用户名: 密码: 验证码:
长江源区沼泽与高寒草甸生态系统变化及其碳平衡对全球气候变化的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏高原作为全球气候变化响应的敏感区和生态系统脆弱区,极易受到人类活动的干扰和全球气候变暖的影响。随着全球气候变暖和人类活动的加剧,目前青藏高原高寒生态系统,尤其是草地生态系统,正遭受着前所未有的退化、鼠害、人为破坏和近地表气温升高等一系列影响生态系统平衡等因素的干扰。作为国家自然基金重大研究计划项目“长江黄河源区高寒生态系统对全球气候变化的响应及其水文效应”研究的重要组成部分,在青藏高原风火山地区,选择具有典型性和代表性的沼泽草甸和高寒草甸两类高寒生态系统作为重点研究对象。论文重点对以下5个方面进行了详细的调查和研究:①研究区域的植被状况、不同状况下的生物量、土壤类型和气候状况等;②高寒生态系统退化对土壤理化性质和生态系统碳通量的影响;③气温升高对近地表CO_2浓度的影响及其与环境因子之间的耦合关系;④高寒生态系统净CO_2交换通量对气温升高的响应及其与环境因子之间的耦合关系;⑤气温升高对高寒生态系统碳平衡的影响。
     (一)、研究退化对高寒生态系统的影响,结果发现:
     1.不同退化程度沼泽草甸与高寒草甸下垫面土壤性质具有显著差异(方差分析,F>7.47,P<0.05)。未退化土壤有机质、铵氮和硝态氮氮含量均比中度退化和严重退化的大,随着退化程度的加剧,土壤养分流失严重。沼泽草甸和高寒草甸不同退化程度之间生物量也存在显著差异(方差分析,F>4.63,P<0.05)。在整个生长期内,其地上、地下生物量均表现为不断增加的趋势;但在同一生态系统不同退化程度之间,随着退化程度的加剧,其生物量又呈下降趋势。
     2.退化对高寒生态系统CO_2和CH_4通量影响显著。对于沼泽草甸,未退化CO_2排放通量分别是中度退化和严重退化的1.08—1.69倍和1.41—4.43倍;CH_4排放通量分别是中度退化和严重退化的1.09—3.5倍和2.5—11.27倍。退化越严重,CH_4和CO_2排放强度越低。对于高寒草甸,严重退化相对于未退化和中度退化表现出较高的CO_2排放和较强的甲烷吸收。CO_2排放通量分别是未退化和中度退化的1.05—78.5倍和1.04—6.28倍,对CH_4的吸收通量分别是未退化和中度退化的6.6—21倍和1.1—5.25倍。退化越严重,CO_2排放强度越大,甲烷吸收越强。
     3.气温、土壤含水量和土壤温度是调控沼泽草甸和高寒草甸生态系统碳通量的主要环境因子。
     (二)、研究气温升高对高寒生态系统近地表CO_2的影响,结果表明:
     对于沼泽草甸生态系统:
     1.近地表气温升高3—5℃和1—2℃的情况下,5cm土壤温度分别比自然状态下高出3.67℃和1.65℃;而5cm土壤水分比自然状态下分别降低2.1%和7.9%。同时,近地表气温越高,冻土的初期融化速度越快。
     2.整个观测期间,气温升高3—5℃和1—2℃的样点区近地表CO_2浓度平均比自然状态下分别提高29.3ppm和9.8ppm。
     3.空气温度、5cm土壤温度和水分含量是影响近地表CO_2浓度变化的主要环境因子。敏感性分析表明,CO_2浓度变化对5cm土壤温度和水分含量最为敏感。
     对于高寒草甸生态系统:
     1.近地表气温平均升高4.76℃和2.00℃的情况下,5cm土壤温度平均比自然状态下分别提高2.44℃和1.36℃;而5cm土壤水分平均分别下降6.97%和2.68%。
     2.整个观测期间,气温平均升高4.76℃和2.00℃的样点区近地表CO_2浓度平均比自然状态下分别提高34.78ppm和21.89ppm。
     3.空气温度、5cm土壤温度和含水量是影响高寒草甸近地表CO_2浓度的主要环境因子。敏感性分析表明,5cm土壤温度是CO_2浓度变化最敏感因子。
     (三)、研究气温升高对高寒生态系统NEE及其碳平衡的影响,结果表明:
     对于沼泽草甸生态系统:
     1.近地表气温升高对沼泽草甸净生态系统CO_2交换通量的影响显著。在植被生长季节,随着增温梯度的提高,生态系统净碳交换通量也逐渐增大。
     2.在实施增温措施的样点区,沼泽草甸生态系统每月的日平均净CO_2交换通量变化均呈单峰型曲线,碳交换通量在7月底至8月初达到最低值。
     6月初至8月中旬,增温梯度在3-5℃的样点区和自然状态样点区沼泽草甸均表现为CO_2吸收特征;而增温梯度在1-2℃的样点区在整个生长期均表现为CO_2排放特征。
     3.在不同增温梯度处理样点和自然状态样点区,沼泽草甸净CO_2交换通量均与5cm地温显著相关,相关系数均大于0.58。
     4.风火山地区沼泽草甸生态系统是土壤碳汇。在气温升高梯度分别为3-5℃、1-2℃和自然状态样点区,沼泽草甸的年固碳率分别达到5044.77±4.02g·m~(-2)·a~(-1)、3242.4±1.70g·m~(-2)·a~(-1)和1836.6±4.02g·m~(-2)·a~(-1)。近地表气温升高提高了生态系统的净初级生产力,对沼泽草甸生态系统碳平衡起到正反馈作用;而且近地表气温越高,碳汇效应越强。
     对于高寒草甸生态系统:
     1.近地表气温升高对高寒草甸净生态系统CO_2交换通量也产生显著影响。在植被生长季节,随着增温梯度的提高,生态系统净碳交换通量也逐渐增大。
     2.在实施增温措施的样点区,高寒草甸生态系统净CO_2交换通量变化曲线的斜率随着增温梯度的提高而增大,说明近地表气温越高,生态系统呼吸强度也越大,高寒草甸土壤碳库中碳流失速度加快。
     3.在不同增温梯度处理样点和自然状态样点区,高寒草甸净CO_2交换通量也均与5cm地温显著相关,相关系数均大于0.53。
     4.风火山地区高寒草甸生态系统是土壤碳弱汇。在气温升高梯度分别为3-5℃、1-2℃和自然状态样点区,其年固碳率分别达到898.67±2.38g·m~(-2)·a~(-1)、765.24±2.21g·m~(-2)·a~(-1)和543.80±1.99g·m~(-2)·a~(-1)。气温升高有助于提高生态系统的净初级生产力,使碳汇效应略有增强,对高寒草甸生态系统碳平衡起到正反馈作用。
As a region with fragile ecosystems and sensitive response to the global climate change,the Qinghai-Tibetan Plateau is vulnerable to the interference from human activities and the global warming impact.With the global warming and human activity intensifying,the high-cold ecosystems,in particular the grassland ecosystems,are suffering disturbance from unprecedented degradation,rodents,and the human destruction,the near-surface warming and such as factors,impacting on the ecosystem balance,on the Qinghai-Tibetan Plateau currently.As an important composition of the major research project funded by National Natural Science foundation of China-The response and the hydrological effect of the high-cold ecosystems on the global climate change in the headwater regions of the Yangtze and the Yellow River,this study selected two typical and representative ecosystems- swamp meadow ecosystem and alpine meadow systems-to sudsy especially in the Fenghuoshan region on the Qinghai-Tibetan Plateau.This paper investigated and studied on the following several aspects in detail:(1)to research and study the vegetation conditions,biomass under different conditions,soil types and climatic conditions of the study area;(2)to study the impacts of two high-cold ecosystems' degradation on soil physical and chemical properties and carbon fluxes from the ecosystems;(3)Under the condition of air temperature elevated,to study the influences of elevated temperature on the near-surface CO_2 concentration and the coupling relations between the CO_2 concentration and the environmental factors,at the same time,to identify the most sensitive factor to impact the change of CO_2 concentration;(4)to research the impact of elevated temperature on the net CO_2 exchange fluxes of high-cold ecosystems,and the coupling relations between the net CO_2 exchange fluxes and environmental factors;(5)to research the influences of elevated temperature on the carbon balance of two high-cold ecosystems.
     (Ⅰ)Research on the impact of degradation on the high-cold ecosystems,the results showed that:
     1.The soil properties of swamp meadow and alpine meadow with different degradation degrees showed significant differences(analysis of variance,F> 7.47,P<0.05).The contents of organic matter,ammonia nitrogen and nitrate nitrogen in soil of non-degraded meadows are higher than those of the moderately and severely degraded meadows.With the degradation becoming aggravating,the nutrients in the soil run off seriously.The biomasses among different degradation degrees of the swamp meadow and alpine meadow have significant differences(analysis of variance,F>4.63,P<0.05).During the whole growing period,the biomasses of its aboveground and underground are behaving the increasing trend;however,among the different degradation degrees of the same ecosystem,gradually declining are the biomasses.
     2.The responses of CO_2 and CH_4 emissions from the swamp meadow are remarkable to the grassland degradation.Among them,the CO_2 emission fluxes from the non-degraded swamp meadow are 1.08-1.69 and 1.41-4.43 times higher than those from the moderately degraded and seriously degraded ones,respectively;the CH_4 emission fluxes from the non-degraded swamp meadow are 1.09-3.5 and 2.5-11.27 times higher than those from the moderately and seriously degraded one,respectively.The worse the degradation becomes,the lower are the CH_4 and CO_2 fluxes from the swamp meadow.For the alpine meadow,compared to the non-degraded and moderately degraded ones,the severely degraded meadow showed a higher CO_2 emission flux and a strong absorbing methane capacity.The CO_2 emission flux from the severely degraded ones is 1.05-78.5 and 1.04-6.28 times higher than that from the non-degraded and moderately degraded ones, respectively.The absorbing CH_4 flux of the severely degraded ones is 6.6-21 and 1.1-5.25 times higher than that of the non-degraded and moderately degraded ones,respectively.The more seriously degraded,the greater the intensity of the CO_2 emissions and methane absorption.
     3.Temperature,soil moisture and soil temperature are the major environmental factors to control the carbon fluxes from the swamp meadow and alpine meadow ecosystems.
     (Ⅱ)Research on the impact of warming on the near-surface CO_2 over the high-cold ecosystems,results showed that:
     For the swamp meadow ecosystem:
     1.Under the conditions that the near-surface temperatures increased 3-5℃and 1-2℃respectively,the soil temperature at a depth of 5cm was higher 3.67℃and 1.65℃respectively than that at the nature condition;The soil moisture at a depth of 5cm was lower 2.1%and 7.9%respectively than that in the controlling sites;At the same time,the higher the near-surface temperature, the initial melting rate of the permafrost faster.
     2.During the whole observation,at the sample plots that the near-surface temperature increased 3-5℃and 1-2℃,respectively,the average CO_2 concentration was higher 29.3ppm and 9.8ppm,respectively than that over the nature sample plots.
     3.Air temperature,soil temperature and moisture at a depth of 5cm are the major environmental factors to impact the CO_2 concentrations.Sensitivity analysis shows that:the changes of CO_2 concentration was most sensitve to the soil temperature and moisture content at the depth of 5cm.
     For the alpine meadow ecosystem:
     1.At the conditions that the near-surface air temperatures were average 4.76℃and 2.00℃higher respectively than that at the natural state,the soil moistures at a depth of 5cm were average 6.97%and 2.68%lower than those at the natural condition,respectively.
     2.During the whole observation period,the near-surface CO_2 concentrations over the sample plots,which temperature was elevated 4.76℃and 2.00℃, respectively than that at the natural sample plots,were average 37.78ppm and 21.89ppm higher than those over the natral sample plots.
     3.Air temperature,soil temperature and moisture at a depth of 5cm are the main environmental factors to impact the near-surface CO_2 concentrations on the alpine meadows.Sensitivity analysis shows that:the changes of CO_2 concentration was most sensitve to the soil temperature at the depth of 5cm.
     (Ⅲ)Research on the impact of warming on the net ecosystem carbon exchange (NEE)and carbon balance of the high-cold ecosystem,results showed that:
     For the swamp meadow ecosystem:
     1.The influences of the near-surface air warming were very significant on the net ecosystem CO_2 exchange of the swamp meadows.In the growing seasons, the net ecosystem CO_2 exchanges of the swamp meadows gradually increased with the warming gradient ascending.
     2.At the sample plots treated with warming,the changes of the average monthly net CO_2 exchange fluxes from the swamp meadows all showed a single peak curve and the net CO_2 exchange fluxes from the swamp meadow plots all reached the most low values at the time from the end of July to the beginning of August.From early June to mid-August,the swamp meadows both at the plots with 3-5℃elevated and those at natural conditions showed a capacity of absorbed;and at the sample plots with 1-2℃elevated,the swamp meadows performed the characteristics for CO_2 emissions during the whole growing seasons.
     3.Regression analysis showed that:the net CO_2 exchange fluxes from the swamp meadows with three different treatments were significantly correlated with the soil temperature at a depth of 5cm and the correlation coefficients were greater than 0.58.
     4.The swamp meadow ecosystem in the Fenghuoshan region is a carbon sink. At the sample plots treated with 3-5℃,1-2℃elevated and natural state,the carbon sequestration rates of the swamp meadows were 5044.77±4.02g·m~(-2)·a~(-1),3242.4±1.70g·m~(-2)·a~(-1)and 1836.6±4.02g·m~(-2)·a~(-1), respectively.The near-surface temperature warming enhanced the respiration of the ecosystem,and took a positive feedback effect on the carbon balance. The warmer the near-surface temperature,the stronger the effect of carbon sinks.
     For the alpine meadow ecosystem:
     1.The influences of the near-surface air warming were also very significant on the net ecosystem CO_2 exchange of the alpine meadows.In the growing seasons,the net ecosystem CO_2 exchanges of the alpine meadows gradually increased with the near-surface temperatures ascending.
     2.At the sample plots treated with warming,the higher the near-surface air-temperature elevated,the greater the slope of the curve,which showed the changes of the net CO_2 exchange fluxes from the alpine meadow ecosystem. This denoted that the respirations of the ecosystem were greater and the loss rate of soil carbon would be accelerated.
     3.Regression analysis showed that:the net CO_2 exchange fluxes from the alpine meadows with three different treatments were also significantly correlated with the soil temperature at a depth of 5cm and the correlation coefficients were greater than 0.53.
     4.The alpine meadow ecosystem in the Fenghuoshan region is a weak carbon sink.At the sample plots treated with 3-5℃,1-2℃elevated and natural state, the carbon sequestration rates of the alpine meadows were 898.67±2.38g·m~(-2)·a~(-1),765.24±2.21g·m~(-2)·a~(-1)and 543.80±1.99g·m~(-2)·a~(-1), respectively.The near-surface warming on the alpine meadow ecosystem has also taken a positive feedback effect on the carbon balance,and strengthened the effect of carbon sink.
引文
Bazzaz F A, Williams W E. Atmospheric CO_2 concentrations within a mixed forest: Implications for seedling growth [J]. Ecology, 1991, 72 (1): 12-16.
    Bouwman A F, Leemans R. The role of forest soils in the global carbon cycle [M]. In :McFee ,W. &J .M. Kelly eds. Carbon forms and functions in forest soils. Madison ,Soil Science Society of America , 1995.
    Castro M S, Steudler P A, Melillo J M, et al. Factors controlling atmospheric methane consumption by temperate forest soils [J]. Global Biogeochem., 1995, Cycles 9, 1-10.
    Chapin F S. Integrated responses of plants to stress [J]. Bioscience, 1991, 41(1): 29-36.
    Cheng W, Chander K, Inubushi K. Effects of elevated CO_2 and temperature on methane production and emission from submerged soil microcosm [J]. Nutrient Cycling in Agroecosystems, 2000, 58: 339-347.
    Crowley T. J. Causes of climate change over the past 1000 years [J]. Science, 2000,289: 270-277.
    D. Vann C, Patrick Megonigal J. Elevated CO_2 and water depth regulation of methane emissions: Comparison of woody and non-woody wetland plant species [J].Biogeochemistry, 2003, 63: 117-134.
    Daniel Comstedt, Bj(?)rn Bostr(?)m, John D. Marshall, et al. Effects of elevated atmospheric carbon dioxide and temperature on soil respiration in a boreal forest using d~(13)C as a labeling tool. Ecosystems, 2006, 9: 1266-1277.
    Dasselaar A, Beusichem M L and Oenema O. Effects of soil moisture content and temperature on methane uptake by grasslands on sandy soils [J]. Plant and Soil, 1998, 204, 213-222.
    David T. Tingey, Donald L. Phillips E, Henry Lee, et al. Elevated temperature, soil moisture and seasonality but not CO_2 affect canopy assimilation and system respiration in seedling Douglas-fir ecosystems. Agricultural and Forest Meteorology, 2007,143: 30-48.
    Davidson E A, Belk E, Boone R D. Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest [J]. Global Change Biology, 1998,4: 217-227.
    Day M E, Sehedlbauer J L, Livingston W H, et al. Influence of seedbed, light environment and elevated night temperature on growth and carbon allocation in pitch pine (Pinus rigida) and jack pine (Pinus banksiana) seedlings [J]. Forest Ecology and Management, 2005, 205(1): 59-71.
    Duan An-Min, Wu Guo-Xiong, Zhang Qiong and Liu Qi-Min. The new proofs for GHG emissions picking up as the result of climate warming on the Tibetan Plateau [J]. Chinese Science Bulletin, 2006, 51 (8): 989-992.
    Frans-Jacow A, Jack J. Effects of two common macrophysics on methane dynamics in freshwater sediments [J]. Biogeochemistry, 1998, 43: 79-104.
    Gilmanov T G, Verma S B, Sims P L, et al. Gross primary production and light response parameters of four Southern Plains ecosystems estimated using long-term CO_2-flux tower measurements [J]. Glob Biogeochemistry Cycles, 2003,17: 1071.
    Groffman P M, Eagan P, Sullivan W M et al. Grass species and soil type effects on microbial biomass and activity [J]. Plant Soil, 1996, 183 (1): 61-67.
    Gu S, Tang Y H, Du M Y, et al. Short-term variation of CO_2 flux in relation to environmental controls in an alpine meadow on the Qinghai-Tibetan plateau [J].Geophys Res, 2003,108(D21): 46-70.
    Hum J M, Knapp A K. Fluxes of CO_2, water vapor, and energy from a prairie ecosystem during the seasonal transition from carbon sink to carbon source [J].Agric For Meteorol, 1998, 89: 1-14.
    Huxman T E, Turnipseed A A, Sparks J P, et al. Temperature as a control over ecosystem CO_2 fluxes in a high-elevation, sub-alpine forest. Oecologia, 2003, 134:537-546.
    Ingestad T, Agren G I. The influence of plant nutrition on biomass [J]. Ecological Applications, 1991,1(2): 168-174.
    Ito D, Takahashi K. Seasonal changes in soil respiration rate in a mulberry field [J].Journal of Agricultural Meteorology, 1997, 53: 209-215.
    Jeffrey M. Welker, Jace T. Fahnestock, Greg H. R. Henry, et al. CO_2 exchange in three Canadian high arctic ecosystems: response to long-term experimental warming.Global Change Biology, 2004,10:1981-1995.
    Karberg N. J., Pregitzer K. S., King J. S., et al. Soil carbon dioxide partial pressure and dissolved inorganic carbonate chemistry under elevated carbon dioxide and ozone [J]. Oecologia, 2005,142: 296-306.
    Kato T, Tang Y H, Gu S, et al. Carbon dioxide exchange between the atmosphere and an alpine meadow ecosystem on the Qinghai-Tibetan Plateau, China [J]. Agric For Meteorol, 2004, 124: 121-134.
    Kell-Ai S, Wang K Y. Short-term environmental controls on heat and water fluxes above a boreal coniferous forest: model computation compared with measurements by eddy correlation [J]. Ecol. Model., 1999, 124:145-173.
    Kennedy A D. Temperature effects of passive greenhouse apparatus in high-latitude climate change experiments. Funct Ecol, 1995, 9: 340-350.
    Kim J, Verma S B, Clement R J. Carbon dioxide budget in a temperate grassland ecosystem [J]. Geophys Res, 1992, 97(D5): 6057-6063.
    Kravchenko Irina K. Methane oxidation in boreal peat soils treated with various nitrogen compounds [J]. Plant and Soil, 2002, 242: 157-162.
    Kucera C, Kirk ham D. Soil respiration studies in tall grass prairie in Missouri [J].Ecology, 1971, 52: 912-915.
    Kuzyakov Ya. V. and Larionova A. A. Contribution of rhizomicrobial and root respiration to the CO_2 emission from Soil. Soil Biology, 2006, 7: 842-854.
    Lee M S, Nakane K, Nakatsubo T, et al. Effects of rainfall events on Soil CO_2 flux in a cool temperature deciduous broad leaved forest [J]. Ecological Research, 2002,17:401-409.
    Lena Strom, Mikhail, Mastepanov,Torben R. Christensen. Species-specific effects of vascular plants on carbon turnover and methane emissions from wetlands [J].Biogeochemistry, 2005, 75: 65-82.
    Liu X Z, Wan S Q, Su B, et al. Response of soil CO_2 efflux to water manipulation in a tall-grass prairie ecosystem [J]. Plant and Soil, 2002, 240: 213-223.
    Maljanen Marja, Jyrki Hyt(o|¨)nen and Pertti J. Martikainenl 2001. Fluxes of N_2O, CH_4 and CO_2 on afforested boreal agricultural soils [J]. Plant and Soil, 2001, 231: 113-121.
    Marion G M, Henry G HR, Freckman D W, Johnstone J, Jones G, Jones M H, Lévesque E, Molau U, M(?)lgaard P, Parsons A N, Svoboda J, Virginia R A. Open-top designs for manipulating manipulating field temperatures in high-latitude ecosystems. Global Change Biol, 1997, 3: 20-32.
    
    Mielnick P C, William A D. Soil CO_2 flux in a tall-grass prairie [J]. Soil Biology and Biochemistry, 2000, 32: 221-228.
    Monson R K, Turnip seed A A, Sparks J P, et al. Carbon sequestration in a high-elevation sub-alpine forest [J]. Glob Change Biology, 2002, 8: 459-478.
    Mooney H A, Kuppers M, Koch G, et al. Compensating effects to growth of carbon partitioning changes in response to CCh-induced photosynthetic reduction in radish [J]. Oecologia, 1988, 76(6): 502-506.
    Moore T R, Roulet N T, Waddington J M. Uncertainty in predicting the effect of climate change on the carbon cycling of Canadian peatlands [J]. Climatic Change,1998, 40: 229-245.
    Mukesh J and Joshi M. Patterns of soil respiration in a temperate grassland of Kumaun Himalaya, India [J]. J. Trap. For. Sci., 1995, 8 (2): 185-195.
    Nelson F E, Anisimov O A, Shiklomanov N I. Climate change and hazard zonation in the circum-arctic permafrost regions [J]. Natural Hazards, 2002, 26: 203-225.
    Ni, J. Carbon storage in grasslands of China. Journal of Arid Environments, 2002, 50:205-218.
    Niu, S., Li, Z., Xia, J. et al. Climatic warming changes plant photosynthesis and its temperature dependence in a temperate steppe of northern China, Environmental and Experimental Botany, 2007. doi:10.1016/j.envexpbot.2007.10.016
    Norby R J, Ledford J, Reilly C D, et al. Fine-root production dominates response of a deciduous forest to atmospheric CO_2 enrichment [J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(7): 689-693.
    Oechel, W.C., Hastings, S.J., Vourlitis, G.L., et al. Recent change of Arctic tundra ecosystems from a net carbon dioxide sink to a source [J]. Nature, 1993, 361:520-523.
    Patrick Megonigal J, Schlesinger W H. Enhanced CH4 emissions from a wetland soil exposed to elevated CO_2 [J]. Biogeochemistry, 1997, 37: 77-88.
    Pauli H., Gottfried M., Grabherr G. Effects of climate change on the alpine and nival vegetation of the ALPS [J]. Mt. Ecol., 2003, 7 (Suppl.): 9-12.
    Pauli H., Gottfried M., Reiter K., et al. High mountain summits as sensitive indicators of climate change effects on vegetation patterns: "The Multi Summit-Approach" of GLORIA (Global Observation Research Initiative in Alpine Environments) [J].DOI: 10.1007/0-306-48051-4.
    Pekka Vanhalaa, Kristiina Karhua, Mikko Tuomi, et al. Old soil carbon is more temperature sensitive than the young in an agricultural field. Soil Biology & Biochemistry, 2007, 39: 2967-2970.
    Phillips R.A.L, Whalen S.C. and Schlesinger W.H. Influence of atmospheric CO_2 enrichment on methane consumption in a temperate forest soil [J]. Glob. Chan.Biol., 2001, 7: 557-563.
    Portsmuth A, Niinemets U. Interacting controls by light availability and nutrient supply on biomass allocation and growth of Betula Pendula and Betula Pubescens seedlings [J]. Forest Ecology and Management, 2006, 27(2):122-134.
    Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate [J ] .Tellus, 1992, 44B: 81-89.
    Reiners N A. Carbon dioxide evolution from the floor of three Minnesota forests [J].Ecology, 1967, 49: 471-483.
    Robertson, G.P., Paul E.A. and Hardwood R.R. Greenhouse gases in intensive agriculture: contribution of individual gases to the radioactive forcing of the atmosphere [J]. Science, 2000, 289: 1922-1925.
    Robinson D, Rorison I H. Plasticity in grass species in relation to nitrogen supply [J].Functional Ecology, 1988, 2(3): 249-257.
    Rochette P, Desjardins R L, Pattey E. Spatial and temporal variability of soil respiration in agricultural fields [J]. Canadian Journal of Soil Science, 1991, 71:189-196.
    Rustad L E, Campbell J L, Marion G M, et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming [J]. Oecologia, 2001,126: 543-562.
    Sauerbeck D. Temperate agricultural systems. IPCC update WGIIAFOS Section 2,1992.
    Saxe H, Cannell M G R, Johnsen B, et al. Tree and forest functioning in response to global warming [J]. New Physiologist, 2001, 149(4): 369-399.
    Schimel D S, Braswell B H, Holland M, et al. Climatic, edaphic and biotic controls over storage and turnover of carbon in soils [J]. Global Boigeochem. Cycles, 1994,8 (3): 279-293.
    Sehulze E, Chapin F S I, Schulze E D, et al. Plant specialization to environments of different resource availability [R]. Berlin Germany: Springer-Verlag, 1987:120-148.
    Shaver G R, Canadell J, Chapin F S, et al. Global warming and terrestrial ecosystems:
    A conceptual framework for analysis [J]. Bioscience, 2000, 50(9): 871-882.
    Sims P, Bradford J A. Carbon dioxide fluxes in a southern plains prairie [J]. Agric For Meteorol, 2001,109: 117-134.
    Singh J S, Gupta S R. Plant decomposition and soil respiration in terrestrial ecosystems [J]. Bot Rev, 1997, 43: 449-528.
    Sofie Mertens, Ivan Nijs, Mark Heuer, et al. Influence of high temperature on end-of-season tundra CO_2 exchange. Ecosystems, 2001, 4: 226-236.
    Soo-Hyung Kim, Dennis C. Gitz, Richard C. Sicher, et al. Temperature dependence of growth, development, and photosynthesis in maize under elevated CO_2.Environmental and Experimental Botany, 2007, 61:224-236.
    Sun H. Formation and evolution of Qinghai-Tibetan Plateau [M]. Shanghai: Shanghai Science and Technology Press, 1996, 1-383.
    Suyker A E, Verma S B, Burba G G. Interannual variability in net CO_2 exchange of a native tall-grass prairie [J]. Global Change Biology, 2003, 9: 255-265.
    Suyker A E, Verma S B. Year-round observations of the net ecosystem exchange of carbon dioxide in a native tallgrass prairie [J]. Glob Change Biol, 2001, 7:279-289.
    Topwnsend A R, et al. Soil carbon pool structure and temperature sensitivity inferred using CO_2 and ~(13)CO_2 incubation fluxes from five Hawaiian soils [J]. Biogeochem.,1997, 38: 1-17.
    
    Torre Jorgenson M, Charles H. Racine, James C. Walters, et al. Permafrost degradation and ecological changes associated with a warming climate in center Alaska. Climatic Change, 2001, 48: 551-579.
    
    Verville J.H., Hobbie S.E, Chapin F.S., and Hooper D.U. Response of tundra CH4 and CO_2 flux to manipulation of temperature and vegetation [J]. Biogeochemistry.,1998, 41: 215-235.
    
    Vitousek P M, Mooney H A, Lubchenco J. Human domination of Earth's ecosystems [J]. Science, 1997, 277: 494-499.
    Wang Chunlin, Zhou Guoyi,Tang Xuli, et al. Ecosystem respiration and its controlling factors in a coniferous and broad-leaved mixed forest in Dinghushan, China. Acta Ecologica Sinica, 2007, 27(7): 2659-2668.
    Wang Da-Li. The influence of elevated CO_2 concentration in the atmosphere on the global CH4 emission [J]. Chinese Science Bulletin, 1999, 44 (1): 1-6.
    Wang G X, Cheng G D, Shen Y P, et al. Research on ecological environmental change in Changjiang-Yellow rivers sources regions and their integrated protection [M].Lanzhou: Lanzhou University Press, 2001. 29-35.
    Wang G X, Shen Y P, Qian J, et al. Study on the influence of vegetation change on soil moisture cycle in alpine meadow [J]. Journal of Glaciology and Geocryology,2003, 25(6): 653-659.
    Wang Genxu, Wang Yibo, Kubota Jumpei. Land-cover changes and its impacts on ecological variables in the headwaters area of the Yangtze River, China [J].Environmental Monitoring and Assessment. 2006, 120: 361-385.
    Wang K Y, Zha T., Kellomaki S. Measuring and simulating crown respiration of stets pine with increased temperature and carbon dioxide enrichment [J]. Ann.Bot.,2002, 90: 325-335.
    Wang M.X. and Shangguan X.J. CH4 emission from various rice fields in P.R. China [J]. Theor. Appl. Climatol., 1996, 55: 129-138.
    Wang Y S, Hu YQ, J i B M, et al. An investigation on the relationship between emission /up take of greenhouse gases and environmental factors in semiarid grassland [J]. Advances in Atmospheric Sciences, 2003, 20 (1): 119-127.
    Wang G X, Cheng, G D, Shen, Y P. Soil organic carbon pool of grasslands on the Tibetan Plateau and its global implication [J]. Journal of Glaciology and Geocryology, 2002, 24 (6): 693-700.
    West A E. Landscape patterns of CH4 fluxes in an alpine tundra ecosystem [J].Biochemistry, 1999, 45: 243-264.
    West A E. Landscape patterns of CH4 fluxes in an alpine tundra ecosystem [J].Biochemistry, 1999, 45: 243-264.
    Xu L K, Baldocchi D D. Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California [J]. Agric For Meteorology, 2004,1232: 79-96.
    Yang J P, Ding Y J, Chen R S, et al. Permafrost change and its effect on eco-environment in the source regions of the Yangtze and Yellow rivers [J].Journal of Mountain Science, 2004, 22(3): 278-285.
    Yao Tan-dong and Zhu Li-Ping. The response of environmental changes on Tibetan Plateau to global changes and adaptation strategy [J]. Advances in Earth Science,2006, 21 (5): 459-464.
    Zhao, L., Li Y. N., Zhao, X. Q., and Xu, S. X. Comparative study of the net exchange of CO_2 in types of vegetation ecosystems on the Qinghai-Tibetan Plateau[J].Chinese Science Bulletin,2005,50(16):1767-1774.
    Zheng D,Zhang Q S,Wu S H.Mountain Geoecology and Sus-tainable Development of the Tibetan Plateau[J].Boston:Kluwer Academic Publishers,2000,1-10.
    Zhou H K,Zhou Li,Zhao X Q.Stability of alpine meadow ecosystem on the Qinghai-Tibetan Plateau[J].Chinese Science Bulletin,2006,51(3):320-327.
    Zhu Wen-quan,Pan Yao-zhong,Liu Xin,et al.Spatio-temporal distribution of net primary productivity along the northeast China transect and its response to climatic change[J].Journal of Forestry Research,2006,17(2):93-98.
    安勇胜,邓中林,庄永成.风火山群的物质特征及时代讨论[J].西北地质,2004,37(1):63-68.
    陈立奇,高众勇,杨绪林,等.北极地区碳循化研究意义和展望[J].极地研究,2004,16(3):171-180.
    陈全胜,李凌浩,韩兴国,等.土壤呼吸对温度升高的适应[J].生念学报,2004,24(11):2649-2655.
    陈四清,崔骁勇,周广胜,等.内蒙古锡林河流域大针茅草原土壤呼吸和凋落物分解的CO_2排放速率研究[J].植物学报,1999,41(6):645-650.
    陈佐忠,黄德华.自然条件下大针茅草原几种主要植物氮、磷、钾、铁的季节动态[J].植物生态学与地植物学学报,1989,13:325-331.
    崔骁勇,陈佐忠,陈四清.草地土壤呼吸研究进展[J].生态学报,2001,21(2):315-325.
    杜睿,王庚辰,吕达仁,等.静态箱法原位观测草原CO_2通量的探讨[J].大气科学,2001,25(1):61-70.
    符淙斌.七十年代全球地面气温的初步研究(二)[J].大气科学,1982,6(4):405-412.
    高旭升,田种存,郝学宁,等.三江源区高寒草原草地不同退化程度土壤养分变化[J].青海大学学报(自然科学版),2006,24(5):37-40.
    耿元波,董云社,齐玉春.草地生态系统碳循环研究评述[J].地理科学进展,2004,23(3):74-81.
    谷晓平,黄玫,季劲钧,等.近20年气候变化对西南地区植被净初级生产力的影响[J].自然资源学报,2007,22(2):251-260.
    郭春禹,杜启云,王庆生.膜生物反应器污水再生工程的运行与优化.工业水处理,2006,26(1):63-66.
    郭正刚,牛富俊,湛虎,等.青藏高原北部多年冻土退化过程中生态系统的变化特征[J].生态学报,2007,27(8):3294-3301.
    侯英雨,柳钦火,延昊,等.我国陆地植被净初级生产力变化规律及其对气候的响应[J].应用生态学报,2007,18(7):1546-1553.
    黄耀.关于中国陆地生态系统碳循环研究的几点思考[J].21世纪青年学者论坛,2006,23(1):66-68.
    贾丙瑞,周广胜,王风玉,等.土壤微生物与根系呼吸作用影响因子分析[J].应用生态学报,2005,16(8):1547-1552.
    李存强.近30年来青藏高原及周围地区气候温度变化[J].高原气象,1986,5(4):332-341.
    李亚波,张德增,马立华,等.试论CO_2、气候、植被的关系.农业与技术,1997,6:56-57.
    李英年,王启基,赵新全,等.气候变暖对高寒草甸气候生产潜力的影响.草地学报,2000,8(1):23-29.
    李永宏,钟文勤,康乐,等.放牧对草原生物多样性及其环境的影响[C].草原生态系统研究(第5集)[M].北京:科学出版社,1997:1-70.
    林青,金会军,程国栋,等.青减高原五道梁冻土活动层表面二氧化碳和甲烷的排放[J].冰川冻土,1996,18(4):325-330.
    刘东生.全球变化和可持续发展科学[J].地学前缘,2002,9(1):1-8.
    刘立新,:董云社,齐玉春.草地生态系统土壤呼吸研究进展[J].地理科学研究进展,21104,23(4):35-42.
    刘顺,王成善,伊海生,等.青藏高原中部风火山地区第三纪地壳南北缩短量研究.地震地质[J],2001,23(1):122-125.
    刘允芬,宋霞,孙晓敏,等.千烟洲人工针叶林CO_2通量季节变化及其环境因子的影响[J].中国科学D辑,2004,34(增刊Ⅱ):109-117.
    刘允芬.农业生态系统碳循环研究.自然资源学报,1995,10(1):1-8
    罗磊.青藏高原湿地退化的气候背景分析[J].湿地科学,2005,3(3):1990-1999.
    马明涛,:饧桂华,周仲华.青藏高原风火山地区冻土变化分析[J].干旱区地理, 2006,29(4):327-330.
    苗秋菊,张婉佩.2005年全球气候变化回顾[J].气候变化研究进展,2006,2(1):43-44.
    裴志永,欧阳华,周才平.青藏高原高寒草原碳排放及其迁移过程研究[J].生态学报,2003,23(2):231-236.
    齐玉春,董云社,耿元波,等.我国草地生态系统碳循环研究进展[J].地理科学进展,2003,22(4):342-352.
    石德军,李希来,杨力军,等.不同退化程度“黑土滩”草地群落特征的变化及其恢复对策[J].草业科学,2006,23(7):1-3.
    宋长春,王毅勇,王跃思,等.季节性冻融期沼泽湿地CO_2、CH4和N_2O排放动态[J].环境科学,2005,26(4):7-12.
    宋霞,刘允芬,徐小锋.箱法和涡度相关法测碳通量的比较研究[J].江西科学,2003,21(3):206-210.
    宋忠宝,李文明,李长安,等.青藏高原可可西里风火山盆地白垩纪砂岩粒度特征与沉积环境[J].西北地质,2004,37(2):1-6.
    孙钰.环境保护[J],DOI:cnki:ISSN:0253-9705.0.2006-01-019.
    谈嫣蓉,蒲小鹏,张德罡,等.不同退化程度高寒草地土壤酶活性的研究[J].草原与草坪,2006,3:20-22.
    汪诗平.青海省“三江源”地区植被退化原因及其保护策略[J].草业学报,2003,12(6):1-9.
    王丹红.美科学家证实全球正在变暖[J].科学时报,DOI:CNKI:PCN:11-0084.0.2006/05/19A021.
    王凤文,杨书运,张国庆.土壤呼吸研究进展[J].安徽农业,2004,12:50-51.
    王根绪,程国栋,沈永平,等.江河源区的生态环境变化及其综合保护研究[M].兰州大学出版社,2001.
    王俊鸣.科技日报,DOI:CNKI:PUN:0023.0.2006/04/050023.
    王开运,杨万勤,Seppo Kellomaki.亚高山针叶林群落系统的生态学过程和持续性机制[J].世界科技研究与发展,2003,25(5):17-24.
    王谋,李勇,白宪洲,等.全球变暖对青藏高原腹地草地资源的影响[J].自然资源学报,2004,19(3):331-336.
    王谋,李勇,黄润秋,等.气候变暖对青藏高原腹地高寒植被的影响.生态学报,2005,25(6):1275-1281.
    王绍令,赵秀峰,郭东信,等.青藏高原冻土对气候变化的响应[J].冰川冻土,1996,18(增刊):157-165.
    王妍,张旭东,彭镇华,等.森林生态系统碳通量研究进展[J].世界林业研究,2006,19(3):12-17.
    魏兴琥,杨萍,李森,等.超载放牧与那曲地区高山嵩草草甸植被退化及其退化指标的探讨[J].草业学报,2005,14(3):41-49.
    吴家兵,关德新,施婷婷,等.非生长季长白山红松针阔叶混交林CO_2通量特征[J].林业科学,2006,42(9):1-6.
    吴琴,曹广民,胡启武,等.矮嵩草草甸植被—土壤系统CO_2的释放特征[J].资源科学,2005,27(2):96-102.
    吴中海,吴珍汉,韩金良,等.青臧铁路风火山段晚第四纪断裂活动分析[J].现代地质,2005,19(2):181-188.
    徐小锋,田汉勤,万师强.气候变暖对陆地生态系统碳循环的影响[J].植物生态学报,2007,31(2):175-188.
    杨保,Achim Braeuning.近千年青藏高原的温度变化[J].气候变化研究进展.2006,2(3):104-107.
    杨和雄,王良元.敏感性分析及其模糊方法.南京邮电学院报,1998,18(1):99-108.
    杨昕,王明星.陆地碳循环研究中若干问题的评述[J].地球科学进展,2001,16(3):427-435.
    於琍,曹明奎,李克让.全球气候变化背景下生态系统的脆弱性评价[J].地理科学进展,2005,24(1):61-69.
    张东秋,石培礼,张宪洲.土壤呼吸主要影响因素的研究进展[J].地球科学进展,2005,20(7):778-785.
    张宏.极端干旱气候下盐化草甸植被净初级生产力对全球变化的响应[J].自然资源学报,2001,16(3):216-220.
    张宪洲,石培礼,刘允芬,等.青藏高原高寒草原生态系统土壤CO_2排放及其碳平衡[J].中国科学D辑,地球科学,2004,34(增刊Ⅱ):193-199.
    张一平,赵双菊,于贵瑞,等.西双版纳热带季节雨林干热季林冠上小气候特征及CO_2通量的观测[J].生态学报,2005,25(10):2541-2549.
    赵亮,李英年,赵新全,等.青藏高原3种植被类型净生态系统CO_2交换量的比较[J].科学通报,2005,50(9):926-932.
    赵拥华,赵林,武天云,等.冬春季青藏高原北麓河多年冻土活动层中气体CO_2浓度分布特征[J].冰川冻土,2006,28(2):183-190.
    周广胜,王玉辉,蒋延玲,等.陆地生态系统类型转变与碳循环[J].植物生态学报,2002,26(2):250-254.
    周国英,陈桂琛,陈志国,等.青藏铁路沿线高寒草甸植物群落特征对人为干扰梯度的响应—以风火山高山嵩草草甸为例[J].冰川冻土,2006,28(2):240-248.
    周华坤,赵新全,周立,等.青藏高原高寒草甸的植被退化与土壤退化特征研究[J].草业学报,2005,14(3):31-40.
    周华坤,周兴民,赵新全.模拟增温效应对矮嵩草草甸影响的初步研究.植物生态学报,2000,24(5):547-553.
    周克薇.大自然探索[J],DOI:cnki:ISSN:1000-4041.0.2006-01-005.
    周涛,史培军,孙睿,等.气候变化对净生态系统生产力的影响.地理学报,2004,59(3):357-365.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700