用户名: 密码: 验证码:
鄱阳湖湖滨湿地土壤酶活性动态变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤酶活性在湿地物质能量转换过程中起重要作用。为探究湖滨湿地酶活性动态变化规律及其影响因素,以鄱阳湖湖滨湿地滩地土壤和湖底沉积物为研究对象,基于目前国际土壤酶的研究方法,对土壤酶活性以及土壤性质和环境因子进行了研究。研究结果揭示了滩地土壤及沉积物酶活性在空间和时间变化中的差异,同时为湿地生态系统管理提供依据。主要研究结果如下:
     (1)湖滨滩地土壤纤维二糖酶、p-糖苷酶和酸性磷酸酶活性都在9月最高,而己丁质酶活性则在5月份达到最大值。采用干土基和有机碳基不同的表示方式表示的酶活性趋势基本相同。两种氧化还原酶对于有机碳含量变化的响应非常明显。酚氧化酶活性用干土基和有机碳基表示,分别在2月和5月达到最高。过氧化物酶活性在11月最高,但两种表示方法表现出不同的差异性。
     (2)湖底沉积物纤维二糖酶、β-糖苷酶、己丁质酶以及酸性磷酸酶活性变化趋势相似,在温度升高水位上升时活性较强,全年变化趋势呈现倒“V”形状。而酚氧化酶和过氧化物酶活性表现出明显的夏季低、冬季高的“V”字形趋势。
     (3)四种水解酶在不同淹水条件中的差异与酶种类和采样时产有关,5月、9月以及11月空间差异较明显,2月份没有显著差异。酚氧化酶和过氧化物酶活性空间差异显著,研究期间的酶活性在沉积物中都远高于滩地土壤。
     (4)湖滨湿地土壤酶活性受到水分温度影响显著,土壤水分含量与酶活性均显著相关。同时温度的升高促进了纤维二糖酶和酸性磷酸酶活性的增加,却抑制了过氧化物酶的活性。pH对酶活性的影响会在一定条件下抑制纤维二糖酶而促进酚氧化酶。有机碳与全氮会促进酶活性。沉积物中酶活性对于温度和碳氮变化会产生积极响应,纤维二糖酶、磷酸酶和过氧化物酶活性受温度影响显著,而其他三种酶活性则受碳氮含量影响更加明显。水温的升高会促进纤维二糖酶和磷酸酶活性,但同时会抑制过氧化物酶。pH对于纤维二糖酶和p-糖苷酶产生了显著的抑制效果。有机碳和全氮则会对β-糖苷酶、己丁质酶和酚氧化酶表现出明显的促进。
     综上所述,酶活性动态变化由多种因素引起,温度的升高促进了纤维二糖酶和酸性磷酸酶活性,同时可能会影响土壤水分含量从而抑制了过氧化物酶的活性。水温的升高会促进沉积物纤维二糖酶和磷酸酶活性但会抑制过氧化物酶。沉积物中有机碳和全氮会促进β-糖苷酶、己丁质酶和酚氧化酶活性
Soil enzyme activities played an important role in the transformation of material and energy in the wetland. In order to explore the annual change of soil enzyme activity and it's effected factors, soil enzyme activities were measured by using the international methods, meanwhile the relationships between soil enzyme activities and soil properties as well as environmental factors in beach soil and lake sediments in Poyang Lake. The results will reveal the differences of the enzyme activities in the spatial and temporal changes between beach soil and lake sediments, and also provide the basis for wetland ecosystem management. The main results are followed:
     (1) The activities of cellobiase and β-glucosidase in beach soil demonstrated the maximum in September, and the highest activities of chitinase appeared in May. No matter use the soil bases or the organic bases, the enzyme activity trend are same. It is very obvious that the two oxidoreductases response for the organic carbon content. Phenol oxidase activity reached the highest in February and May respectively by representing with the soil base and organic carbon base. The highest peroxidase activity was in November, but the enzyme activities represented by soil base and organic carbon base showed the different differences.
     (2) Cellobiose enzyme,(3-glucosidase, chitinase and acid phosphatase activities in lake sediment showed the same trend, the activities are high when the temperature increases and the water level rises, the annual trend inverted an "V" shape.
     (3) The differences among four hydrolase enzyme types in diffenent flooding conditions are related with sampling time, spatial differences are obvious in May,September and November, there was no difference in February. Spatial differences of Phenol oxidase and peroxidase activities are significant, the enzyme activities in the lake sediment of four months are much higher than in the beach soil.
     (4) The enzyme activities in beach soil are significantly affected by water temperature, the water content are significantly correlated with enzyme activities. The cellobiase and acid phosphatase activities increased were promoted by the elevated temperature, but inhibited the peroxidase activity. pH would promote the phenol oxidase activity and inhibit the cellobiase activity in certain condition. Organic carbon and the total nitrogen would promote the activities. The enzyme activities in lake sediment showed a positive response to temperature and carbon and nitrogen changes, the cellobiase, phosphatase and peroxidase activities were significantly affected by temperature, the other three enzyme activities were impacted by carbon and nitrogen content more significantly. Water temperature increasing can promote Cellobiase and phosphatase activities while inhibit peroxidase activity. pH were significantly inhibited the Cellobiase and β-glucosidase activities. Organic carbon and nitrogen showed significantly promoted to chitinase, β-glucosidase and phenol oxidase activities.
     In conclusion, enzyme activity dynamics caused by many factors, temperature promotes Cellobiase and acid phosphatase activity, and may affect the soil moisture content thus inhibiting the activity of peroxidase.Water temperature will promote Cellobiase and phosphatase activities but will inhibit peroxidase activities in sediment. Organic carbon and nitrogen will promote the activities of β-glucosidase, chitinase and phenol oxidase in sediment.
引文
[1]段达祥,高晟,吴永波,刘成刚.喀斯特地区人工林土壤速效养分与酶活性的季节变化[J].应用研究,2011,25(3):58-62.
    [2]代静玉,秦淑平,周江敏.土壤中溶解性有机质分组组分的结构特征研究[J].土壤学报,2004,41(5):721-727.
    [3]樊军,郝明德.黄土高原早地轮作与施肥长期定位试验研究.Ⅱ土壤酶活性与土壤肥力[J].植物营养与肥料学报,2003,9(2):146-150.
    [4]郭蓓,刘勇,李国雷,等.飞播油松林地土壤酶活性对间伐强度的响应[J].林业科学,2007,43(7):128-1331.
    [5]关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
    [6]顾向阳,胡正嘉.一种测定土壤几丁质酶活性的方法[J].土壤通报,1994,25(6):284-285.
    [7]耿玉清,王冬梅.土壤水解酶活性测定方法的研究进展[J].中国生态农业学报,2012,20(4):387-394.
    [8]郭亚新,宋春雷,刘云兵,等.长江中下游浅水湖泊沉积物多酚氧化酶与过氧化物酶活性分布[J].水生生物学报,2008,32(3):16-22.
    [9]何斌,刘运华,陆志科,等.肉桂人工林土壤速效养分与酶活性的季节变化[J].经济林研究,2004,22(3):1-4.
    [10]胡国珠,杨馥宁,谢双喜.黔中地区皂荚生长与不同岩性土壤酶活性的关系[J].南京林业大学学报(自然科学版),2012,36(6):58-62.
    [11]胡海波,康立新.泥质海岸防护林土壤酶活性特征研究[J].上壤学报.1998,35(1):112-118.
    [12]胡建忠.人工沙棘林地土坡醉分布及其与土壤理化性状间关系的研究[J].沙棘,19969:22-28.
    [13]何良胜,刘初成.烟草秸秆还田的效果研究初报[J].湖南农业科学,2002,(6):34-35.
    [14]胡延杰,翟明普,武觐文,等.杨树刺槐混交林及纯林土壤酶活性的季节性动态研究[J].北京林业大学学报,2001,23(5):23-26.
    [15]哈兹耶夫.土壤酶活性[M].北京:科学出版社,1980.
    [16]孙善峰,桂智凡,张盛周.太湖表层沉积物中三种水解酶的时空变化特征研究[J].北方环境,2012,24(4):111-124.
    [17]刘广深,徐东梅,许中坚,等.用通径分析法研究土壤水解酶活性与上壤性质的关系[J].土壤学报,2003,40(5):756-762.
    [18]李勇.原始土壤酶活性与肥力形成实质初探[A].陕西土壤学会.论文汇编[C].1987.53-54.
    [19]靳振江,邰继承,潘根兴,等.荆江地区湿地与稻田有机碳、微生物多样性及土壤酶活性的比较[J].中国农业科学,2012,45(18):3773-3781.
    [20]闵九康,刘寄陵.土壤酶的研究及其意义[J].土壤肥料,1978,5:16-19.
    [21]马晓飞,李艳红,杨爱霞,等.新疆甘家湖湿地边缘带土壤酶活性研究[J].十旱区研究,2012,29,3:405-412.
    [22]聂大刚,王亮,尹澄清.白洋淀湿地磷酸酶活性及其影响因素[J].生态学杂志,2009,28(4):698-703.
    [23]倪进治,徐建民,谢正苗,等.不同施肥处理下土壤水溶性有机碳含量及其组成特征的研究[J].土壤学报,2003,40(5):724-730.
    [24]潘丹丹,艾应伟,张志卿,等.四川丘陵区典型边坡土壤酶活性的季节动态[J].水土保持通报,2013,33(1):111-114.
    [25]祁和意.土壤酶简介[J].陕西农业科学,1981,6:37-38.
    [26]任勃,杨刚,谢永宏,等.洞庭湖不同土地利用方式对土壤酶活性的影响[J].生态与农村环境学报,2009,25(4):8-13.
    [27]沈芳芳,袁颖红,樊后保,等.氮沉降对杉木人工林土壤有机碳矿化和土壤酶活性的影响[J].生态学报,2012,32(2):0517-0527.
    [28]陶宝先,张金池,愈元春,等.苏南丘陵地区森林土壤酶活性季节变化[J].生态环境学报,2010,19(10):2349-2354.
    [29]谈嫣蓉.青藏高原东北缘高寒草甸土壤酶活性及土壤养分的研究[D].兰州大学,2012.
    [30]王亮,周怀东,王世岩,等.白洋淀湿地酶活性空间变化规律研究[J].生态环境学报,2012,21(5):853-857.
    [31]王荣乐,王洪铭.秸秆资源的综合利用[J].福建热作科技,2005,30(1):41-42.
    [32]王晓龙,徐力刚,白丽,等.鄱阳湖典型湿地植物群落土壤酶活性[J].生态学杂志,2011,30(4):798-803.
    [33]王晓鸿.鄱阳湖湿地生态系统评估[M].北京:科学出版社,2005.
    [34]万忠梅,宋长春,郭跃东,等.毛苔草湿地土壤酶活性及活性有机碳组分对水分梯度的响应[J].生态学报,2008,28(12):5980-5986.
    [35]万忠梅,宋长春,杨桂生,等.三汀平原湿地土壤活性有机碳组分特征及其与土壤酶活性的关系[J].环境科学学报,2009,29(2):406-412.
    [36]万忠梅,宋长春.小叶章湿地土壤酶活性分布特征及其与活性有机碳表征指标的关系[J].湿地科学,2008,6(2):251-254.
    [37]万忠梅,宋长春.三江平原小叶章湿地土壤酶活性的季节动态[J].生态环境学报,2010,19(5):1215-1220.
    [38]熊浩仲,王开运,杨万勤.川西亚高山冷杉林和白桦林土壤酶活性季节动态[J].应用 与环境生物学报,2004,10(4):416-420.
    [39]徐明喜,张银龙,陆珺,等.芦苇收割对湖滨湿地土壤酶活性的影响[J].南京林业大学学报(自然科学版),2011,35(6):143-146.
    [40]徐秋芳,朱志建.不同森林植被下土壤酶活性研究[J].浙江林业科技,2003,3(4):9-11.
    [41]夏清阳.玉米秸秆的利用[J].中国饲料,2001,18:33-35.
    [42]杨梅,谭玲,叶绍明,等.桉树连作对土壤多酚氧化酶活性及酚类物质含量的影响[J].水土保持学报.2012,26(2):165-174.
    [43]俞新妥.杉木连栽林地土壤生化特性及土壤肥力的研究.福建林学院学报,1989,9(3):263-271.
    [44]杨万勤,钟章成.缙云山森林土壤酶活性的分布特征、季节动态及其与四川大头茶的关系研究[J].西南师范大学学报(自然科学版),1999,24(3):318-324.
    [45]杨文英,邵学新,梁威,吴明,等.杭州湾湿地土壤酶活性分布特征及其与活性有机碳组分的关系[J].湿地科学与管理,2011,17(2):54-58.
    [46]杨远平.毕节地区烟地土壤中磷酸酶活性的研究[J].贵州农业科学,2002,30(1):33-34.
    [47]周江敏,代静玉,潘根兴.土壤中水溶性有机质的结构特征及其与富里酸、胡敏酸的比较[J].土壤,2004,36(1):46-50
    [48]周礼恺.土壤酶学[M].北京:科学出版社,1987:118-159.
    [49]周礼恺,张志明,陈恩凤.黑上的酶活性[J].土壤学报,1981,2:159-166.
    [50]张娜,吴沿友,刘荣成,等.泉州湾红树林河口湿地土壤氧化酶活性的时空变化[J].江苏农业科学,2009,5:270-272.
    [51]张鹏,田兴军,何兴兵,等.亚热带森林凋落物层土壤酶活性的季节动态[J].生态环境,2007,16(3):1024-1029.
    [52]张其水,俞新妥.杉木连栽林地营造混交林后土壤微生物的季节动态研究[J].生态学报,1990,10(2):121-125.
    [53]曾思齐.湘东丘陵区次生林土壤微生物的分布及酶的活性研究[J].中南林学院学报,1998,18(2):20-23.
    [54]郑文教.福建和溪亚热带雨林土壤酶活性研究[J].生态学杂志.1995,14(6):16-20.
    [55]张银龙,林鹏.秋茄红树林土壤酶活性时空动态[J].厦门大学学报(自然科学版),1999,38(1):129-136.
    [56]周易勇,李建秋,张敏.湿地中碱性磷酸酶的动力学特征与水生植物的关系[J].湖泊科学,2002,2:80-86.
    [57]张宇,乌恩,李重祥,等.长江中下游湖泊沉积物酶活性及其与富营养化的关系[J].应用与环境生物学报,2011,17(2):196-201。
    [58]Ajwa H A, Dell C J, Rice C W. Changes in enzyme activities and microbial biomass of tallgrass prairie soil as related to burning and nitrogen fertilization[J]. Soil Biology and Biochemistry,1999,31:769-777.
    [59]Allison S D. Diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments[J]. Ecology Letters,2005,8: 626-635.
    [60]Allison S D, Treseder K K. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils[J]. Global Change Biology,2008,14: 2898-2909.
    [61]Allison S D, Wallenstein M D, Bradford M A. Soil-carbon response to warming dependent on microbial physiology[J]. Nature geosciences,2010,3:336-339.
    [62]Allison S D, Vitousek P M. Extracellular enzyme activities and carbon chemistry as drivers of tropical plant litter decomposition[J]. Biotropica,2004,36: 285-296.
    [63]Baldrian P, Trogl J, Frouz J, et al. Enzyme activities and microbial biomass in Lopsoil layer during spontaneous succession in spoil heaps after brown coal mining[J]. Soil Biology and Biochemisty,2008,40:2107-2115.
    [64]Bell T H, Klironomos J N, Henry H A L. Seasonal Responses of Extracellular Enzyme Activity and Microbi al Biomass to Warming and Nitrogen Addition[J]. Soil Science Society of America Journal,2010,74:820-828.
    [65]Boddy E, Roberts P, Hill P W. et al. Turnover of low molecular weight dissolved organic C (DOC) and microbial C exhibit different temperature sensitivities in Arctic tundra soils[J]. Soil Biology & Biochemistry,2008,40:1557-1566.
    [66]Boetius A, Lochte K. Regulations of microbial enzymic degradation of organic matter in deep sea sediments[J]. Mar. Ecol. Prog. Ser.1994,104:299-307.
    [67]Brockett B F T, Prescott C E, Grayston S J, et al. Soil moisture is the major factor influencing microbial community structure and enzyme activities across seven biogeoclimatic zones in western Canada[J]. Soil Biology & Biochemistry, 2012,44:9-20.
    [68]Burns R G. Soil enzymes[M]. New York:Academic Press,1978:295-340.
    [69]Burns R G, DeForest J L, Marxsen J, et al. Soil enzymes in a changing environment: Current knowledge and future directions [J]. Soil Biology & Biochemistry,2013, 58:216-234.
    [70]Busto M D, Perez-Matcos M. Extraction of humic-β-glucosidase fractions from soil[J]. Biology and Fertility of Soils,1995,20:77-82.
    [71]Cacciatore D A, Mcneil M A. Principles of soil bioremediation[J]. Biocycle,1995, 36(10):61-64.
    [72]Caldwell B A. Enzyme activities as a component of soil biodiversity:A review[J]. Pedobiologia,2005,49(6):637-644.
    [73]Caplan j A. The worldwide bioremediation industry:prospects for protits [J]. Trends Biotechnol,1993,11:320-323.
    [74]CHROST R J. Microbial enzymes in aquatic environments [M]. New York:Spronger-Verlag.1991.
    [75]Decker K L M, Boemer R E J, Morris S J. Scale dependent patterns of soil enzyme activity in a forest landscape[J]. Canadian Journal Of Forest Research,1999, 29(2):232-241.
    [76]Dell E A, Carley D S, Rufty T, et al. Heat stress and N fertilization affect soil microbial and enzyme activities in the creeping bentgrass (Agrostis Stolonifera L.) rhizosphere[J]. Applied Soil Ecology,2012,56:19-26.
    [77]Dick R P, Rasmussen P E, Kerle E A. Influence of long-term residue management on soil enzyme activities in relation to soil chemical properties of a wheat-fallow system[J]. Biology and Fertility of Soils,1988,6:159-164.
    [78]Douterelo I. Goulder R, Lillie M. Enzyme activities and compositional shifts in the community structure of bacterial groups in English wetland soils associated with preservation of organic remains in archaeological sites[J]. International Biodeterioration & Biodegradation,2011,65:435-443.
    [79]Duan S, Bianchi T S, Sampere T P. Temporal variability in the composition and abundance of terrestrially-derived dissolved organic matter in the lower Mississippi and Pearl Rivers[J]. Marine Chemistry,2007,103:172-184.
    [80]Edwards C A. Biological Interaction in Soil, in Agriculture, Ecosystem and Environment[M]. London:Academic Press,1988:24.
    [81]Farrell M, Hill P W, Farrar J, et al. Seasonal variation in soluble soil carbon and nitrogen across a grassland productivity gradient[J]. Soil Biology & Biochemistry,2011,43:835-844.
    [82]Freeman C, Li ska G, Ostle N J, et al. The use of fluorogenic substrates for measuring enzyme activity in peatlands[J]. Plant and Soil,1995,175(1): 147-152.
    [83]Freeman C, Ostle N, Rang H. An enzymic'latch'on a global carbon store[J]. Nature,2001,409:149.
    [84]German D P, Weintrau M N, Grandy A S, et al. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies[J]. Soil Biology and Biochemistry,2011,43:1387-1397.
    [85]Giai C, Boerner R EJ. Effects of ecological restoration on microbial activity, microbial functional diversity, and soil organic matter in mixed-oak forests of southern Ohio, USA[J]. Applied Soil Ecology,2007,35:281-290.
    [86]Gorham E. Northern peatlands:role in the carbon cycle and probable responses to climatic warming[J]. Ecological Applications,1991,1:182-195.
    [87]Grandy A S, Neff J C, Weintraub M N. Carbon structure and enzyme activities in alpine and forest ecosystems[J]. Soil Biology & Biochemistry,2007,39: 2701-2711.
    [88]Hackl E, Pfeffer M, Dona C, et al. Composition of the microbial communities in the mineral soil under different types of natural forest[J]. Soil Biology & Biochemistry,2005.37,661-671.
    [89]Hishi T, Hirobe M, Tateno R, et al. Spatial and temporal patterns of water-extractable organic carbon (WEOC) of surface mineral soil in a cool temperate forest ecosystem [J]. Soil Biology & Biochemistry,2004,36: 1731-1737.
    [90]Iyyemperumal K, Shi W. Soil enzyme activities in two forage systems following application of different rates of swine lagoon effluent or ammonium nitrate [J]. Applied Soil Ecology,2008,38:128-136.
    [91]Jackson C R, Foreman C M, Sinsabaugh R L. Microbial enzyme activities as indicator of organic matter processing rates in a lake Erie coastal wetland[J]. Freshwater Biology,1995,34:329-342.
    [92]Jenkinson D S, Adams D E, Wild A. Model estimates of C02 emissions from soil in response to global warming[J]. Nature,1991,351,304-306.
    [93]KANG H, FREEMAN C. Phosphatase and arylsulphatase activities in wetland soils: annual variation and controlling factors [J]. Soil Biology & Biochemistry,1999, 31:449-454.
    [94]Kalinowska, K. Eutrophication process in shallow, Macrophyte dominated lake phosphatase activity in Lake Luknaino(Poland) [J]. Hydrobio]ogia,1997, 342/343:395-399
    [95]Kiikkila 0, Kitunen V, Smolander S. Chemical and biological characterization of dissolved organic matter derived from Norway spruce litter divided into fractions according to molecular size[J]. European Journal of Soil Biology,2012, 50:109-111.
    [96]Lal R. Soil carbon sequestration impacts on global climate change and food security[J]. Science,2004,304:1623-1627.
    [97]Liu J X,Orskov E R, Chen X B. Optimization of steam treatment as a method for upgrading rice straw as feeds [J]. Animal Feed Science and Technology,1999,76: 345-357.
    [98]Lucas R W, Casper B B, Jackson J K, et al. Soil microbial communities and extracellular enzyme activity in the New Jersey Pinelands[J]. Soil Biology and Biochemistry,2007,39:2508-2519.
    [99]Malinina M S, Ivanilova S V. Phenol Compounds in Solutions of Soils of Di fferent Types in the Central Forest State Biosphere Reserve[J]. Eurasian Soil Science, 2008,41(4):377-385.
    [100]Marx M C, Wood M, Jarvis S C. A microplate fluorimetric assay for the study of enzyme diversity in soils[J]. Soil Biology & Biochemistry,2001,33(12-13): 1633-1640.
    [101]Martens D A, Johan son J B, Frankenberger W T. Pmduction and persistence of soil enzymes with repeated additions of organic residues[J]. Soil Science,1992, 153(1):53-611.
    [102]Mendes C, Bandick A K, Dick R P, et al. Microbialbiomass and activities in soil aggregates by winter cover crops [J]. Soil Science Society of America Journal 1999,63:873-881.
    [103]McDaniel M D, Kaye J P, Kaye M W. Increased temperature and precipitation had limited effects on soil extracellular enzyme activities in a post-harvest forest[J]. Soil Biology & Biochemistry,2012:1-9.
    [104]Mclatchey G P, Reddy K R. Regulation of organic matter decomposition and nutrient release in a wetland soil[J]. Journal of Environmental Quality,1998,27(5): 1268-1274.
    [105]Michalzik B, Kalbitz K, Park J H. Fluxes and concerntrations of dissolved organic carbon and nitrogen¥ a synthesis for temperature forests[J]. Biogeochemistry, 2001,52:173-205.
    [106]Mitchell J F B, Johns T C, Gregory J M, et al. Climate response to increasing levels of greenhouse gases and sulphate aerosols [J]. Nature,1996,376:501-504.
    [107]Mitsch W. J, Cronk J K, WU X, et al. Phosphorus retention in constructed fresh water riparian marshes[J]. Ecological Application,1995,5:830-845.
    [108]Nakas J P, Gould W D, Klein D A. Origin and expression of phosphatase activity in a semi-arid grassland soil[J]. Soil Biology and Bio-chemistry,1987,19(1): 13-18.
    [109]Park J H, Kalbitz K, Matzer E. Resource control on the production of dissolved organic carbon and nitrogen in a deciduous forest floor[J]. Soil Biology & Biochemistry,2002,34:813-822.
    [110]PULFORD I D, TABATABAI M A. Effect of the waterlogging on enzyme activities in soils[J]. Soil Biology & Biochemistry,1988,20:215-219.
    [111]Rodriguez-Murillo J C, Almendros G, Knicker H. Wetland soil organic matter composition in a Mediterranean semiarid wetland (LasTablas de Daimiel, Central Spain):Insight into different carbon sequestration pathways[J]. Organic Geochemistry,2011,42,762-773.
    [112]Schinner F, Ohlinger R, Kandeler E, et al. Methods in soilbiology[M]. Berlin: Springer-Verlag,1995:162-232.
    [113]Shackle A B C. Freemanaand B. Soil Biology and Biochemistry Volume 32, Issue 13, November 2000, Pages 1935-1940.
    [114]Shi W, Dell E, Bowman D, et al. Soil enzyme activities and organic matter composition in a turfgrass Chronosequence[J]. Plant and Soil,2006,288: 285-296.
    [115]SINSABAUGH R L, ANTIBUS R K, LINKINS A E, et al. Wood decomposition:nitrogen and phosphorus dynamics in relation to extracellular enzyme activity[J]. Ecology, 1993,74:1586-1593.
    [116]Sinsabaugh R L, Lauber C L, Weintraub M N, et al. Stoichiometry of soil enzyme activity at global scale[J]. Ecology Letters,2008,11:1252-1264.
    [117]Sinsabaugh R L, Klug M J, Collins H P, et al. Characterizing soil microbial communities//Robertson G P, Coleman D C, Bledsoe C S, et al. Standard soil methods for long-term ecological research. New York:Oxford University Press.1999:329-338.
    [118]Sinsabaugh R L. Phenol oxidase, peroxidase and organic matter dynamics of soil[J]. Soil Biology & Biochemistry,2010,42:391-404.
    [119]Smolander A, Kitunen V. Comparison of tree species effects on microbial C and N transformations and dissolved organic matter properties in the organic layer of boreal forests[J]. Applied Soil Ecology,2011,49:224-233.
    [120]Sowerby A, Emmett B, Beier C, et al. Microbial community changes in heathland soil communities along a geographical gradient:interaction with climate change manipulations[J]. Soil Biology and Biochemistry,2005,37(10):1805-1813.
    [121]Strickland M S, Callaham M A, Davies C A, et al. Rates of in situ carbon mineralization in relation to land-use, microbial community and edaphic characteristics[J]. Soil Biology & Biochemistry,2010,42:260-269.
    [122]Stursova M, Sinsabaugh R L. Stabilization of oxidative enzymes in desert soil may limit organic matter accumulation[J]. Soil Biology & Biochemistry,2008, 40:550-553.
    [123]Stursovd M, Baldrian P. Effects of soil properties and management on the activity of soil organic matter transforming enzymes and the quantification of soil-bound and free activity[J]. Plant and Soil,2011,338:99-110.
    [124]Tian L, Dell E, Shi W. Chemical composition of dissolved organic matter in agroecosystems:Correlations with soil enzyme activity and carbon and nitrogen mineralization[J]. Applied Soil Ecology,2010,46:426-435.
    [125]Toberman H, Evans CD, Freeman C, et al. Summer drought effects upon soil and litter extracellular phenol oxidase activity and soluble carbon release in an upland Calluna heathland[J]. Soil Biology & Biochemistry,2008,40:1519-1532.
    [126]Trasar-Cepeda C, Hernandez T, Garcia C. Soil enzymeology in the recycling of organic wastes and environment.2012, Berlin:Springer,21-271.
    [127]Unger, I M, Motavalli, P P, Muzika, R M. Changes in soil chemical properties with flooding:A field laboratory approach[J], Agriculture ecosystem & environment.2009,131(1-2):105-110.
    [128]Verchot L V, Borelli T. Application of para-nitrophenol(pNP) enzyme assays in degraded tropical soils[J]. Soil Biology and Biochemistry,2005,37:625-633.
    [129]WALDROP M P, FIRESTONE M K. Altered utilization patterns of young and old soil C by microorganisms caused by temperature shifts and N additions [J]. Biogeochemistry,2004,67:235-248.
    [130]Waldrop M P, Zak D R, Sinsabaugh R L, et al. Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity [J]. Ecological Applications,2004,14:1172-1177.
    [131]WRIGHT A L, REDDY K R. Phosphorus loading effects on extracellular enzyme activity in everglades wetland soils[J]. The Soil Science Society of America Journal,2001,65(2):588-599.
    [132]Yao X H, Min H, Lu Z H, et al. Influence of acetamiprid on soil enzymatic activities and respiration[J]. European Journal of Soil Biology,2006,42(2): 120-126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700