用户名: 密码: 验证码:
开放型嵌入式旋转机械自动平衡控制系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
转子自动平衡系统多年来一直是工程技术研究与开发的热点领域,具有很大的发展潜力。该项技术不仅可以消除运行中随机产生的动不平衡、实时减小设备振动,而且可以有效延长转动设备的运行周期、减少故障停机、降低维修费用,经济效应可观。同时其潜在的应用范围极为广泛,目前已知的应用报道,不仅有压缩机、汽轮机、离心分离机等大型机械设备,而且还有类似于硬盘磁头等高精密旋转机构。事实上,任何需要保持旋转体稳定运行的机械机构都是其潜在应用对象,因而转子自动平衡技术的发展及应用前景非常广阔。
     作为国家自然科学基金项目《机械复杂系统建模仿真、运行优化和自愈调控理论与方法》(编号:50635010)的组成部分,本课题在总结数种典型自动平衡系统的基础上,以自愈调控理论为指导,讨论了工业应用中自动平衡控制系统可能遇到的几类实际问题及其解决方案;通过数学建模对自动平衡控制算法与不平衡信号处理算法进行了仿真研究;分别就连续注排式平衡头、单一注入式平衡头以及电磁式平衡头等三类平衡头构造了开放型嵌入式自动平衡控制系统,并利用北京化工大学DSE中心超重力机实验台进行物理验证;作为自动平衡最小系统的补充完善,探讨了可用于嵌入式环境的旋转机械自动推理故障诊断系统;最终逐步完善了具有自主知识产权的开放型嵌入式转子自动平衡控制系统样机,为该项技术的国产化、工业化进行了初步探索。课题主要工作有:
     (1)典型自动平衡控制系统分析与总结
     对北京化工大学DSE中心现有的三类典型自动平衡系统(连续注排式自动平衡系统、单一注液式自动平衡系统、电磁式自动平衡系统)进行了综述与比较,分析了自动平衡系统中各组成部件的结构,研究了配重原理及平衡原理;在此基础上讨论了自动平衡控制系统在工业现场实际应用中需要解决的几个核心问题。
     (2)构建开放型嵌入式自动平衡系统硬件平台
     针对工业现场可能存在的粉尘环境、振动环境、污染环境及狭窄空间等多种不利情况,选用PC/104标准总线作为系统硬件开发平台并对系统硬件进行功能划分,通过“从顶至底”的模块化设计,在最小功能系统的基础上,针对不同类型平衡头与传感器,配合相应功能的扩展单元模块,进而实现对多种平衡头的控制,最大限度的匹配与利用现有资源。
     (3)控制算法仿真与优化
     工业转子自动平衡控制有其特殊性,表现在:1)仅允许极小范围内可预见的控制超调,从安全角度而言,一般要求不存在超调;2)系统过渡过程中的振荡不仅是对转子工况的干扰,而且将降低平衡头的平衡能力,需要尽可能抑制;3)随着生产负荷等外部条件的变化,转子系统的振动范围可能发生变化,平衡控制系统需要在多个设定值之间平滑过渡。另一方面,嵌入式系统中可利用的硬件资源十分有限。根据这些特点,本课题着重研究了基于迭代学习算法的自动平衡控制策略并利用向量几何原理改进了基本算法,从理论上证明了其收敛性、鲁棒性等关键性质;建立了超重力机转子数学模型,在模型振动特性分析基础上,对PI增量控制、基本迭代学习控制以及基于几何分析的迭代学习控制进行了仿真研究,并确立了适于转子自动平衡控制的迭代学习算法结构,给出了相关控制参数范围。
     (4)不平衡量信号提取与处理
     不平衡量信号的提取是平衡控制系统的核心问题之一,直接影响到最终的控制效果,特别是避免平衡控制中的“错调”现象很大程度上依赖于不平衡信号提取的精度与准确性。结合系统硬件资源较少,而且是时变参数测量对象等因素,本课题着重考察了自适应滤波算法在不平衡振动信号提取中的应用,并对基本LMS算法进行了改进。利用国际开源振动测试数据库中的信号数据作为分析基准,对比了基本LMS算法、基于向量分析的LMS算法、维纳滤波等自适应信号处理方法,结果表明基于向量分析的LMS算法在算法复杂度、系统资源消耗、信号提取精度等方面有着较好的均衡性。
     (5)构建旋转机械自动推理故障诊断系统
     机械振动原因繁多,不是任意振动均可通过自动平衡系统进行校正。作为本课题最小功能系统的扩展模块,旋转机械自动推理故障诊断系统的设计目标是对于不可进行自动平衡的振动进行判别并提供可能故障原因的排列,通过融合粗糙集约简、规则属性化、信息模糊化等手段,降低人工输入次数,令系统自动推理程度得以大幅提高。
     (6)开放型嵌入式自动平衡控制系统样机
     结合上述各项工作,逐步完善系统结构,获取开放型嵌入式自动平衡控制系统的原始样机。
On-line rotor auto-balancing has been a hot area of engineering research and development over the years, which has a great potential of innovation. This technology can not only eliminate the dynamic random imbalances and reduce real-time equipment vibrations during rotor's running period, but also can effectively extend the operation cycle of rotating machinery, decrease malfunction downtimes, save maintenance costs, which has a very high economic value. Moreover, its potential application area is extremely broad. According to the reports so far, the applications cover not only large mechanical equipment, like compressors, turbines and centrifuges, but also highly precision rotary mechanism such as the hard disk drive heads. In fact, any machinery needs to maintain the stable operation of rotating facility is the latent target, so the development and application prospects of rotor on-line auto-balancing technology are very bright.
     As a part of the National Natural Science Foundation Project:"the theory and method for complex mechanical systems modeling, simulation, operation optimization and self-recoverling control" (No.50635010), this research project first summarized several typical auto-balancing system, and then discussed several industrial field problems auto-balancing control system may encounter and their solutions under the guidance of self-recovering theory. The simulation studies of self-recovering control and signal processing algorithms for auto-balancing were done using a custom-built mathematical higee rotor model. Three different on-line auto-balancing control systems were built up respectively for three different kinds of balancers which are the continuous injection-discharge liquid balancer, the single injection liquid and the electromagnetic balancer. All the systems were physical tested through the experimental platform. An embedded usage customized auto-reasoning fault diagnosis system for rotating machinery got studied as a part of wellappointedness of the minimum auto-balancing control system. Finally, a prototype control system with independent intellectual property was completed, which may build the initial foundation for the localization and industrialization of this bright technology. The main taskes of this project contained:
     (1) Comparison and analysis of typical auto-balancing systems
     There are three kinds of auto-balancing system in the DSE Center of Beijing University of Chemical Technology, which are:the continuous injection-discharge liquid auto-balancing system, the single injection liquid auto-balancing system, and the electromagnetic auto-balancing system. They represent the main realization forms of auto-balancing theory. Based on the review and comparison, system structures were analyzed, the balancing principles were investigated, and some key issues on auto-balancing control system, which need to be solved in the industrial application field, were come into question.
     (2) Hardware realization of open embedded auto-balancing system
     Dust, vibration, pollution or narrow install space, are just some cases of the adverse conditions which may exist in the industrial field. Hence, PC/104 bus was chosen as the system hardware platform. After the system function division, hardware modules were designed "from the top to the bottom". According to the different types of balancers and sensors, corresponding expansion modular boards can be loaded to the minimum function system. In this way, the existing resources could be maximizing used.
     (3) Simulation and optimization of auto-balancing control algorithms
     The auto-balancing control process of an industrial rotor has its own particularity, manifested in:1) only a very small range of overshoot is allowed, otherwise it may cause malfunctions. In general, no overshoot is demanded; 2) the transition oscillation is a kind of interference to the balance ability of the balancer, hence it should be inhibited as much as possible; 3) With the change in production load or other external conditions, the vibration range of rotor system may be different, balance control system needes smooth transitions between multiple setpoints. On the other hand, the whole control process will be realized in an embedded system which has limited available hardware resources. So in this project, the Iterative Learning Control (ILC) algorithm was highly focused on. Vector Geometry was used to improve the basic algorithm of ILC. Then a mathematical model of higee rotor was achieved. Based on it, the standard PI increment control algorithm, the basic ILC algorithm and its modification algorithm with vector analysis got compared. With the conclusions of theory analysis and simulation studies, the algorithm structure of ILC suitable for auto-balancing control was eventually established, and the ranges of control parameters were given out.
     (4) Extraction and processing of unbalance signal
     Unbalance signal extrction is a big issue in balancing control system, which has a direct impact on the final control effects. In particular, to avoid the "wrong direction" phenomenon during the control process greatly dependents on the precision and accuracy of this extraction progress. Due to the limited hardware resources, time-varying parameters and other factors, adaptive filtering algorithm was used here, and the basic LMS algorithm has been modified. An international open-source database of vibration signal was used as the benchmark to test and compare the adaptive signal processing ability of the basic LMS algorithm, its modification algorithm and the Wiener filter. The results showed that the modified LMS algorithm based on vector analysis had a good balance in the computational complexity, the system resource consumption, the signal extraction precision and other indexes.
     (5) Construction of auto-reasoning mechanism for rotating machinery fault diagnosis system
     There are so many reasons leading to mechanical vibration that not any one can be inhibited by the auto-balancing system. As an extension module of this open embedded auto-balancing system, the design target of rotating machinery auto-reasoning fault diagnosis system is to distinguish the vibration reason in order to determine whether the auto-balancing system run or not. Moreover, it may provide a guidance of possible fault cause to on-site operators. The degree of auto-reasoning was substantial increased by rough set simplification, rule property restructured, and fuzzy information.
     (6) The prototype of open embedded auto-balancing control system
     Base on the previous studies, the system structure was improved step by step, finally achieved its original prototype.
引文
[1]高金吉.装备系统故障自愈原理研究[J].中国工程科学,2005.vol.7(5):43-48
    [2]徐滨士,张伟,刘世参.现代装备智能自修复技术[J].中国表面工程,2004.vol.17(1): 1-4
    [3]张鹏.连续注排式自动平衡头设计及控制算法[D].机电工程学院,北京化工大学,北京.2006
    [4]高金吉.高金吉院士谈装备系统故障自愈工程[J].中国表面工程,2005.vol.18(4)
    [5]Vegte J V. Continuous automatic balancing of rotating system[J]. Journal of Mechanical Engineering Science,1964. vol.6(3):264-269
    [6]L. R. T. Vegte J V. Balancing of rotating system during operation [J]. Journal of Sound and Vibration,1978. vol.57(2):225-235
    [7]张鸿海.智能式砂轮在线自动平衡仪[J].航空精密制造技术,1994.vol.30(1):7-9
    [8]李勇,陆永平.采用永磁频差电动机的自动平衡头[J].微特电机,1998.vol.26(5):31-33
    [9]欧阳红兵,汪希萱.两种新型电磁式在线自动平衡头[J].机械制造,2002.vol.40(455):47-48
    [10]LORD. http://www. lord. com[OL]
    [11]J.O. Birkenstockv D. Multi-chambered fluid balancing apparatus[P]. U. S. Patent,1976
    [12]J.0. Birkenstockv D. System for compensating the unbalance of a rotating body, especially of a grinding wheel[P]. U. S. Patent,1976
    [13]W. J. R. Chen C M, Shieh C M, Chang W P. Device for on-line automatic fluid injection balancing system[P], U. S. Patent,1994
    [14]Hofmann D. Apparatus for compensating for unbalance of a rotary body[P], U. S. Patent,1977
    [15]贺世正.释放液体式自动平衡头的研究[J].浙江大学学报,2001.vol.35(4):418-422
    [16]Z. P. Gao Jinji. Simulative Study of Automatic Balancing of Grinding Wheel Using a Continuously-Dripping Liquid-Injection Balancing Head[C]. Proc. The 6th World Congress on Intelligent Control and Automation,2006
    [17]高金吉,张鹏.脉码调制和脉宽调制混合模式流量调节系统及调节方法[P]中国专利局,2006
    [18]高金吉,张鹏,冯坤.液体式转子在线自动平衡头[P]中国专利局,2005
    [19]钟一谔.转子动力学[M].清华大学出版社,1987
    [20]王济,胡晓.MATLAB在振动信号处理中的应用[M].中国水利水电出版社,知识产权出版社,2006
    [21]刘健,潘双夏,杨克己,冯培恩.动平衡测量数字滤波方法研究[J].机械强度,2005.vol.27(1):38-43
    [22]杨克己,武二永.高精度动平衡测量中自适应滤波技术的应用研究[J].仪器仪表学报,2005.vol.26(1):32-36
    [23]王洪,彭熙伟,李占宏,侯增广.基于FFT的车轮动平衡检测技术[J].北京理工大学学报,2002.vol.22(3):300-302
    [24]郑建彬.基于DFT的动平衡机不平衡量提取算法[J].武汉理工大学学报(交通科学与工程版),2002.vol.26(3):318-320
    [25]郑建彬,田春仿.基于离散小波变换的动平衡机不平衡量提取算法研究[J].测控技术,2002.vol.21(8):21-26
    [26]卿湘运,段红,魏俊民.谐波小波在动平衡机不平衡量信号提取中的应用[J].浙江工程学院学报,2003.vol.20(2):100-103
    [27]J. Blazer.PC/104技术问题解答[OL]. http://www.rtd.cn/question/
    [28]Tom Barnum.描绘PC/104未来的蓝图[R].PC/104协会,2004
    [29]PC/104嵌入式协会.PC/104规范V2.5[S].2003
    [30]池荣虎.非线性离散时伺系统的自适应迭代学习控制及应用[D].交通运输学院系统工程专业,北京交通大学,北京,2006
    [31]杨胜跃.迭代学习控制算法设计与优化研究[D].信息科学与工程学院控制理论与控制工程,中南大学,2004
    [32]K. S. Arimoto S., Miyazaki F. Bettering operation of robots by learning[J]. Journal of Robotic Systems,1984. vol.1 (2):123-140
    [33]Haykin S. Adaptive Filtering Theory[M]. Prentice-Hall,2002
    [34]谢胜利,何昭水,高鹰.信号处理的自适应理论[M].科学出版社,2006
    [35]H.M. E. J. Widrow B. Adaptive switching circuits[J]. REWescon Conv. Rec.,1960.vol.4:96-104
    [36]高鹰,谢胜利.一种变步长LMS自适应滤波算法及分析[J].电子学报,2001.vol.29(8):1094-1097
    [37]覃景繁,欧阳景正.一种新的变步长自适应滤波算法[J].数据采集与处理,1997.vol.12(3):71-194
    [38]吴光弼,祝琳瑜.一种变步长LMS自适应滤波算法[J].电子学报,1994.vol.22(1) :55-60
    [39]U. T. Ozeki K. An adaptive filtering using an orthogonal projection to an affine subspace and its properties [J]. IECE,1984. vol.67 (2):126-132
    [40]W. J. Li X. L., Xie S. L. A new pre-processing method for multi-channel echo cancellation based on fuzzy control[C]. Proc. Fuzzy Systems and Knowledge Discovery 2005.837-840
    [41]M. K. Aboulnasr T. Selective coefficient update of gradient-based adaptive algorithms[C]. Proc. ICASSP,1996.1929-1932
    [42]Douglas S. C. Analysis and implementation of the max-NLMS adaptive filter[C]. Proc. The 29th Asilomr Conf. Signals and Systs. Comput,1995.659-663
    [43]Douglas S. C. Adaptive filters employing partical updates [J]. IEEE Trans. on CAS-Ⅱ Analog and Digital Signal Processing,1997. vol.44(3):209-216
    [44]A. T. Mayyas K. A. the leaky LMS algorithm:MSE analysis for Gaussian data[J]. IEEE Trans. on Signal Processing,1997. vol.45 (4):927-934
    [45]W. B. Walach E. The least mean fourth (LMF) adaptive algorithm and its family[J]. IEEE Trans. on Inf. Theory,1984. vol. IT-30:275-283
    [46]C. C. F. N. Zerguine A., Bettayeb M. Novel LMS-LMF adaptive scheme for echo cancellation[J]. Electronic Letter,1996. vol.32(19):1776-1778
    [47]高鹰,谢胜利.基于矩阵广义逆递推的自适应滤波算法[J].电子学报,2002.vol.30(7):1032-1034
    [48]梁亮,袁洪芳,曹晰.基于费舍尔判别分析法的故障诊断[J].计算机工程与设计,2008.vol.29(11):2897-2900
    [49]Y. H. Cao Xi, Liang Liang, Qi He. A DESIGN OF AUTOMATIC FAULT DIAGNOSIS SYSTEM FOR ROTATING MACHINERY[C]. Proc. The 3rd World Congress on Engineering Asset Management and Intelligent Maintenance Systems Conference,2008.221-228
    [50]Z. Pawlak. Rough set theory and its applications to data analysis [J]. Cybernetics and Systems,1998. vol.29:661-688
    [51]Z. P. S. K. M. W. W. Ziarko. Rough sets:probabilistic versus deterministic approach [J]. Man-Machine Studies,1988. vol.29:81-95
    [52]杨善林;倪志伟.机器学习与智能决策支持系统[M].科学出版社,2004
    [53]吴振生,杨国安,贾军峰,基于模糊多属性决策的旋转机械故障自动诊断系统[J].石油矿场机械,2006.vol.35(5):4-8
    [54]林辉,王林.迭代学习控制理论[M].西北工业大学出版社,1998
    [55]孙明轩,黄宝健.迭代学习控制[M].,国防工业出版社,1999
    [56]于少娟,齐向东,吴聚华.迭代学习控制理论及应用[M].机械工业出版社,2005
    [57]李书臣,李平,徐心和,胡玉娥.迭代学习控制理论现状与发展[J].系统仿真学报,2005.vol.17(4):904-908
    [58]李仁俊,韩正之.迭代学习控制综述[J].控制与决策,2005.vol.20(9):961-966
    [59]许建新,候忠生.学习控制的现状与发展[J].自动化学报,2005.vol.31(6)943-955
    [60]Xu J X. Recent advances in iterative learning control[J]. Acta Automatics Sinica,2005. vol.31(1),132-142
    [61]方忠,韩正之.迭代学习控制新进展[J].控制理论与应用,2002.vol.19(2)161-165
    [62]刘山.迭代学习控制系统设计及应用[D].控制科学与工程学系,浙江大学,杭州,2002
    [63]X. J. Bien Z. Iterative learning control:analysis, intergration and application[M]. Kluwer academic Publishers,1998
    [64]W.C. Chen Y. Iterative learning control:robustness and applications[M]. Springer-Verlag,1999
    [65]D. M. Moore K. L, Bhattacharyya S. P. Iterative learning control:A survey and new results [J]. Robot system,1992. vol.9(5):563-594
    [66]Moore K. L. Iterative learning control for deterministic systems[M]. Springer-Verlag,1993
    [67]Moore K. L. Multi-loop control approach to designing iterative learning controllers[C]. Proc. the 37th IEEE Conference on Decision and Control,1998. 666-671
    [68]谢胜利,谢振东,田森平.非线性滞后离散系统的学习控制算法[J].自动化学报,2001.vol.27(1):18-23
    [69]T. Y. Xu J X. Linear and nonlinear iterative learning control [M]. Springer-Verlag,2003
    [70]方忠,陈彭年,韩正之.时滞系统采样迭代学习控制[J].控制与决策,2001.vol.16(6):866-871
    [71]Saaba S S. On the P-type learning control [J]. IEEE Trans. on Automatic Control,1994. vol.39(11):2298-2302
    [72]H. K. M. Ben Z. Higher order iterative learning control algorithm[J]. IEEE Proc. D:Control Theory and Application,1989 vol.136(3)
    [73]e. Hideg. Design of a static neural element in an iterative learning control scheme [C]. Proc. the IEEE Conference on Decision and Control,1998.690-694
    [74]E. Amann. Iterative learning control for discrete time systems using optimal feedback and feed-forward actions[C]. Proc. the IEEE Conference on Decision and Control,1995.1696-1701
    [75]E. Pok Y M. Fuzzy PD Iterative Learning Control algorithm for improving tracking accuracy[C]. Proc. the IEEE International Conference on Systems, Man and Cybernetics 1998.1603-1608
    [76]T. S.-P. XIE Sheng-Li, XIE Zhen-Dong. New iterative learning control algorithms based on vector plots analysis [J]. Acta Automatics Sinica,2004. vol.30(2):161—165
    [77]Xu J X, "Analysis of iterative learning control for a class of nonlinear discrete time systems," Automatica,1997. vol.33(10):1905-1907
    [78]Arimoto S. Learning control theory for robot motion[J]. Adaptive Control Signal Processing,1990. vol.4(4):543-564
    [79]S. P. De Luca A. An iterative scheme for learning control gravity compensation in flexible robot arms[J]. Automatica,1994. vol.30(6):993-1002
    [80]B. Z.Park K H, Hwang D H. A study on the robustness of a PID-type iterative learning controller against initial state error[J].System Science,1999. vol.30(1):49-59
    [81]L.J.S. Chien C. A P-type iterative learning controller for robust output tracking of nonlinear time-varying systems[J]. International Journal on Control,1996. vol.64(2):319-334
    [82]S. D. M. Chen Y, Sones T M. A robust high-order P-type iterative learning controller using current iteration tracking error[J]. International Journal on Control,1997. vol.68 (2):331-342
    [83]S. Y. Pi D. The convergence of iterative learning control with open-closed loop P-type scheme for nonlinear time-varying systems [J]. Acta Automatics Sinica, 1999. vol.25(3):351-354
    [84]F. D. Heinzinger G, Paden D, et. Roboust learning control [C]. Proc. the 28th IEEE Conference on Decision and Control,1989.436-440
    [85]N. T. Arimoto S, Suzuki H. Robustness of P-type learning control with a forgetting factor for robot motions[C]. Proc. the 29th IEEE Conference on Decision and Control,1990.2640-2645
    [86]H. B. Sun M, Zhang X. PD-type iterative learning control for a class of uncertain time-delay systems with based initial state[J]. Control Theory and Applications,1998. vol.15(6):853-858
    [87]Shi Z. Iterative Control method for nonlinear discrete-time systems[J]. Control Theory and Applications,1998. vol.15(3):327-332
    [88]Y. X. Zeng N. Iterative learning control algorithm for nonlinear dynamical system[J]. Acta Automatics Sinica,1992. vol.18(2):168-176
    [89]G.Z.Chen Y, Wen C. Analysis of a high-order iterative learning control argorithm for uncertain nonlinear systems with state delays[J]. Automatica, 1998. vol.34(3):345-353
    [90]王仲鸿,王强,张东霞,姜齐荣.电力系统暂态稳定问题和迭代学习控制的研究[J].电力系统自动化,1999.vol.23(8):6-10
    [91]张兴国,林辉,胡林.迭代学习控制在电动伺服舵机系统中的应用[J].弹箭与制导学报,2006.vol.26(4):99-102
    [92]曹树平,罗小辉,张汉文,涂家祥.非线性电液位置伺服系统的迭代学习PID控制[J].机械科学与技术,2008.vol.27(1):19-22
    [93]杨明,高扬,于泳,徐殿国.基于迭代学习控制的交流伺服系统PI参数自整定[J].电机与控制学报,2005.vol.9(6):588-592
    [94]李丽娜,雷升印.迭代学习控制在伺服系统中的应用[J].中国科技信息,2006.vol.4:24-25
    [95]陈哲明,潘再平.基于迭代学习的开关磁阻电动机最优控制研究[J].浙江大学学报,2006.vol.40(1):25-28
    [96]徐敏.基于迭代学习控制理论的励磁控制研究[D].控制科学与工程,西北工业大学,西安,2005
    [97]纪友芳,张守伟,金运昌,王琳琳.稳定大罐液位调控模型的设计与应用[J].计算机测量与控制,2008.vol.16(5):660-662
    [98]王岩,付永领.模糊滑模迭代学习控制算法在液压系统中应用[J].北京航空航天大学学报,2007.vol.33(1):86-89
    [99]周育才,刘少军,刘忠伟.水压机液压位置保持系统迭代控制的仿真研究[J].锻压技术,2007.vol.32(6):116-119
    [100]阮小娥,万百五,高红霞.非线性工业过程控制系统的迭代学习控制与收敛性分析[J].控制理论与应用,2002.vol.19(1):73-79
    [101]阮小娥,万百五,高红霞,“具有滞后的饱和非线性工业控制系统的迭代学习控制,”自动化学报,2001.vol.27(2):219-223
    [102]阮小娥,李换琴,万百五.滞后工业工程稳态优化进程中的局部对称双积分型迭代学习控制[J].自动化学报,2003.vol.29(1):125-129
    [103]F. D. Heinzinger G, Paden D,. et. Stability of learning control with disturbances and uncertain initial conditions [J]. IEEE Trans. on Automatic Control,1992. vol.37(1):110-114
    [104]Arimoto S. Robustness of learning control for robot manipulators[C]. Proc. the 1990 IEEE International Conference On Robot and Automation,1990. 1528-1533
    [105]W. D. Sun Mingxuan. Robust discrete-time iterative learning control:Initial shift problem[C]. Proc. the IEEE Conference on Decision and Control,2001. 1211-1216
    [106]P. K. Pi Dao-Ying. Robustness of discrete nonlinear systems with open-closed-loop iterative learning control[C]. Proc.2002 International Conference on Machine Learning and Cybernetics,2002.1263-1266
    [107]Z. Z. J. Pi D Y, Sun Y X. On the robustness of open-closed-loop PI-type iterative learning controller for nonlinear systems [J]. 浙江大学学报,2001. vol.35 (5):479
    [108]Y. Y. Gao F, Shao C. Robust iterative learning control with applications to injection molding process[J]. Chemical Engineering Science,2001. vol.56(24):7025-7034
    [109]G. F.-R. Shao Cheng, Yang Yi. Robust stability of optimal iterative learning control and application to injection molding machine[J]. Acta Automatics Sinica,2003. vol.29(1):72-79
    [110]J. L. Shan Liu. Robust iterative learning control against disturbances and initialization errors for uncertain plants[C]. Proc. the World Congress on Intelligent Control and Automation (WCICA),2006.3815-3819
    [111]任雪梅,高为炳.任意初始状态下的学习控制[J].自动化学报,1994.vol.20(1):74-79
    [112]林辉,王林,戴冠中.迭代学习控制中的初始状态问题[C].Proc.第一届全球华人智能控制与智能自动化大会,1993
    [113]R. Y. Jian-Xin Xu. On initial conditions in iterative learning control[J]. IEEE Trans. on Automatic Control,2005. vol.50(9):1349-1354
    [114]G. S. S. Sun Mingxuan, Mareels Iven M Y. Adaptive repetitive learning control of robotic manipulators without the requirement for initial repositioning [J]. IEEE Trans. on Robotics,2006. vol.22(3):563-568
    [115]谢胜利,田森平,谢振东.基于几何分析的迭代学习控制快速算法[J].控制理论与应用,2003.vol.20(3):419-422
    [116]谢胜利,田森平,谢振东.基于向量图分析的迭代学习控制非线性算法[J].控制理论与应用,2004.vol.21(6):951-955
    [117]X. S.-1. Tian Sen-ping, Fu Yu-li. Fast Algorithm of Iterative Learning Control [J]. Journal of South China University of Technology (Natural Science Edition),2002. vol.30(5):37-40
    [118]田森平,谢胜利,谢振东.一类基于几何分析的迭代学习控制算法[J].控制与决策,2004.vol.19(9):1038-1041
    [119]张君海,石成英,林辉.基于向量图分析的一种迭代学习控制算法及其鲁棒性[J].控制理论与应用,2007.vol.24(1)
    [120]张君海,石成英,林辉.一种带角度修正的迭代学习控制算法[J].系统仿真学报,2006. vol.18 (Suppl.2):602-604
    [121]Chen Jian-feng. Hypergravity Technology and Its Application:A New Generation of Reaction and Separation Technology[M]. Chemical Industry Press,2003
    [122]冯伟,何立东,苏亦儒.超重力机主动平衡实验台的研制[J].科技信息,2007.vol.(13):266-267
    [123]欧阳红兵,赵勇彬,汪希萱.电磁式自动平衡头在线动平衡实验及应用研究[J].振动与冲击,2002.vol.21(1):24-26
    [124]汪希萱,曾胜.电磁式在线自动平衡系统及其动平衡方法研究[J].热能动力工程,2003.vol.18(1):53-57
    [125]欧阳红兵,汪希萱.两种新型电磁式在线自动平衡头[J].机械制造,2002.vol.40(455):47-48
    [126]葛哲学,陶利民.新型电磁式自动平衡装置的研究[J].机械,2001.vol.28(6):62-64
    [127]李勇,陆永平.采用永磁频差电动机的自动平衡头[J].微特电机,1998.vol.26(5):31-33
    [128]赵克中.磁力驱动技术与设备[M].化学工业出版社,2003
    [129]Paulo,S.R.D.自适应滤波算法与实现[M].2004,北京:电子工业出版社
    [130]Gelfand, S. B. Y., Wei; Krogmeier, J. V. The stability of variable step-size LMS algorithms [J]. IEEE Trans on Signal Processing,1999.47 (12):3277-3288
    [131]Aboulnasr T., M. K. A robust variable step-size lms-type algorithm:Analysis and simulations [J]. IEEE Trans on Signal Processing,1997.45(3):631-639
    [132]Marcos, S.M.,O. Tracking capability of the least mean square algorithm: Application to an asynchronous echo canceller[J]. IEEE Trans on Acoust, Speech, Signal Processing,1987. ASSP-35 (11):1570-1578
    [133]Lei Guo; Ljung, L. G.-J. W. Necessary and sufficient conditions for stability of LMS[J]. IEEE Trans on Automatic Control,1997.42(6):761-770
    [134]Harris, R. C., D.; Bishop, F. A variable step (VS) adaptive filter algorithm[J]. IEEE Trans on Acoustics, Speech and Signal Processing,1986. ASSP-34(4):309-316
    [135]R H Kwong, E.W.J. A variable step size LMS algorithm[J]. IEEE Trans on Signal processing,1992.40(7):1633-1642
    [136]Mathews, V. J. X., Z. A stochastic gradient adaptive filter with gradient adaptive step size[J]. IEEE Trans on Signal Processing,1993.41(7): 2075-2087
    [137]Shan, T. J. K., T. Adaptive algorithm with an automatic gain control feature [J]. IEEE Trans on Acoust, Speech, Signal Processing,1991.35(1): 122-127
    [138]Z Pawlak. Rough set theory and its applications to data analysis [J]. Cybernetics and Systems:An International Journal,1998,29:661-688
    [139]Z Pawlak, S K M Wong, W Ziarko. Rough sets:probabilistic versus deterministic approach[J]. Internationl Journal of Man-Machine Studies,1988,29:81-95
    [140]杨善林,倪志伟.机器学习与智能决策支持系统[M].1版.北京:科学出版社,2004
    [141]许宝杰,张建民,徐小力,等.粗糙集合理论在旋转机械故障诊断技术中的应用[J].机械设计与制造,2006.12:95-97
    [142]吴振生,杨国安,贾军峰.基于模糊多属性决策的旋转机械故障自动诊断系统[J].石油矿场机械,2006.35(5):4-8
    [143]高金吉.机泵群实时监测网络和故障诊断专家系统[J].中国工程科学,2001,3(9):41-47
    [144]张纪会,高齐圣,徐心和.自适应蚁群算法[J].控制理论与应用,2000,17(1):1-3
    [145]温文波,杜维.蚁群算法概述[J].石油化工自动化,2002,(1):19-22
    [146]孙京诰,李秋艳,杨欣斌等.基于蚁群算法的故障识别[J].华东理工大学学报,2004.30(2):194-198
    [147]Dorigo M, Cmm Di Caro, Thomas Sutzle. Ant algorithms [J], Future Generation Computer System,2000.16:5-7
    [148]Song Zhiping, Li Yinghong, Qu Yu'an. Conditional trouble graph for describing fault relation of a complex system[J]. Systems Engineering and Electronics [J],2003.25(1):116-118
    [149]高金吉.高速涡轮机械振动故障机理及诊断方法的研究[D].中国石化辽阳机电研修中心,辽阳.1993

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700