用户名: 密码: 验证码:
数学形态学在机械故障诊断中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械故障诊断的关键是如何从故障信号中提取故障特征,信号分析是故障特征提取最常用的方法。机械系统发生故障时,振动信号往往具有非线性非平稳特征。因此如何结合故障信号特点并选择合适的方法,对非线性非平稳故障信号进行分析以提取故障特征是机械故障诊断领域需要重点研究的课题。传统非线性非平稳信号分析方法如短时傅里叶变换、小波变换、希尔伯特黄变换等都各自存在一定的局限性,因此迫切需要新的理论与信号分析方法以提高机械故障诊断的效率与技术水平。数学形态学是近年来发展起来的一种非线性信号分析方法,已经逐渐开始应用到机械故障诊断中并取得了较好的效果。本文以转子系统、齿轮和滚动轴承为研究对象,对基于数学形态学的机械故障诊断方法进行了深入的研究,主要工作和研究成果如下:
     (1)介绍了转子系统、齿轮和滚动轴承这三种常见机械零件的振动故障机理,并对故障信号特征进行了分析,为后续章节的分析奠定基础。
     (2)针对传统形态滤波结构元素选取随机的问题,首先提出一种自适应多尺度复合形态滤波降噪方法,该方法能够根据信号局部特征和噪声特点自适应的选择结构元素类型和尺寸大小,然后采用该方法对转子振动信号进行滤波,并通过关联维数对转子故障进行分类,最后通过仿真与实验数据验证了方法的有效性。
     (3)针对传统形态学边缘检测边缘模糊的问题,首先提出一种基于多结构元素多尺度的形态学谱图边缘检测方法,该方法采用四个不同方向的多尺度结构元素提取齿轮故障时频图边缘特征,并通过与传统边缘检测效果比较以验证其有效性。然后计算边缘特征的灰度共生矩阵以提取特征量,最后通过LSSVM方法对齿轮故障进行识别。实例证明,该方法可有效的对故障进行分类。
     (4)针对传统提升形态小波提升算子固定不变的局限,首先提出了一种自适应提升形态小波降噪的方法,该方法能够根据信号局部特征自适应选择提升算子,然后采用该方法提取滚动轴承故障特征,并在定义故障特征能量特征向量的基础上,采用灰色关联度方法对故障进行分类。实例表明该方法能够准确区分发生在不同部位的故障,但却难以对不同严重程度的故障进行有效分类。
     (5)针对传统形态小波在分解过程中由于抽样而造成的信号逐层递减问题,首先在形态非抽样小波框架的基础上提出一种基于差值形态滤波的形态非抽样小波构造方法,并在定义形态非抽样小波能量特征向量与能量熵的基础上,提出了基于D-S证据理论的形态非抽样小波和基于过程的形态非抽样小波能量熵信息融合故障诊断方法。实测滚动轴承故障数据表明,以上两种方法不仅能够识别发生在不同部位的故障,还能够准确区分不同严重程度的故障。
The key issue of machinery fault diagnosis is how to extract fault feature from fault vibration signals, signal analysis methods are most widely used in fault feature extraction. The vibration signals are usually possess non-stationary and nonlinear signals when mechanical fault occurs. Therefore, how to extract fault feature from non-stationary and nonlinear signals is one of the important research issue in the field of mechanical fault diagnosis. However, the traditional time-frequency analysis method such as Short Fourier Transform(SFT), wavelet transform and Hilbert-Huang Transform(HHT) have their own limitations. Therefore, it is necessary to apply novelty signal processing theory and method to improve efficiency and level of fault diagnosis. Mathematical morphology, as a nonlinear analysis method, is recently developed and has began to be used in machinery fault diagnosis. It has also been proven to be effective in some areas of fault diagnosis. Setting rotor system, gear and rolling element bearing as research objects, this thesis studied deeply on fault diagnosis methods based on mathematical morphology. The main contents are as follows:
     (1) Fault principle of common mechanical parts, such as rotor system, gear and rolling element bearing were introduced, fault signal feature analysis were also carried out to supply basis for latter chapters.
     (2) In order to overcome the problem of random selection in traditional morphological filter, an adaptive multi-scale compound morphological filter (AMCMF) method was proposed. Types and size of structure element could be determined adaptively according to signal local characteristic and noise. Correlation dimension was applied to classify rotor system fault types after the signal was filtered by AMCMF. Test results indicate effectiveness of the method.
     (3) Aiming at the problem of fuzzy edge in traditional morphological detection, a multi-structure multi-scale morphological edge detection method was proposed. Four direction structure element were used to extract edge in time-frequency chart. Its effectiveness could be demonstrated by comparing with traditional morphological edge detection. Feature could be extracted by calculating gray co-occurrence matrix. Gear fault could be classified through LSSVM.
     (4) In order to overcome limitation of constant lifting operator in traditional lifting morphological wavelet, an adaptive lifting morphological wavelet(ALMW) denoising method was proposed. Lifting operator could be determined by signal local characteristic. Fault energy feature vector was defined after fault feature was extracted by ALMW. Gray relation was used to diagnosis gear fault. The test result indicated that faults on different parts could be classified while different severity fault could not.
     (5) To avoid decreasing of the signal length in morphological wavelet decomposition, a new multiscale morphological undecimated wavelet decmopositon(MUWD) based on differential morphological filter was proposed. Morphological undecimated wavelet energy feature vector and energy entropy were defined. Based on morphological undecimated wavelet and process, information fusion fault diagnosis methods were proposed. The experiment indicated that both faults on different part and different severity faults could be distinguished.
引文
[1]陈进.机械设备振动监测与故障诊断[M].上海:上海交通大学出版社,1999.
    [2]黄文虎,夏松波,刘瑞岩等.设备故障诊断原理、技术及应用[M].北京:科学出版社,1996.
    [3]徐敏,设备故障诊断手册[M].西安:西安交通大学出版社,1998.
    [4]钟秉林,黄仁.机械故障诊断学[M].北京:机械工业出版社,2002.
    [5]何正嘉,訾艳阳,孟庆丰.机械设备非平稳信号的故障诊断原理及应用[M].北京:高等教育出版社,2001.
    [6]Meltzer G, Ivanov Yu Ye. Fault detection in gear drives with non-stationary rotational speed-Part I:the time-frequency approach[J]. Mechanical Systems and Signal Processing, 2003,17(5):1033-1047.
    [7]Oehlmannn H, Brie D, Tomczak M, et al. A method for analyzing gearbox faults using time-frequency representations[J]. Mechanical Systems and Signal Processing, 1997,11(4):529-545.
    [8]Qu L S, Xie A L, Li X. Study and performance evaluation of some nonlinear diagnostic methods for large rotating machinery [J]. Mechanism and Machine Theory, 1993,28(5):699-713.
    [9]Loughlin P J, Bernard G D. Cohen-Posch time-frequency distributions and their application to machine vibration analysis[J]. Mechanical Systems and Signal Processing, 1997,11(4):561-576.
    [10]L. Gelman, J.D.Gould. Time-frequency chirp-Wigner transform for signals with any nonlinear polynominal time varying instanteous frequency [J]. Mechanical Systems and Signal Processing,2007,21(8):2980-3002.
    [11]Hui Ma, Tao Yu, Qingkai Han, et al. Time-frequency features of two types of coupled rub-impact faults in rotor systems[J] Journal of Sound and Vibration, 2009,321(3-5):1109-1128.
    [12]Xu Guanlei, Wang Xiaotong, Xu Xiaogang. Time-varying frequency-shifting signal-assisted empirical mode decomposition method for AM-FM signals[J].Mechanical Systems and Signal Processing,2009,23(8):2458-2469.
    [13]D.F.Shi, F.Tsung, P.J.Unsworth. Adaptive time-frequency decomposition for transient vibration monitoring of rotating machinery[J].Mechanical Systems and Signal Processing,2004,18(1):127-141.
    [14]Cvetkovic Z. On discrete short-time Fourier analysis[J]. IEEE Transactions on Signal Processing,2000,48(9):2628-2640.
    [15]Cvetkovic Z. Short-time Fouier analysis-a novel window design procedure[C]. //Proceedings of the 1998 IEEE International Conference on Acoustics,Speech and Signal Processing,1998,3:1773-1776.
    [16]Portnoff M. Time-frequency representation of the digitial signals and systems based on short-time Fourier analysis[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing,1980,28(1):55-69.
    [17]Yang-Hann Kim, Byoung Duk Lim. Instantaneous frequeney of a transient mechanical signature and its estimation by a moving window:applicability and physical interpretation[J]. Mechanical Systems and Signal Processing,1994,8(4):381-394.
    [18]郭瑜,秦树人,汤宝平等.基于瞬时频率估计的旋转机械阶比跟踪[J].机械工程学报2003,39(3):32-36.
    [19]纪跃波,秦树人,汤宝平.基于多分辨分析的时频分析.振动与冲击,2002,21(1):12-15.
    [20]W.J. Wang, P. D. McFadden. Early detection of gear failure by vibration analysis-Ⅰ: Calculation of the time-frequency distribution[J]. Mechanical Systems and Signal Processing,1993,7(3):193-203.
    [21]W.J. Wang, P.D. McFadden. Early detection of gear failure by vibration analysis-Ⅱ: Interpretation of the time-frequency distribution using image processing techniques[J]. Mechanical Systems and Signal Processing,1993,7(3):205-215.
    [22]吴子英,李郁侠,李宏昭等.短时傅立叶变换在大型水轮发电机组振动分析中的应用[J],水力发电学报,2005,24(6):115-120.
    [23]刘文彬,郭瑜,郑华文.基于短时傅里叶变换的油膜振荡故障识别[J],中国测试技术,2008,34(2):105-107.
    [24]廖传军,李学军,刘德顺.STFT在AE信号特征提取中的应用[J].仪器仪表学报,2008,29(9):1862-1867.
    [25]Czerwinski R N, Jones D L. Adaptive short-time Fourier analysis[J]. IEEE Signal Processing Letters,1997,4(2):42-45.
    [26]丁夏完,刘葆,刘金朝等.基于自适应STFT的货车滚动轴承故障诊断[J].中国铁道科学,2005,26(6):24-27.
    [27]丁夏完,刘金朝,王成国.基于EMD和自适应STFT的货车滚动轴承故障诊断[J].中央民族大学学报,2006,15(3):253-258.
    [28]郑建明,李言,肖继明等.伸缩窗口短时Fourier分析.振动、测试与诊断,2000,20(4):254-258.
    [29]樊永生.机械设备诊断的现代信号处理方法[M].北京:国防工业出版社,2009.
    [30]郑海波,李志远,陈心昭.基于连续小波变换的故障诊断方法研究[J].机械工程学报,2002,38(3):69-73.
    [31]宋友,柳重堪,李其汉.基于小波变换的转子动静件碰摩故障诊断研究[J].振动工程学报,2002,15(3):319-322.
    [32]李方,李友荣,王志刚.谐波小波时频图在齿轮故障诊断中的应用[J].振动与冲击,2007,26(3):128-130.
    [33]陈志新,徐金梧,杨德斌.基于复小波块阈值的降噪方法及其在机械故障诊断中的应用[J].机械工程学报,2007,43(6):200-204.
    [34]秦毅,秦树人,毛永芳.基于小波脊线的解调方法及其在旋转机械故障诊断中的应用[J].机械工程学报,2009,45(2):231-237.
    [35]臧玉萍,张德江,王维正.基于小波变换技术的发动机异响故障诊断[J].机械工程学报,2009,45(6):239-245.
    [36]蒋永华,汤宝平,刘文艺等.基于参数优化Morlet小波变换的故障特征提取方法[J].仪器仪表学报,2010,31(1):56-60.
    [37]胡爱军Hilbert-Huang变换在旋转机械振动信号分析中的应用研究[D].保定:华北电力大学,2008.
    [38]JunSheng Cheng, Dejie Yu, Jiashi Tang et al. Application of frequency family separation method based upon EMD and local Hilbert energy spectrum method to gear fault diagnosis[J], Mechanism and Machine Theory,2008,43(6):712-723.
    [39]杨宇,于德介,程军圣.基于Hilbert边际谱的滚动轴承故障诊断方法[J].振动与冲击,2005,24(1):70-72.
    [40]Z.K.Peng, Peter W. Tse, F.L.Chu. An improved Hilbert-Huang transform and its application in vibration signal analysis[J]. Journal of Sound and Vibration,2005,286(1-2): 187-205.
    [41]唐贵基,向玲,朱永利.基于HHT的旋转机械油膜涡动和油膜振荡故障特征分析[J].中国电机工程学报,2008,28(2):77-81.
    [42]胡劲松,杨世锡.基于HHT的转子横向裂纹故障诊断[J],动力工程,2004,24(2):218-221.
    [43]沈路,周晓军,张文斌等.改进Hilbert-Huang变换在齿轮故障诊断中的应用[J],航空动力学报,2009,24(8):1899-1903.
    [44]沈路,周晓军,张志刚,张文斌Hilbert-Huang变换中的一种端点延拓方法[J],振动与冲击,2009,28(8):168-171.
    [45]任获荣.数学形态学及其应用[D].西安:西安电子科技大学,2004.
    [46]Serra J. Image analysis and mathematical morphology. New York:Academic,1982.
    [47]Maragos P, Schafer R W. Morphological filters-Part I:Their set-theoretic analysis and relation to linear shift-invariant filters. IEEE Trans, on Acoustics, Speech and Signal Processing,1987,35(8):1153-1169.
    [48]Maragos P, Schafer R.W. Morphological filters-Part II:Their relation to median, order-statistic, and stack filters. IEEE Trans, on Acoustics, Speech and Signal Processing, 1987,35(8):1170-1184.
    [49]Serra J. Morphological filtering:An overview. Signal Processing,1994,38(4):3-11.
    [50]董贤军,汤晓安,张海英等.CB形态学的边缘检测算法研究[J].计算机工程与应用,2010,46(10):144-146.
    [51]叶斌,彭嘉雄,卢汉青.顺序形态滤波在小目标和点目标检测中的应用研究[J].自动化学报,2002,28(6):990-994.
    [52]Koskinen L, Astola J, Neuvo Y. Soft morphological filters[C]//Proc SPIE-Int Opt Eng, 1991,1568:262-270.
    [53]Shinha. D, Dougherty.E.R. Fuzzy mathematical morphology[J]. Journal of Visual Communication Image Representation,1992,3(3):286-302.
    [54]A.Gasteratos, Tsalides. Fuzzy soft mathematical morphology[J]. Image Signal Processing, 1998,145(1):41-49.
    [55]J. Goutsias, H.J.A.M. Heijmans. Multiresolution signal decomposition schemes. Part I: linear and morphological pyramids[J]. IEEE Transactions on Image Processing,2000, 9(11):1862-1876.
    [56]J. Goutsias, H.J.A.M. Heijmans. Multiresolution signal decomposition schemes. Part Ⅱ: morphological wavelets[J]. IEEE Transactions on Image Processing, 2000,9(11):1877-1896.
    [57]Huang Xiangsheng, Yang Xiaofan, Wang Yangsheng. The Construction of Multidimensional Morphological Wavelets based on Lifting Scheme[J]. ACTA Automatica Sinica.2003,29(5):726-732.
    [58]张光新,蔡晋辉,周泽魁.基于模板的二维多通道形态小波的构造[J].光电子·激光,2005,16(2):217-221.
    [59]向凡夫,施保昌.基于斜变换的形态小波及其应用[J].计算机工程与应用,2006,1(13):36-37.
    [60]王文波,羿旭明,费浦生,基于图像统计特性的二维形态小波的构造[J].光电子·激光,2008,19(9):1240-1243.
    [61]崔屹.图像处理与分析—数学形态学方法及应用[M].北京:科学出版社,2000.
    [62]赵春晖.数学形态滤波器理论及其算法研究[M].北京:高等教育出版社,2002.
    [63]郭跃霞.数学形态学在电力系统系统中的应用研究[M].吉林:东北电力大学,2008.
    [64]胡爱军,唐贵基,安连锁.基于数学形态学的旋转机械振动信号降噪方法[J].机械工程学报,2006,42(4):127-130.
    [65]沈路,周晓军,张文斌等.广义数学形态滤波器旋转机械振动信号降噪[J].振动与冲击,2009,28(9):70-73.
    [66]Lijun Zhang, Jinwu Xu, Jianhong Yang, et al. Multiscale morphology analysis and its application to fault diagnosis[J].Mechanical Systems and Signal Processing, 2008,22(3):597-610.
    [67]马从兵.形态学滤波在压电陀螺信号处理中的应用[J].压电与声光,2007,29(5):527-529.
    [68]舒泓,王毅.基于数学形态滤波和Hilbert变换的电压闪变测量[J].中国电机工程学报,2008,28(1):111-114.
    [69]N.G.Nikolaou, I.A.Antoniadis. Applicationo of morphological operators as envelope extractors for impulsive-type periodic signals[J]. Mechanical Systems and signal Processing,2003,17(6):1147-1162.
    [70]安连锁,胡爱军,唐贵基等.采用数学形态滤波器的轴心轨迹提纯[J].动力工程,2005,25(4):550-553.
    [71]胡爱军,唐贵基,安连锁.振动信号采集中剔除脉冲的新方法[J].振动与冲击,2006,25(1):126-127.
    [72]Patargias T I, Yiakopoulos C T, Antoniadis I A. Performance assessment of a morphological index in fault prediction and trending of defective rolling element bearings. Nondestructive Testing and Evaluation,2006,21(1):39-60.
    [73]章立军,杨德斌,徐金梧等.基于数学形态滤波的齿轮故障特征提取方法[J].机械工程学报,2007,43(2):71-75.
    [74]JingWang, Guanghua Xu, QingZhang, LinLiang. Application of improved morphological filter to the extraction of impulsive attenuation signals[J]. Mechanical Systems and Signal Processing,2009,23(1):236-245.
    [75]章立军,阳建宏,徐金梧等.形态非抽样小波在冲击信号特征提取中的应用研究[J].振动与冲击,2007,26(10):56-59.
    [76]郝如江,卢文秀,褚福磊.滚动轴承故障信号的多尺度形态学分析[J].机械工程学报,2008,44(11):160-165.
    [77]Rujiang Hao, Fulei Chu. Morphological undecimated wavelet decomposition for fault diagnostics of rolling element bearings[J]. Journal of Sound and Vibration, 2009,320(4-5):1164-1177.
    [78]张文斌,汽轮发电机组状态趋势预测及故障诊断方法研究[D].杭州:浙江大学,2009.
    [79]林勇,周晓军,张文斌等.基于形态小波理论和双谱分析的滚动轴承故障诊断[J].浙江大学学报(工学版),2010,44(3):432-439.
    [80]杨先勇,周晓军,沈路等.基于MLMW和CWT灰度矩向量的滚动轴承故障诊断[J].中国机械工程,2010,21(8):951-956.
    [81]盛兆顺,尹琦岭.设备状态监测与故障诊断技术及应用[M].北京:化学工业出版社,2003.
    [82]李艳妮.旋转机械故障机理与故障特征提取技术研究[D].北京:北京化工大学,2007.
    [83]施维新.转子不平衡引起轴系破坏机理的研究[J].河北电力技术,1992,5:18-24.
    [84]楼建忠.杜红文.大型旋转机械质量不平衡故障的研究[J].现代制造工程,2008,10:23-26.
    [85]张祖德.旋转机械转子不平衡的故障诊断[J].特钢技术,2008,14(57):49-52.
    [86]孙超,韩捷,关惠玲等.齿式联轴器联接不对中振动机理及特征分析[J].振动、测试与诊断,2004,24(3):229-233.
    [87]王延博.大型汽轮发电机组轴系不对中振动的研究[J].动力工程,2004,24(6):768-774.
    [88]韩捷,石来德.转子系统齿式联接不对中故障的运动学机理研究[J].振动工程学报,2004,17(4):416-420.
    [89]刘泽民,张新红,张锦贤等.旋转机械轴系不对中故障分析[J].焦作工学院学报(自然科学版),2003,22(4):283-285.
    [90]张新勇,段滋华,张牢牢.滑动轴承油膜涡动及油膜振荡研究[J].太原理工大学学报,2008,39(3):232-235.
    [91]崔保.滑动轴承油膜涡动和油膜振荡的机理与诊断[J].机械工程师,2006,6:134-135.
    [92]安婧红,李树臣.油膜涡动故障力学分析[J].中国设备工程,2004,7:35-36.
    [93]戈金华,高金吉,王文永.旋转机械动静碰摩机理研究[J].振动工程学报,2003,16(4):426-429.
    [94]向玲,胡爱军,唐贵基等.转子动静碰摩故障仿真与试验研究[J].润滑与密封,2005,5:78-80.
    [95]王润,刘智安,孔昭文等.汽轮机动静碰摩振动的诊断与处理[J].内蒙古电力技术,2009,27(1):16-19.
    [96]向玲,唐贵基.旋转机械动静碰摩故障特征研究[J].煤矿机械,2005,5:33-35.
    [97]旋转机械转静子碰摩振动特性[J].航空发动机,1998,2:37-41.
    [98]武新华,刘占生,夏松波.旋转机械碰摩故障特性分析[J].汽轮机技术,1996,38(1):31-34.
    [99]丁康,李巍华,朱小勇.齿轮及齿轮箱故障诊断实用技术[M].北京:机械工业出版社,2005.
    [100]王新晴.齿轮箱不解体诊断技术研究[D].天津:天津大学,1998.
    [101]周福昌.基于循环平稳信号处理的滚动轴承故障诊断方法[D].上海:上海交通大学,2006.
    [102]杨将新,曹冲锋,曹衍龙等.内圈局部损伤滚动轴承系统动态特性建模及仿真[J].浙江大学学报(工学版),2007,41(4):551-555.
    [103]曹冲锋,宋京伟,王秋红.滚动轴承外圈局部故障的动态特性及计算机仿真[J].华东交通大学学报,2005,22(2):123-126.
    [104]Mcfadden P D, Smith J D. Mode for the vibration produced by a single point defect in a rolling element bearing[J]. Journal of Sound and Vibration,1984,96(1):69-82.
    [105]David Brie. Modelling of the spalled rolling element bearing vibration signal:an overview and some new results[J]. Mechanical Systems and Signal Processing,2000, 14(3):353-369.
    [106]Sopanen J. Mikkola. Dynamic model of a deep-groove ball bearing including localized and distributed defects. Part 1:theory [J]. Proceedings of the Institution of Mechanical Engineers,2003(217):201-211.
    [107]梅宏斌.滚动轴承振动监测与诊断:理论·方法·系统[M].北京:机械工业出版社,1995.
    [108]闻邦椿,武新华,丁千等.故障旋转机械非线性动力学的理论与试验[M].北京:科学出版社,2004.
    [109]张燕平,黄树红,高伟等.关联维数在汽轮机故障诊断中的应用[J].华中科技大学学报,2007,35(7):93-95.
    [110]汪富泉,李厚强.分形几何与动力系统[M].哈尔滨:黑龙江教育出版社,1993.
    [111]徐玉秀,原培新,杨文平.复杂机械故障诊断的分形与小波方法[M].北京:机械工业出版社,2003.
    [112]石博强,申炎华.机械故障诊断的分形方法-理论与实践[M].北京:冶金工业出版 社,2001.
    [113]杜必强,王松岭,唐贵基.形态学降噪在转子分形故障状态识别中的应用[J].中国电机工程学报,2008,28(26):71-76.
    [114]章立军.信号的数学形态学分析方法及其应用研究[D].北京:北京科技大学,2007.
    [115]刘雄,赵振毅,屈梁生.转子监测和诊断系统[M].西安:西安交通大学出版社,1991.
    [116]刘占生,窦唯.旋转机械振动参数图形边缘纹理提取的数学形态学方法[J].振动工程学报,2008,21(3):268-273.
    [117]付永庆,王咏胜.一种基于数学形态学的灰度图像边缘检测算法[J].哈尔滨工程大学学报,2005,26(5):685-687.
    [118]冉彦中,曹婧华,韦军.基于数学形态学的图像边缘检测方法及应用[J].河南科技大学学报(自然科学版),2007,28(5):40-42.
    [119]蔡友杰,陈秀宏.基于形态学的边缘检测[J].2009,26(5):213-214.
    [120]李春宇.郭相义.基于多结构多尺度形态学的医学图像边缘检测[J].2009,23:39-40.
    [121]黄剑玲,邹辉.一种基于形态学的多结构元素多尺度图像边缘检测方法[J].微电子学与计算机,2009,26(8):76-79.
    [122]朱士虎,朱红.基于形态学多结构元多尺度的自适应边缘检测[J].计算机测量与控制,2009,17(12):2583-2540.
    [123]徐建华.图像处理与分析[M].北京:科学出版社,1992.
    [124]Robert M. Haralick, K. Shanmugam, Textual features for Image Classification[J].IEEE Transaction on Systems, man and cybernetics,1973,3(6):610-621.
    [125]Vapnik V N. The nature of statistical learning theory[M].New York:Springer-Verlag, 1999.
    [126]Suykens J A K, Gestel T.V. Least Squares Support Vector Machines[M]. World Scientific Pub.Co.Singapore.2002.
    [127]http://rafiee.us/index.html
    [128]沈路,周晓军,张文斌等.基于形态滤波与灰色关联度的滚动轴承故障诊断[J].振动与冲击.2009,28(11):17-20.
    [129]王晓军.形态学小波提升格和自适应提升格在图像处理中的应用[D].汕头:汕头大 学,2002.
    [130]Sweldens W. The lifting scheme:a construction of second generation wavelets. SIAM J. Math Anal,1997,29(2):511-546.
    [131]Gemma Piella, Henk J.A.M Heijmans. Adaptive Lifting Schemes with Perfect Reconstruction[J]. IEEE Transaction on Signal Processing,2002,50(7):1620-1630.
    [132]薛坚,于盛林.基于邻域相关性新阈值函数的提升小波域信号降噪法[J].信息与控制,2008,37(6):665-669.
    [133]Cai T T, Silverman B W. Incorporating information on neigh-bouring coefficients into wavelet estimation[J]. The Indian Journal of Statistics,2001,63(2):127-148.
    [134]Yuh-Tay Sheen. On the Study of applying Morlet wavelet to the Hilbert transform for the envelope detection of bearing vibrations[J]. Mechanical Systems and Signal Processing, 23(5):1518-1527.
    [135]朱利民,熊有伦.解调分析中差频现象的理论分析及细化解调/频谱分析集成算法[J].振动工程学报,2001,14(4):409-413.
    [136]Case Western Reserve University, Bearing Data Center[DB/OL].[2008-8-29]. http://www.eecs.cwru.edu/laboratory/bearing.
    [137]邓聚龙.灰色系统理论教程[M].武汉:华中理工大学出版社,1990.
    [138]J.F.Zhang, J.S.Smith, Q.H.Wu. Morphological undecimated wavelet decomposition for fault location on Power Transmission Lines[J]. IEEE Transactions on circuits and systems,2006,53(6):1395-1402.
    [139]张冀,王兵树.传感器多故障诊断的信息融合方法研究.中国电机工程学报,2007,27(6):104-108.
    [140]Shafer G. A mathematical theory of evidence[M]. New Jersery:Princeton University Press,1976.
    [141]Dempster A P. Upper and lower probabities induced by a multivalued mapping[J]. Annals of Mathematical Statistics,1967,28(2):325-339.
    [142]陈非,黄树红,张燕平等.基于过程的旋转机械振动故障定量诊断方法[J].动力工程,2008,28(4):543-547.
    [143]陈非,黄树红,杨涛等.旋转机械振动故障的信息火用诊断方法[J].机械工程学报, 2009,45(11):65-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700