress results in skin corticotropin-releasing hormone secretion, mast cell activationand vascular permeability, an effect mimicked by intradermal corticotropin-releasing hormone and inhibited by histamine-1 receptor antagonists. International archives of allergy and immunology 2003;130:224-231.
    23. O'Kane M, Murphy EP, Kirby B: The role of corticotropin-releasing hormone in immune-mediated cutaneous inflammatory disease. Exp Dermatol. 2006;15:143-153.
    24. Hendrix S: Neuroimmune Communication in Skin: Far from Peripheral. Journal of Investigative Dermatology 2008;128:260-261.
    25. Pavlovic S, Daniltchenko M, Tobin DJ, Hagen E, Hunt SP, Klapp BF, Arck PC, Peters EMJ: Further Exploring the Brain Skin Connection: Stress Worsens Dermatitis via Substance P-dependent Neurogenic Inflammation in. Journal of Investigative Dermatology 2008;128:434-446.
    26. Papadopoulou N, Kalogeromitros D, Staurianeas NG, Tiblalexi D, Theoharides TC: Corticotropin-releasing hormone receptor-1 and histidine decarboxylase expression in chronic urticaria. J Invest Dermatol. 2005;125:952-955.
    27. Zhang X, Yu M, Yu W, Weinberg J, Shapiro J, McElwee KJ: Development of alopecia areata is associated with higher central and peripheral hypothalamic-pituitary-adrenal tone in the skin graft induced C3H/HeJ mouse model. J Invest Dermatol. 2009;129:1527-1538. Epub 2008 Nov 1520.
    28. Slominski A, Wortsman J: Neuroendocrinology of the skin. Endocr Rev. 2000;21:457-487.
    29. Gilhar A, Paus R, Kalish RS: Lymphocytes, neuropeptides, and genes involved in alopecia areata. J Clin Invest. 2007;117:2019-2027.
    30. Martinez-Mir A, Zlotogorski A, Gordon D, Petukhova L, Mo J, Gilliam TC, Londono D, Haynes C, Ott J, Hordinsky M, Nanova K, Norris D, Price V, Duvic M, Christiano AM: Genomewide scan for linkage reveals evidence of several susceptibility loci for alopecia areata. Am J Hum Genet. 2007;80:316-328. Epub 2007 Jan 2005.
    31. Tan E, Tay YK, Goh CL, Chin Giam Y: The pattern and profile of alopecia areata in Singapore--a study of 219 Asians. Int J Dermatol. 2002;41:748-753.
    32. Lenane P, Pope E, Krafchik B: Congenital alopecia areata. J Am Acad Dermatol. 2005;52:8-11.
    33. Newton-Cheh C, Hirschhorn JN: Genetic association studies of complex traits: designand analysis issues. Mutat Res. 2005;573:54-69.
    34. Oksenberg JR, Baranzini SE, Sawcer S, Hauser SL: The genetics of multiple sclerosis: SNPs to pathways to pathogenesis. Nat Rev Genet. 2008;9:516-526. Epub 2008 Jun 2010.
    35. Musunuru K, Kathiresan S: HapMap and mapping genes for cardiovascular disease. Circ Cardiovasc Genet. 2008;1:66-71.
    36. Meletiadis J, Chanock S, Walsh TJ: Human pharmacogenomic variations and their implications for antifungal efficacy. Clin Microbiol Rev. 2006;19:763-787.
    37. Naville D, Jaillard C, Barjhoux L, Durand P, Begeot M: Genomic structure and promoter characterization of the human ACTH receptor gene. Biochem Biophys Res Commun. 1997;230:7-12.
    38. Slawik M, Reisch N, Zwermann O, Maser-Gluth C, Stahl M, Klink A, Reincke M, Beuschlein F: Characterization of an adrenocorticotropin (ACTH) receptor promoter polymorphism leading to decreased adrenal responsiveness to ACTH. J Clin Endocrinol Metab. 2004;89:3131-3137.
    39. Liu ZL, He B, Fang F, Tang CY, Zou LP: Genetic polymorphisms of MC2R gene associated with responsiveness to adrenocorticotropic hormone therapy in infantile spasms. Chin Med J (Engl). 2008;121:1627-1632.
    40. Willemsen R, Vanderlinden J: Hypnotic approaches for alopecia areata. Int J Clin Exp Hypn. 2008;56:318-333.
    41. Olsen EA, Hordinsky MK, Price VH, Roberts JL, Shapiro J, Canfield D, Duvic M, King LE, Jr., McMichael AJ, Randall VA, Turner ML, Sperling L, Whiting DA, Norris D: Alopecia areata investigational assessment guidelines--Part II. National Alopecia Areata Foundation. J Am Acad Dermatol. 2004;51:440-447.
    42. Kim HS, Cho DH, Kim HJ, Lee JY, Cho BK, Park HJ: Immunoreactivity of corticotropin-releasing hormone, adrenocorticotropic hormone and alpha-melanocyte- stimulating hormone in alopecia areata. Exp Dermatol 2006;15:515-522.
    43. Fried RG, Gupta MA, Gupta AK: Depression and skin disease. Dermatol Clin. 2005;23:657-664.
    44. Rosengren A, Hawken S, Ounpuu S, Sliwa K, Zubaid M, Almahmeed WA, Blackett KN, Sitthi-amorn C, Sato H, Yusuf S: Association of psychosocial risk factors withrisk of acute myocardial infarction in 11119 cases and 13648 controls from 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364:953-962.
    45. Diniz DH, Schor N, Blay SL: Stressful life events and painful recurrent colic of renal lithiasis. J Urol. 2006;176:2483-2487; discussion 2487.
    46. Picardi A, Pasquini P, Cattaruzza MS, Gaetano P, Baliva G, Melchi CF, Papi M, Camaioni D, Tiago A, Gobello T, Biondi M: Psychosomatic factors in first-onset alopecia areata. Psychosomatics. 2003;44:374-381.
    47. Picardi A, Pasquini P, Cattaruzza MS, Gaetano P, Melchi CF, Baliva G, Camaioni D, Tiago A, Abeni D, Biondi M: Stressful life events, social support, attachment security and alexithymia in vitiligo. A case-control study. Psychother Psychosom. 2003;72: 150-158.
    48. Bunker SJ, Colquhoun DM, Esler MD, Hickie IB, Hunt D, Jelinek VM, Oldenburg BF, Peach HG, Ruth D, Tennant CC, Tonkin AM: "Stress" and coronary heart disease: psychosocial risk factors. Med J Aust. 2003;178:272-276.
    49. Zheng YP, Young D: The relationship of life events and stress to neurosis in China: comparison of 105 neurotic patients to 103 normal controls. Cult Med Psychiatry. 1986;10:245-258.
    50. Wasserman D, Guzman-Sanchez DA, Scott K, McMichael A: Alopecia areata. Int J Dermatol. 2007;46:121-131.
    51. Chrousos GP: Stress and disorders of the stress system. Nat Rev Endocrinol. 2009;5:374-381. Epub 2009 Jun 2002.
    52. Buske-Kirschbaum A, Geiben A, Hollig H, Morschhauser E, Hellhammer D: Altered responsiveness of the hypothalamus-pituitary-adrenal axis and the sympathetic adrenomedullary system to stress in patients with atopic dermatitis. J Clin Endocrinol Metab. 2002;87:4245-4251.
    53. Picardi A, Abeni D: Stressful life events and skin diseases: disentangling evidence from myth. Psychother Psychosom. 2001;70:118-136.
    54. Alexis AF, Dudda-Subramanya R, Sinha AA: Alopecia areata: autoimmune basis of hair loss. European journal of dermatology : EJD 2004;14:364-370.
    55. Katsarou-Katsari A, Singh LK, Theoharides TC: Alopecia areata and affected skin CRH receptor upregulation induced by acute emotional stress. Dermatology.2001;203:157-161.
    56. Sawaya ME, Hordinsky MK: Why steroids may not always work in alopecia areata: Elevated unoccupied glucocorticoid receptors and decreased levels of thioredoxin. Dermatologic Therapy 2001;14:317-321.
    57. Willemsen R, Vanderlinden J, Roseeuw D, Haentjens P: Increased history of childhood and lifetime traumatic events among adults with alopecia areata. J Am Acad Dermatol. 2009;60:388-393. Epub 2008 Nov 2020.
    58. Cetin ED, Savk E, Uslu M, Eskin M, Karul A: Investigation of the inflammatory mechanisms in alopecia areata. Am J Dermatopathol. 2009;31:53-60.
    59. Siebenhaar F, Sharov AA, Peters EM, Sharova TY, Syska W, Mardaryev AN, Freyschmidt-Paul P, Sundberg JP, Maurer M, Botchkarev VA: Substance P as an immunomodulatory neuropeptide in a mouse model for autoimmune hair loss (alopecia areata). J Invest Dermatol. 2007;127:1489-1497. Epub 2007 Feb 1481.
    60. Eskandari F, Sternberg EM: Neural-immune interactions in health and disease. Ann N Y Acad Sci. 2002;966:20-27.
    61. Skurkovich SV, Skurkovich B, Kelly JA: Anticytokine therapy--new approach to the treatment of autoimmune and cytokine-disturbance diseases. Med Hypotheses. 2002;59:770-780.
    62. Joachim RA, Kuhlmei A, Dinh QT, Handjiski B, Fischer T, Peters EM, Klapp BF, Paus R, Arck PC: Neuronal plasticity of the "brain-skin connection": stress-triggered up-regulation of neuropeptides in dorsal root ganglia and skin via nerve growth factor-dependent pathways. J Mol Med. 2007;85:1369-1378. Epub 2007 Jul 1317.
    63. Slominski A, Ermak G, Hwang J, Chakraborty A, Mazurkiewicz JE, Mihm M: Proopiomelanocortin, corticotropin releasing hormone and corticotropin releasing hormone receptor genes are expressed in human skin. FEBS Lett. 1995;374:113-116.
    64. Kono M, Nagata H, Umemura S, Kawana S, Osamura RY: In situ expression of corticotropin-releasing hormone (CRH) and proopiomelanocortin (POMC) genes in human skin. Faseb J. 2001;15:2297-2299. Epub 2001 Aug 2217.
    65. Paus R, Theoharides TC, Arck PC: Neuroimmunoendocrine circuitry of the 'brain-skin connection'. Trends Immunol. 2006;27:32-39. Epub 2005 Nov 2002.
    66. Kilianova Z, Basora N, Kilian P, Payet MD, Gallo-Payet N: Human melanocortinreceptor 2 expression and functionality: effects of protein kinase A and protein kinase C on desensitization and internalization. Endocrinology. 2006;147:2325-2337. Epub 2006 Feb 2323.
    67. Papadimitriou A, Priftis KN: Regulation of the hypothalamic-pituitary-adrenal axis. Neuroimmunomodulation. 2009;16:265-271. Epub 2009 Jun 2029.
    68. Catania A, Gatti S, Colombo G, Lipton JM: Targeting melanocortin receptors as a novel strategy to control inflammation. Pharmacol Rev. 2004;56:1-29.
    69. Forti FL, Dias MH, Armelin HA: ACTH receptor: ectopic expression, activity and signaling. Mol Cell Biochem. 2006;293:147-160. Epub 2006 Jul 2015.
    70. Rose J: Adrenocorticotropic hormone (ACTH) but not alpha-melanocyte stimulating hormone (alpha-MSH) as a mediator of adrenalectomy induced hair growth in mink. J Invest Dermatol. 1998;110:456-457.
    71. Lu Z, Fischer TW, Hasse S, Sugawara K, Kamenisch Y, Krengel S, Funk W, Berneburg M, Paus R: Profiling the response of human hair follicles to ultraviolet radiation. J Invest Dermatol. 2009;129:1790-1804. Epub 2009 Jan 1722.
    72. Zmijewski MA, Slominski AT: CRF1 receptor splicing in epidermal keratinocytes: potential biological role and environmental regulations. J Cell Physiol. 2009;218:593- 602.
    73. Slominski A, Zbytek B, Pisarchik A, Slominski RM, Zmijewski MA, Wortsman J: CRH functions as a growth factor/cytokine in the skin. J Cell Physiol. 2006;206:780- 791.
    74. Slominski A, Zbytek B, Zmijewski M, Slominski RM, Kauser S, Wortsman J, Tobin DJ: Corticotropin releasing hormone and the skin. Front Biosci. 2006;11:2230-2248.
    75. Slominski A: A nervous breakdown in the skin: stress and the epidermal barrier. J Clin Invest. 2007;117:3166-3169.
    76. Tobin DJ, Hann SK, Song MS, Bystryn JC: Hair follicle structures targeted by antibodies in patients with alopecia areata. Archives of Dermatology 1997;133:57-61.
    77. Park HJ, Kim HJ, Lee JY, Cho BK, Gallo RL, Cho DH: Adrenocorticotropin hormone stimulates interleukin-18 expression in human HaCaT keratinocytes. J Invest Dermatol. 2007;127:1210-1216. Epub 2007 Jan 1218.
    78. Moustafa M, Szabo M, Ghanem GE, Morandini R, Kemp EH, MacNeil S, HaycockJW: Inhibition of tumor necrosis factor-(alpha) stimulated NF(kappa)B/p65 in human keratinocytes by (alpha)-melanocyte stimulating hormone and adrenocorticotropic hormone peptides. Journal of Investigative Dermatology 2002;119:1244-1253.
    79. Sun J, Silva KA, McElwee KJ, King LE, Jr., Sundberg JP: The C3H/HeJ mouse and DEBR rat models for alopecia areata: review of preclinical drug screening approaches and results. Exp Dermatol. 2008;17:793-805.
    80. Peters EMJ, Arck PC, Paus R: Hair growth inhibition by psychoemotional stress: A mouse model for neural mechanisms in hair growth control. Experimental Dermatology 2006;15:1-13.
    81. Blondet A, Doghman M, Durand P, Begeot M, Naville D: An E-box-containing region is involved in the tissue-specific expression of the human MC2R gene. J Mol Endocrinol. 2004;32:811-823.
    82. Arck PC, Slominski A, Theoharides TC, Peters EM, Paus R: Neuroimmunology of stress: skin takes center stage. J Invest Dermatol. 2006;126:1697-1704.
    83. Priftis KN, Papadimitriou A, Nicolaidou P, Chrousos GP: Dysregulation of the stress response in asthmatic children. Allergy. 2009;64:18-31.
    84. van der Velden VH, Hochhaus A, Cazzaniga G, Szczepanski T, Gabert J, van Dongen JJ: Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia. 2003;17:1013-1034.
    85. Sun J, Silva KA, McElwee KJ, King Jr LE, Sundberg JP: The C3H/HeJ mouse and DEBR rat models for alopecia areata: Review of preclinical drug screening approaches and results. Experimental Dermatology 2008;17:793-805.
    86. Paus R, Botchkarev VA, Botchkareva NV, Mecklenburg L, Luger T, Slominski A: The skin POMC system (SPS). Leads and lessons from the hair follicle. Ann N Y Acad Sci. 1999;885:350-363.
    87. Gerlitz G, Jagus R, Elroy-Stein O: Phosphorylation of initiation factor-2 alpha is required for activation of internal translation initiation during cell differentiation. Eur J Biochem. 2002;269:2810-2819.
    88. Blencowe B, Brenner S, Hughes T, Morris Q: Post-transcriptional gene regulation: RNA-protein interactions, RNA processing, mRNA stability and localization. PacSymp Biocomput 2009:545-548.
    89. Shu L, Matveyenko AV, Kerr-Conte J, Cho JH, McIntosh CH, Maedler K: Decreased TCF7L2 protein levels in type 2 diabetes mellitus correlate with downregulation of GIP- and GLP-1 receptors and impaired beta-cell function. Hum Mol Genet. 2009;18:2388-2399. Epub 2009 Apr 2321.
    90. Tassone F, Hagerman RJ, Taylor AK, Gane LW, Godfrey TE, Hagerman PJ: Elevated levels of FMR1 mRNA in carrier males: a new mechanism of involvement in the fragile-X syndrome. Am J Hum Genet. 2000;66:6-15.
    91. Tan Y, Zhang B, Wu T, Skogerbo G, Zhu X, Guo X, He S, Chen R: Transcriptional inhibiton of Hoxd4 expression by miRNA-10a in human breast cancer cells. BMC Mol Biol. 2009;10:12.
    92. Naville D, Penhoat A, Durand P, Begeot M: Three steroidogenic factor-1 binding elements are required for constitutive and cAMP-regulated expression of the human adrenocorticotropin receptor gene. Biochem Biophys Res Commun. 1999;255:28-33.
    93. Noon LA, Bakmanidis A, Clark AJ, O'Shaughnessy PJ, King PJ: Identification of a novel melanocortin 2 receptor splice variant in murine adipocytes: implications for post-transcriptional control of expression during adipogenesis. J Mol Endocrinol. 2006;37:415-420.
    94. Sarkar D, Park ES, Fisher PB: Defining the mechanism by which IFN-beta dowregulates c-myc expression in human melanoma cells: pivotal role for human polynucleotide phosphorylase (hPNPaseold-35). Cell Death Differ. 2006;13:1541- 1553. Epub 2006 Jan 1513.
    95. Sarkar D, Fisher PB: Human polynucleotide phosphorylase (hPNPase old-35): an RNA degradation enzyme with pleiotrophic biological effects. Cell Cycle. 2006;5:1080-1084. Epub 2006 May 1015.
    96. Freyschmidt-Paul P, McElwee KJ, Hoffmann R, Sundberg JP, Vitacolonna M, Kissling S, Zoller M: Interferon-gamma-deficient mice are resistant to the development of alopecia areata. Br J Dermatol. 2006;155:515-521.
    97. Hocquette JF: Where are we in genomics? Journal of Physiology and Pharmacology 2005;56:37-70.
    98. Fickett JW, Wasserman WW: Discovery and modeling of transcriptional regulatoryregions. Curr Opin Biotechnol. 2000;11:19-24.
    99. Lappalainen S, Utriainen P, Kuulasmaa T, Voutilainen R, Jaaskelainen J: ACTH receptor promoter polymorphism associates with severity of premature adrenarche and modulates hypothalamo-pituitary-adrenal axis in children. Pediatr Res. 2008;63:410-414.
    100. Reisch N, Slawik M, Zwermann O, Beuschlein F, Reincke M: Genetic influence of an ACTH receptor promoter polymorphism on adrenal androgen secretion. Eur J Endocrinol. 2005;153:711-715.
    101. Proudnikov D, Hamon S, Ott J, Kreek MJ: Association of polymorphisms in the melanocortin receptor type 2 (MC2R, ACTH receptor) gene with heroin addiction. Neurosci Lett. 2008;435:234-239. Epub 2008 Feb 2026.
    102. Monroe SM, Reid MW: Gene-environment interactions in depression research: genetic polymorphisms and life-stress polyprocedures. Psychol Sci. 2008;19:947-956.
    103. Werner T: Target gene identification from expression array data by promoter analysis. Biomol Eng. 2001;17:87-94.
    104. Mao L, Mackenzie C, Roh JH, Eraso JM, Kaplan S, Resat H: Combining microarray and genomic data to predict DNA binding motifs. Microbiology. 2005;151:3197-3213.
    105. Sarkar D, Kambe F, Hayashi Y, Ohmori S, Funahashi H, Seo H: Involvement of AP-1 and steroidogenic factor (SF)-1 in the cAMP-dependent induction of human adrenocorticotropic hormone receptor (ACTHR) promoter. Endocr J. 2000;47:63-75.
    106. Gerhold DL, Liu F, Jiang G, Li Z, Xu J, Lu M, Sachs JR, Bagchi A, Fridman A, Holder DJ, Doebber TW, Berger J, Elbrecht A, Moller DE, Zhang BB: Gene expression profile of adipocyte differentiation and its regulation by peroxisome proliferator-activated receptor-gamma agonists. Endocrinology. 2002;143:2106-2118.
    107. Caro JJ, Huybrechts KF: Case-control studies in pharmacoeconomic research: an overview. Pharmacoeconomics. 2009;27:627-634.
    108. Papiol S, Arias B, Gasto C, Gutierrez B, Catalan R, Fananas L: Genetic variability at HPA axis in major depression and clinical response to antidepressant treatment. J Affect Disord. 2007;104:83-90. Epub 2007 Apr 2030.
    109. van Rossum EF, Binder EB, Majer M, Koper JW, Ising M, Modell S, Salyakina D, Lamberts SW, Holsboer F: Polymorphisms of the glucocorticoid receptor gene andmajor depression. Biol Psychiatry. 2006;59:681-688.
    110. Mori M, Yamada R, Kobayashi K, Kawaida R, Yamamoto K: Ethnic differences in allele frequency of autoimmune-disease-associated SNPs. J Hum Genet. 2005;50:264- 266. Epub 2005 May 2010.
    1. Slominski A, Wortsman J, Tuckey RC, Paus R: Differential expression of HPA axis homolog in the skin. Mol Cell Endocrinol. 2007;265-266:143-149
    2. Andrzel Slominski, Jacobo Wortsman. Neuroendocrinology of the Skin. Endocrine Reviews, 2007; 21(5): 457–487
    3. Petra C. Arck, Andrzej Slominski, Theoharis C.Theoharides, et al. Neuroimmunology of Stress: Skin Takes Center Stage. J Invest Dermatol, 2006; 126(8):1697–1704
    4. Slominski A, Wortsman J, Luger T, Paus R, Solomon S: Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol Rev. 2000;80:979-1020
    5. Natsuho Ito, Taisuke Ito, Arno Kromminga, et al. Human hair follicles display a functional equivalent of the hypothalamic-pituitary-adrenal (HPA) axis and synthesize cortisol. FASEB, 2005; 162:97-102
    6. Zouboulis CC, Seltmann H, Hiroi N, et al. Corticotropin-releasing hormone: an autocrine hormone that promotes lipogenesis in human sebocytes. Proc Natl Acad Sci U S A. 2002 May 14;99(10):7148-53
    7. Slominski A, Zbytek B, Szczesniewski A, Semak I, Kaminski J, Sweatman T, Wortsman J: CRH stimulation of corticosteroids production in melanocytes is mediated by ACTH. American Journal of Physiology - Endocrinology and Metabolism 2005;288:E701-E706.
    8. Zmijewski MA, Slominski AT. CRF1 receptor splicing in epidermal keratinocytes: potential biological role and environmental regulations. J Cell Physiol. 2009 Mar; 218(3):593-602
    9. Slominski A, Wortsman J: Neuroendocrinology of the skin. Endocr Rev. 2000;21: 457-487
    10. Slominski A. On the role of the corticotropin-releasing hormone signalling system in the aetiology of inflammatory skin disorders. Br J Dermatol. 2009 Feb; 160(2):229-32.
    11. Slominski A, Zbytek B, Zmijewski M, Slominski RM, Kauser S, Wortsman J, Tobin DJ: Corticotropin releasing hormone and the skin. Front Biosci. 2006;11:2230-2248
    12. Slominski A, Zbytek B, Pisarchik A, Slominski RM, Zmijewski MA, Wortsman J: CRHfunctions as a growth factor/cytokine in the skin. J Cell Physiol. 2006;206:780-791
    13. Lytinas M, Kempuraj D, Huang M, Boucher W, Esposito P, Theoharides TC: Acute stress results in skin corticotropin-releasing hormone secretion, mast cell activation and vascular permeability, an effect mimicked by intradermal corticotropin-releasing hormone and inhibited by histamine-1 receptor antagonists. International archives of allergy and immunology. 2003;130:224-231
    14. Slominsk A, Zbytek B, Semak I, et al. CRH stimulates POMC activity and corticosterone production in dermal fibroblasts. J Neuroimmunol. 2005; 162(1-2): 97-102
    15. Rousseau K, Kauser S, Pritchard LE, et al. Proopiomelanocortin (POMC), the ACTH/melanocortin precursor, is secreted by human epidermal keratinocytes and melanocytes and stimulates melanogenesis. FASEB J, 2007; 21(8):1844-56
    16. Wood JM, Gibbons NC, Schallreuter KU. Melanocortins in human melanocytes. Cell Mol Biol, 2006;52(2):75-8
    17. Paus R, Botchkarev VA, Botchkareva NV, Mecklenburg L, Luger T, Slominski A: The skin POMC system (SPS). Leads and lessons from the hair follicle. Ann N Y Acad Sci. 1999;885:350-363
    18. Slominski AT: Proopiomelanocortin signaling system is operating in mast cells. J Invest Dermatol. 2006;126:1934-1936
    19. Meyer KC, Brzoska T, Abels C, Paus R: The alpha-melanocyte stimulating hormone-related tripeptide K(D)PT stimulates human hair follicle pigmentation in situ under proinflammatory conditions. British journal of dermatology, The 2009;160:433- 437
    20. Taylor AW, Yee DG, Nishida T, Namba K: Neuropeptide regulation of immunity. The immunosuppressive activity of alpha-melanocyte-stimulating hormone (alpha-MSH). Ann N Y Acad Sci. 2000;917:239-247.
    21. Moustafa M, Szabo M, Ghanem GE, Morandini R, Kemp EH, MacNeil S, Haycock JW: Inhibition of tumor necrosis factor-(alpha) stimulated NF(kappa)B/p65 in human keratinocytes by (alpha)-melanocyte stimulating hormone and adrenocorticotropic hormone peptides. Journal of Investigative Dermatology 2002;119:1244-1253.
    22. Park HJ, Kim HJ, Lee JY, Cho BK, Gallo RL, Cho DH: Adrenocorticotropin hormonestimulates interleukin-18 expression in human HaCaT keratinocytes. J Invest Dermatol. 2007;127:1210-1216. Epub 2007 Jan 1218.
    23. Slominski A, Wortsman J, Paus R, et al. Skin as an endocrine organ: implications for its function. Drug Discov Today Dis Mech. 2008 Jun 1; 5(2):137-144.
    24. Chrousos GP: Stress and disorders of the stress system. Nat Rev Endocrinol. 2009;5:374-381. Epub 2009 Jun 2002
    25. Picardi A, Pasquini P. Toward a biopsychosocial approach to skin diseases. Adv Psychosom Med. 2007;28:109-26
    26. O'Kane M, Murphy EP, Kirby B. The role of corticotropin-releasing hormone in immune-mediated cutaneous inflammatory disease. Exp Dermatol. 2006 Mar; 15(3):143-53
    27. Heesen C, Gold SM, Huitinga I, Reul JM: Stress and hypothalamic-pituitary-adrenal axis function in experimental autoimmune encephalomyelitis and multiple sclerosis - a review. Psychoneuroendocrinology. 2007;32:604-618.
    28. Ganceviciene R, Graziene V, Fimmel S, et al. Involvement of the corticotropin- releasing hormone system in the pathogenesis of acne vulgaris. Br J Dermatol. 2009 Feb; 160(2): 345-52.
    29. Jara LJ, Navarro C, Medina G, et al. Immune-neuroendocrine interactions and autoimmune diseases.Clin Dev Immunol. 2006 Jun-Dec;13(2-4):109-23.
    30. Paus R, Theoharides TC, Arck PC. Neuroimmunoendocrine circuitry of the 'brain-skin connection'. Trends Immunol. 2006 Jan; 27(1):32-9.
    31. Catania A, Gatti S, Colombo G, Lipton JM: Targeting melanocortin receptors as a novel strategy to control inflammation. Pharmacol Rev. 2004;56:1-29
    32. Papadimitriou A, Priftis KN: Regulation of the hypothalamic-pituitary-adrenal axis. Neuroimmunomodulation. 2009;16:265-271
    1. Lloyd E, King Jr, Kevin J McElwee, et al. Alopecia Areata. Dermatologic Immunity. Curr Dir Autoimmun. Basel.Karger,2008(10):280-312
    2. Hocquette J F. Where are we in genomics? Journal of Physiology and Pharmacology 2005: 56: 37-70.
    3. Syvanen A C. Toward genome-wide SNP genotyping. Nature Genetics 2005: 37: S5-S10.
    4. Jorge R. Oksenberg, Sergio E. Baranzini, Stephen Sawcer, et al. The genetics of multiple sclerosis: SNPs to pathways to pathogenesis. Nature, 2008(9):516-526
    5. Amalia Martinez-Mir, Abraham Zlotogorski, Derek Gordon, et al. Genome widescan for linkage reveals evidence of several susceptibility loci for Alopecia Areata. The American Journal of Human Genetics, 2007(8):316-328
    6.满孝勇,李学平,冒长峙.HLA-Ⅲ类基因多态性与系统性红斑狼疮.临床皮肤科杂志, 2000;31(2):124-127
    7. Kavak A, Baykal C, Ozarmagan G, Akar U. HLA in alopecia areata. International Journal of Dermatology 2000: 39: 589-592.
    8. Akar A, Orkunoglu E, Sengül A,et al. HLA class II alleles in patients with alopecia areata.Eur J Dermatol. 2002 May-Jun;12(3):236-9.
    9. Curtis D, Vine A E, Knight J. Study of regions of extended homozygosity provides a powerful method to explore haplotype structure of human populations. Annals of Human Genetics 2008: 72: 261-278.
    10. Xiao FL, Ye DQ, Yang S,et al. Association of HLA haplotype with alopecia areata in Chinese Hans.J Eur Acad Dermatol Venereol. 2006 Nov;20(10):1207-13.
    11. Ito T, Meyer KC, Ito N,et al. Immune privilege and the skin. Curr Dir Autoimmun. 2008;10:27-52.
    12. Barahmani N, de Andrade M, Slusser JP,et al. Major histocompatibility complex class I chain-related gene A polymorphisms and extended haplotypes are associated with familial alopecia areata.J Invest Dermatol. 2006 Jan;126(1):74-8.
    13. Tazi-Ahnini R, Cork MJ, Wengraf D,et al. Notch4, a non-HLA gene in the MHC is strongly associated with the most severe form of alopecia areata.Hum Genet. 2003Apr;112(4):400-3.
    14. Trcka J, Kunz M. Functional genome and proteome analyses of cutaneous autoimmune diseases.Curr Pharm Des. 2006;12(29):3787-98.
    15. Stock C J W, Ogilvie E M, Samuel J M, Fife M, Lewis C M, Woo P. Comprehensive association study of genetic variants in the IL-1 gene family in systemic juvenile idiopathic arthritis. Genes and Immunity 2008: 9: 349-357.
    16. Barahmani N, de Andrade M, Slusser J,et al. Interleukin-1 receptor antagonist allele 2 and familial alopecia areata.J Invest Dermatol. 2002 Feb;118(2):335-7.
    17. McElwee K, Freyschmidt-Paul P, Ziegler A,et al. Genetic susceptibility and severity of alopecia areata in human and animal models. Eur J Dermatol. 2001 Jan-Feb; 11(1):11-6.
    18. Tazi-Ahnini R, McDonagh AJ, Cox A,et al. Association analysis of IL1A and IL1B variants in alopecia areata.Heredity. 2001 Aug;87(Pt 2):215-9.
    19. Galbraith GM, Palesch Y, Gore EA, et al. Contribution of interleukin 1beta and KM loci to alopecia areata. Hum Hered, 1999; 49: 85-9.
    20. Shimizu T, Hizawa N, Honda A,et al. Promoter region polymorphism of macrophage migration inhibitory factor is strong risk factor for young onset of extensive alopecia areata.Genes Immun. 2005 Jun;6(4):285-9.
    21. Hong SB, Jin SY, Park HJ,et al. Analysis of the monocyte chemoattractant protein 1 -2518 promoter polymorphism in Korean patients with alopecia areata.J Korean Med Sci. 2006 Feb;21(1):90-4
    22. Betz RC, K?nig K, Flaquer A,et al. The R620W polymorphism in PTPN22 confers general susceptibility for the development of alopecia areata.Br J Dermatol. 2008 Feb;158(2):389-91.
    23. Kemp EH, McDonagh AJ, Wengraf DA,et al. The non-synonymous C1858T substitution in the PTPN22 gene is associated with susceptibility to the severe forms of alopecia areata.Hum Immunol. 2006 Jul;67(7):535-9.
    24. Suad AlFadhli,Na jla Kharrat,Bader Al-Tememy,et al. Susceptible and protective endothelial nitric oxide synthase gene polymorphism in alopecia areata in the Kuwaiti population. Autoimmunity,12 June 2008.
    25. Tazi-Ahnini R, di Giovine FS, McDonagh AJ, et al. Structure and polymorphism ofthe human gene for the interferon-induced p78 protein (MX1): evidence of association with alopecia areata in the Down syndrome region. Hum Genet, 2000 Jun;106(6): 639-45
    26. Wengraf DA, McDonagh AJ, Lovewell TR,et al. Genetic analysis of autoimmune regulator haplotypes in alopecia areata. Tissue Antigens. 2008 Mar;71(3):206-12.
    27. R. Tazi-Ahnini , M.J. Cork, D.J. Gawkrodger, et al. Role of the autoimmune regulator (AIRE) gene in alopecia areata: strong association of a potentially functional AIRE polymorphism with alopecia universalis.Tissue Antigens.2002 Dec;60(6):489-95
    28. McDonagh AJ, Tazi-Ahnini R. Epidemiology and genetics of alopecia areata. Clin Exp Dermatol., 2002 Jul;27(5):405-9.
    29. Sundberg J P, Silva K A, Li R, Cox G A, King L E. Adult-onset alopecia areata is a complex polygenic trait in the C3H/HeJ mouse model. Journal of Investigative Dermatology 2004: 123: 294-297.
    30. Sundberg JP, Boggess D, Silva KA,et al. Major locus on mouse chromosome 17 and minor locus on chromosome 9 are linked with alopecia areata in C3H/HeJ mice.J Invest Dermatol. 2003 May;120(5):771-5.
    31. Dudda-Subramanya R, Alexis AF, Siu K, et al. Alopecia areata: genetic complexity underlies clinical heterogeneity. Eur J Dermatol. 2007 Sep-Oct;17(5):367-74.
    1. Lloyd E. King Jr., Kevin J. McElwee, John P. Sundberg. Alopecia Areata. Curr Dir Autoimmun. 2008, 10: 280–312
    2. Niederkorn JY. Mechanisms of immune privilege in the eye and hair follicle. J Investig Dermatol Symp Proc. 2003 Oct;8(2):168-72.
    3. Christoph T, Müller-R?ver S, Audring H, et al. The human hair follicle immune system: cellular composition and immune privilege. Br J Dermatol. 2000 May;142(5):862-73.
    4. Ito T, Ito N, Bettermann A, Tokura Y, et al. Collapse and restoration of MHC class-I-dependent immune privilege: exploiting the human hair follicle as a model. Am J Pathol. 2004 Feb;164(2):623-34.
    5. Paus R, Nickoloff BJ, Ito T. A 'hairy' privilege. Trends Immunol. 2005 Jan;26(1):32-40.
    6. Lotti T, Knoepfel B, Zangheri M, et al. Expression of T6 antigen on keratinocytes in alopecia areata. Int J Dermatol, 1992 Feb; 31(2):103-6.
    7. Arck PC, Gilhar A, Bienenstock J, et al. The alchemy of immune privilege explored from a neuroimmunological perspective. Curr Opin Pharmacol. 2008 Aug;8(4):480-9
    8. Vanderlugt CL, Miller SD. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat Rev Immunol. 2002 Feb;2(2):85-95.
    9. Amos Gilhar, Ralf Paus,,Richard S. Kalish. Lymphocytes, neuropeptides, and genes involved in alopecia areata.J Clin Invest. 2007 August 1; 117(8): 2019–2027.
    10. Gilhar A, Kalish RS. Alopecia areata: a tissue specific autoimmune disease of the hair follicle. Autoimmun Rev. 2006 Jan;5(1):64-9.
    11. Ruiz-Argüelles A, Brito GJ, Reyes-Izquierdo P, et al. Apoptosis of melanocytes in vitiligo results from antibody penetration. J Autoimmun. 2007 Dec;29(4):281-6.
    12. Kalish RS, Gilhar A. Alopecia areata: autoimmunity--the evidence is compelling. J Investig Dermatol Symp Proc. 2003 Oct;8(2):164-7.
    13. Wasserman D, Guzman-Sanchez DA, et al. Alopecia areata.Int J Dermatol. 2007 Feb;46(2):121-31.
    14. Tobin D J, Gardner S H, Luther P B,et al. A natural canine homologue of alopecia areata in humans. Br J Dermatol, 2003;149(5):983-950
    15. Gilhar A, Landau M, Assy B, et al. Melanocyte-associated T cell epitopes can functionas autoantigens for transfer of alopecia areata to human scalp explants on Prkdc(scid) mice. J Invest Dermatol. 2001 Dec;117(6):1357-62
    16. Bodemer C, Peuchmaur M, Fraitaig S, et al. Role of cytotoxic T cells in chronic alopecia areata. J Invest Dermatol. 2000 Jan;114(1):112-6.
    17. Gilhar A, Landau M, Assy B,et al. Transfer of alopecia areata in the human scalp graft/Prkdc(scid) (SCID) mouse system is characterized by a TH1 response. Clin Immunol, 2003 Mar; 106(3):181-7.
    18. McElwee KJ, Freyschmidt-Paul P, Z?ller M, et al. Alopecia areata susceptibility in rodent models.J Investig Dermatol Symp Proc. 2003 Oct;8(2):182-7. Review.
    19. Carson MJ, Doose JM, Melchior B, et al. CNS immune privilege: hiding in plain sight. Immunol Rev. 2006 Oct;213:48-65.
    20. Ayala-García I, Hernández-Segura AM, Castell-Rodríguez A, et al. Participation of epidermal langerhans cells in human pathology and their potential as targets for drug development: a review of literature. Proc West Pharmacol Soc. 2005;48:13-20.
    21. Gupta P, Freyschmidt-Paul P, Vitacolonna M, et al. A chronic contact eczema impedes migration of antigen-presenting cells in alopecia areata.J Invest Dermatol. 2006 Jul;126(7):1559-73.
    22. Piccirillo CA, d'Hennezel E, Sgouroudis E, et al. CD4(+)Foxp3(+) regulatory T cells in the control of autoimmunity: in vivo veritas. Curr Opin Immunol. 2008 Oct 27.
    23. Freyschmidt-Paul P, McElwee KJ, Hoffmann R, et al. Interferon-gamma-deficient mice are resistant to the development of alopecia areata. Br J Dermatol. 2006 Sep;155(3):515-21.
    24.陈小敏,杨秀丽,史维平, et al.斑秃患者外周血CD4+CD25+Foxp 3调节性T细胞及T淋巴细胞亚群的测定.中华皮肤科杂志.200;41(1):29-31
    25. Ito T, Aoshima M, Ito N, Uchiyama I, et al. Combination therapy with oral PUVA and corticosteroid for recalcitrant alopecia areata. Arch Dermatol Res. 2009 Jun;301(5): 373-80.
    26.吴霞,李大金.趋化性细胞因子对NK细胞生物学功能的调控作用.细胞与分子免疫学杂志.2004; 20(4):504-507
    27. Dagmar von Bubnoff, Emmanuel Andrès, Fran?ois Hentges, et al. Natural killer cells in atopic and autoimmune diseases of the skin. The Journal of Allergy and ClinicalImmunology. 2010; 125(1):60-68
    28. Andrzej T. Slominski. Proopiomelanocortin Signaling System Is Operating in Mast Cells. J Invest Dermatol. 2006 September ; 126(9): 1934–1936.
    29. Cetin ED, Savk E, Uslu M, et al. Investigation of the inflammatory mechanisms in alopecia areata. Am J Dermatopathol. 2009 Feb;31(1):53-60.
    30. Z?ller M, Gupta P, Marhaba R, et al. Anti-CD44-mediated blockade of leukocyte migration in skin-associated immune diseases. J Leukoc Biol. 2007 Jul;82(1):57-71.
    31. Kartal ED, Alpat SN, Ozgunes I, et al. Reversible alopecia universalis secondary to PEG-interferon alpha-2b and ribavirin combination therapy in a patient with chronic hepatitis C virus infection. Eur J Gastroenterol Hepatol, 2007; 19(9): 817-20.
    32. Rachid Tazi-Ahnini, Andrew J G McDonagh, Angela Cox, et al. Association analysis of IL1A and IL1B variants in alopecia areata. Heredity (2001) 87, 215–219;
    33. Verena Herbst, Margot Z?ller, Sabine Kissling, et al. Diphenylcyclopropenone treatment of alopecia areata induces apoptosis of perifollicular lymphocytes.European Journal of Dermatology. 2006; 16,(5):537-42
    34. Freyschmidt-Paul P, McElwee KJ, Botchkarev V,et al. Fas-deficient C3.MRL- Tnfrsf6(lpr) mice and Fas ligand-deficient C3H/HeJ-Tnfsf6(gld) mice are relatively resistant to the induction of alopecia areata by grafting of alopecia areata-affected skin from C3H/HeJ mice. J Investig Dermatol Symp Proc, 2003 Jun; 8(1):104-8.
    35. Z?ller M, McElwee KJ, Vitacolonna M,et al. Apoptosis resistance in peripheral blood lymphocytes of alopecia areata patients. J Autoimmun. 2004 Nov; 23(3):241-56.
    36. Sun J, Silva KA, McElwee KJ, et al. The C3H/HeJ mouse and DEBR rat models for alopecia areata: review of preclinical drug screening approaches and results.Exper Dermatol 2008;17:793–805.
    37. Amalia Martinez-Mir,Abraham Zlotogorski, Derek Gordon,et al. Genomewide Scan for Linkage Reveals Evidence of Several Susceptibility Loci for Alopecia Areata .Am J Human Genetics.2007; 80:315-327.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700