用户名: 密码: 验证码:
微分方程中的小波方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自本世纪30年代以来,在物理、工程、化学、生物、经济等众多领域中产
    生的大量数学模型可以用带有极限环的平面自治系统来描述,极限环的问题已
    变得愈来愈重要,并引起了许多理论数学和应用数学工作者的注意。工程中的
    许多问题常常可归结于常微分方程的求解,由于自动控制理论的众多问题需要
    用微分方程来描述,这为小波方法的使用提供了可能,小波分析及其应用的日
    益活跃也引起了建筑工程及抗震设计等方面工程技术人员的关注,传统的各种
    分析与计算方法在具有其各自优点的同时,难免有其各自的缺点。本文对小波
    变换及小波理论进行研究的基础上,着重研究小波在微分方程中应用的一些基
    本问题和基本方法,主要提出并解决了如下的问题:
     1.提出了微分方程解的小波逼近的理论框架。对一类有紧支撑的正交小波
    的正则度进行了分析,同时对这类小波及相关尺度函数的正则性指数做出估
    计,提出了一种新的估计方法,得出了一个优于I.Daubechies的估计。在区间
    样条小波插值的最佳逼近性的基础上,对其误差进行了精确估计;提出了有限
    区间上的自由结点多尺度分析及小波;针对求解小波逼近函数给出了一种基于
    逐项插值的快速小波变换的算法。
     2.由于小波函数既有有限元基函数的特征,又有频域方法的优点,加之对
    高频信号的聚焦能力,非常适合求解微分方程边值问题。我们利用小波具有良
    好的局部化特点来研究线性边值问题的奇异性,提出了改进的小波配点法。
     3.我们采用小波逼近的方法,结合Lyapunov稳定性理论,提出了一种崭
    新的不需要进行系统辨识的在线的连续自适应控制算法。对于一类未知非线性
    系统,我们提出的算法能够保证闭环的稳定性,跟踪误差可以收敛于零的一个
    邻域内。
     4.如何将小波分析应用于建筑物体系,在地震作用下的输出信号分析是一
    个崭新的课题。我们利用小波变换对建筑物系统通过叠加的方法,对任一信号
    激励下的响应进行预测,并直接给出预测信号的小波分析。利用小波分别对单
    质点弹性体系(如水塔、单层房屋等)和多质点弹性体系(如厂房、烟囱等)
    进行小波变换,给出了建筑物体系在脉冲响应下的输出信号变换与该体系的输
    入信号的关系,为全面分析建筑物在地震等脉冲响应下的输出信号提供了良好
    的理论基础。
     5.确定微分动力系统的极限环的位置无论在理论上还是在应用上都具有重
    要的意义。我们首先总结出求极限环方程的三种方法,其中的两种方法都是我
    们在研究平面微分动力系统的极限环时最早独立提出来的,然后借助谐波小波
    对极限环的位置进行研究,设计了寻求极限环方程的算法,开辟了用小波研究
    极限环理论的新途径。
From the 1930's, very many mathematical models from physics, engineering, chemistry,
     biology, economics. ect., were displayed as plane autonomous systems with limit cycles.
     The problem of limit cycles has become more and more important and has attracted the
     attention of many pure and applied mathematicians. A lot of problems in science can be
     eventually presented in the form of ordinary differential equation (ODE). It is possible for
     wavelet methods to solve plenty of questions, which are described by ODE, in autonomous
     control theory, Architectural engineers begin to pay close attention to wavelet analysis and
     its application. While the methods now we using to analysis and compute ODE have their
     own advantages, they also have some shortcomings. In this dissertation, based on the
     research of wavelet transformation and theory, the following problems are discussed:
     1. The theory frame of wavelet approximation for the solution of ODE is put forward.
     The regularity of a class of compactly supported orthogonal wavelet is analyzed. A new
     method for the estimation of exponent regularity of the kind wavelet and related scale
     function is proposed. Based on the optimal approximation of spline interval wavelet, the
     interpolation error estimation is given. An approach to the study of multiresolution analysis
     and wavelet on finite interval with free knots is presented. A sort of algorithm of fast
     wavelet transformation is obtained to find Out wavelet approximation function.
     2. The wavelet function is very suitable for solving the boundary value problem of ODE,
     not only for it characteristic of finite basis function, but has advantage of frequency method.
     We research the singularity of linear boundary value problem by making use of localizable
     distinguishing feature of wavelet. The improved wavelet-collocation method is given.
     3. Combining with Lyapunov stability theory and taking advantage of wavelet
     approximation method, we propose a new algorithm of continuous adaptive control without
     system recognition on lines. To a kind of unknown nonlinear system, our algorithm can
     insurance the stability of closed loop. The trace error can be convergence into a
     neighborhood of zero.
     4. How to manage the output signal analysis of architectural systems under the
     earthquake with wavelet analysis is a new subject. The systems of simple elastic particle
     (water tower, house, ect.) and multiple elastic particles(factory building, chimney. ect.)
     are analyzed with wavelet transformations, the relationship between the wavelet
     transformation of output signal with the pulse respond of architectural system and input
     signal of that system is put forward. The ideal theory basis is offered to analysis output
     signal of architectural under the pulse respond.
     5. It is of significance to find out the limit cycles of plane autonomous systems both in
     theory and in application. First, we sum up three methods to look for the equation of limit
     cycle, two of them are our earliest results of researching limit cycles. Then, we study the
     place of limit cycle by means of harmonic wavelet . A sort of algorithm to compute the
     equation of limit cycle is designed. A new path leading to the limit cycle theory is hewed
     out.
引文
[1] Gabor D., Theory of communication, J.IEE(London), 1946, 93: 426-457
    [2] Frazier M. and Jawerth B., Decomposition of Besov space, Indian Univ. Math. J., 1985,34: 777-799
    [3] Frazier M. And Jawerth B., The φ-transform and application to distribution Spaces, in Function spaces and applications, M. Cwiked et al(eds.), Lect. Notes Math, 1302 Berlin: Springer-Verlag, pp. 223-246
    [4] Frazier M. And Jawerth B., A discrete transform and decomposition of distribution spaces, J. Funct. Anal, 1990. 93: 34-170
    [5] Daubechies I., Orthonormal bases of compactly supported wavelets II, Variation on a Theme, SIAM J.Math. Anal, 1993,24: 499-519
    [6] Daubechies I., Orthonormal bases of compactly supported wavelets. Comm. Pure & Appl. Math. 1998, 41: 909-996
    [7] Auscher, Ondelettes a supported compact et codition aux limites. J. Funct. Anal, 1993,111:29-43
    [8] Auscher, Local sine and cosine bases of Coifman and Meyer and the constructon of smooth wavelets, in Wavelets: A Tutorial in Theory and the Applications, Chui C K (ed.), 1992 Academic Press, Inc., pp. 237-256
    [9] Chui C K. and Quak E., Wavelets on the bounded interval, Numerical method in approximation theory, D.Braess(ed.), Birkhauser, Boston, 1992, 9: 53-75
    [10] Tineo., Existence theorems for a singular two-point Dirichlet problem,Nonlinear Anal(TMA), 1992, 19(4) : 323-333
    [11] Wang J Y., A singular nonlinear bounded value problem for a higher order ordinary differential equation, Nonlinear Anal(TMA), 1994, 22(8) : 1051-1056
    [12] Guo Z M., Solvability of some singular nonlinear bounded value problems and existence and positive radial solutions of some nonlinear elliptic problems, Nonlinear Anal(TMA), 1991, 16(9) : 781-790
    [13] O'Regan D., Singular second order boundary value problems, Nonlinear Anal(TMA), 1990, 15(2) : 1097-1109
    [14] O'Regan D., Existence of positive solutions to some singular and nonlinear second order boundary value problems, J. Diff Eqns, 1990, 84(2) : 228-251
    [15] Gatica J A., Oliker V., Waltman P., Singular nonlinear bounded value problems for second order differential equations, J. Diff Eqns, 1989, 79(1) : 62-78
    [16] O'Regan D., Positive solutions to singular and non-singular second order boundary value problem, J Math Anal Appl, 1989, 142(1) : 40-52
    [17] Tallaferro S D., A nonlinear boundary value problem, Nonlinear Anal (TMA), 1979,3(6) : 897-904
    [18] Zhang Y, Positive solution of singular sublinear Emden-Fowler boundary value problems,J Math Anal Appl, 1994, 185(1) : 215-222
    
    
    [19] Vasilyer O V., et al, A multilevel wavelet collection method for solving partial differential equations in a finite domain, J. Computer. Physics, 1995, 120: 33-47
    [20] Qian S., Weiss J., Wavelet and numerical solution of partial differential equations. J. of Computational Physics. 1991, pp. 106-199
    [21] Lazaar S.et al, Wavelet algorithms for numerical solution of partial differential equations,Comput. Methods Appl. Mech. Engre, 1994, 116: 309-314
    [22] Bertoluzza et al., Wavelet methods for the solution of boundary value problems on the interval, In Wavelets: Theory, Algorithms, and Application, Chui C K.(eds.), 1994, Academic Press. Inc., pp. 425-448
    [23] Qian S. and Weiss J., Wavelet and numerical solution of partial differential equations,J. Computer. Phys, 1993. 106: 155-175
    [24] Jaffard S., Wavelet methods for fast resolution of elliptic problems, SIAM. J.Numer. Anal. Aug, 1992. 29(4) : 965-986
    [25] Frandiga F., Candela V F., Fast multi-resolution algorithms for solving linear equations, A Comparative Study, SIAM. J. Comput, 1995, 16(3) : 581-600
    [26] Beylkin G.. On wavelet-based algorithms for solving differential equations. In wavelets: Mathematics and applications, 1994. CRC Press. Inc. pp. 449-466
    [27] Heurtaux F., et al, Scale decomposition in Burgers Equation, In wavelets: Mathematics and Applications, 1994, CRC Press, Inc. pp.505-523
    [28] Glowinski R., et al, A wavelet multilevel method for Dirichlet boundary value problems in general domains, 1993 Technical Report T 93-06, Computational Mathematics Laboratory. Rice Univ.
    [29] Greengard L., Rokhlin V., On the numerical solution of two-point boundary value problems, 1989 Technical Report, Yeleu/DCS/RR-692, Yale Univ. New Haven, CT.
    [30] Bertoluzza S.,Adaptive wavelet collocation method for the solutions of Burgers Equation,Trans. Theory and Statistical Physics, (to be published)
    [31] Charton P., Perrier V., Toward a wavelet based algorithm for two dimensional Navier-Stokes Equations. 1995, In Proc. ICIAM95.
    [32] Frohlich J., Schneider K., An adaptive wavelet Galerkin algorithm for one and two dimensional flame computation, Europe J. Mech. B/Fluids, 1995, 13(4) : 439-471
    [33] Chui C K., et al, Fast integral wavelet transform on a dense set of the time-scale domain, Numer. Math, 1995, 70: 283-302
    [34] Alpert B., A class of bases in L_(2) for the sparse representation of integral operators, SIAM J. Math. Anal. Jan., 1993, 24(1) : 246-262
    [35] Braide B., Coifman R.,Crossmann a., Fast numerical computation of oscillatory integrals related to acoustic scattering I, Applied and Comput. Harmonic Analysis, 1993, 1:94-99
    [36] David G., Wavelets and singular integrals on curves and surfaces, Lecture Notes in Mathematics, Springer-Verlag, 14-65
    
    
    [37] Jaffard S., Laurrenccot P.,Orthonormal wavelet. Analysis of operators and application to numerical analysis. In Wavelet-Atutorial in theory and applications, Chui C K.(ed.) pp. 1-4
    [38] Wang X., ID-wavelet method for Caughy singular integrals, J. of Ningxia Univ. 1996, No. 1
    [39] Wang X. and Lin W., ID-wavelet method for Hammerstein integral equations. preprint
    [40] Xu Y and Yan Y, Boundary integral equation method for source localization with a continuous wave sonar, J. Acoust. Soc. Am. 1992, 92(2) : 95-1002
    [41] Daubechies I., Two recent results in wavelet, In recnt advances in wavelet analysis, L.L. Schumaker (eds.), Academic Press, 1994, Inc., pp. 237-258
    [42] Meyer Y, Wavelets and operators, Cambridge University Press, 1993
    [43] Daubechies I., Ten lectures on wavelets, CBMS/NSF series in applied mathematics, Vol.61, SIAM, 1992
    [44] Perrier V., Basdevant C., Periodic wavelet analysis, a tool for inhomegeneous field investigation. Theory and Algorithms, Rech Aerospat. 1989, 3: 53-67
    [45] Chui C K., Mhasker H N, On trigonometric wavelets,Const Approx, 1993, 9(2-3) : 167-190
    [46] Chen H L., Construction of orthonormal wavelet basis in periodic case, Chinese Science Bulletin, 1996, 41(7) : 552-554
    [47] Chen H L., Wavelets from trigonometric spline approach, Approx Theory & Its Appl, 1996, 12(2) : 99-110
    [48] Chen H L., Wavelet on the unit circle, Result Math, 1997, 31: 322-336
    [49] Chen H L., Antiperiodic wavelets, Journal of Computational Mathematics, 1996, 14(1) : 32-39
    [50] Koh Y W., Lee S L., Tan H H., Periodic orthogonal splines and wavelets, Appl Comput Harmonic Anal, 1995, 2(3) : 201-218
    [51] Narcowish F I., Ward J D.. Wavelets associated with periodic basis functions, Appl Comput Harmonic Anal, 1996, 3(1) : 40-56
    [52] Plonka G., Tasche M., A unified approach to periodic wavelets, In Chui C L., Montfusco L.,0 Puccio L (eds.)., Wavelets: Theory, Algorithms and Applications, 1994, pp. 137-151
    [53] Stromberg J O., A modified Frankin system and higher order spline systems on R as unconditional bases for Hardy space, In: Beckner W. Conf in honor of A Zygnmund., New York: Academic Press, 1986, pp. 475-493
    [54] Morlet J., Propagation and samyding theory and complex waves, Geophysics, 1982, 47(2) : 222-236
    [55] Meter Y, Wavelet with compact support, In: Beckner W. Conf in honor of A Zygnmund., New York: Academic Press, 1986, pp. 1-8
    [56] Mallat S., A theory for multiresolution signal decomposition, The Wavelet Representation, IEEE Trans on PAMI, 1989, 11(7) : 674-693
    
    
    [57] Meyer Y., Ondeletles et operatour, Paris: Herman Press, 1990, pp. 1-175
    [58] Meyer Y, Wavelet: Algorithms & Applications, New York: SIAM, 1993. pp. 1-340
    [59] Kelly S E., Gibbs phenomenon for wavelets, Applied and Computational Harmonic Analysis, 1996, 3: 72-81
    [60] Richard F B., A Gibbs phenomenon for spline function, J. Approx Theory, 1991,66:334-351
    [61] Lewalle J., Wavelet transforms of some equations of fluid mechanics, Acta Mechanica, 1994, 104: 1-25
    [62] Lewalle J., Wavelet transforms of Navier-Stokes equations and the generalized dimension of turbulence, Applied Scientific Research, 1993, 51: 109-113
    [63] Rionl O., Duhamel P., Fast algorithm for the discrete and continuous wavelet transforms, IEEE Trans, on IT, 1992, 38(2) : 569-586
    [64] Shensa M J., The discrete wavelet transform: Wedding the Trans and Mallat algorithm, IEEE Trans, on SP, 1992, 40(10) : 2464-2482
    [65] Zhang Q., and Benveniste A., Wavelet networks, IEEE Trans, Natural Networks, 1992, 3(6) :889-898
    [66] Coifman R R., Wickerhauser M., Entrop-based algorithms for the best basis selection, IEEE Trans, on Information Theory, 1992, IT-38(2) : 713-718
    [67] Jawerth B., Sweldens W., An overview of wavelet based multiresolution analysis, SIAM, 1994, 36(3) : 377-412
    [68] Daubechies I., The wavelet transform, time-frequency localization and signal analysis, IEEE Trans, IT, 1990, 40(9) : 961-1005
    [69] Vetterli M., Herley C., Wavelets and filter banks: Relationships and new results, In: Proc IEEE ICASSP, 1990, pp. 1723-1726
    [70] Antonin M., Barland M., Mathieu P., et al., Image coding using wavelet transform, IEEE Trans Image Proc, 1992, 1: 205-220
    [71] Lewis A., Knowles G., Image compression using the 2-D wavelet transform, IEEE Trans Image Proc, 1992, 2: 244-250
    [72] Jerome M., Shapiro H., Embedded image coding using zerotrees of wavelet coefficient, IEEE Trans , on Signal Processing, 1993, SP-41(2) :3445-3462
    [73] Vetterli M and Herly C., Wavelets and filter banks: Theory and design, IEEE Trans, on SP, 1992, SP-40(9) : 2207-2232
    [74] Mustumi Ohta and Staoshi Nogaki., Hybrid picture coding with wavelet transform and overlapped motion compensation interframe prediction coding, IEEETrans, on SP,1993,SP-41(12) :3416-3424
    [75] Kikuchi T., Sato S., An application of wavelet transform to ultrasonic measuresents of random media, IEEE Ultrasonic Symposium, 1992, pp. 1171-1176
    [76] Mallat S. and Sifen Zhang, Characterization of signal from multiscale edges, IEEE Trans, on Pattern Intelligence, 1992,14(7) : 710-732
    
    
    [77] John A., Gubner., Weibin Chang., Wavelet transform for discrete-time periodic signals, Signal Processing, 1995, 42: 167-180
    [78] Conpilland P., Grossmann A., Morlet J., Cycle-octave and related transforms in seismic signal analysis, Geoexploration, 1984, 23(1) : 85-102
    [79] Petropulu A., Detection of transients using wavelet transform. Pt.Ⅱ. ICASSP. 1992,477-480
    [80] Jawerth B., Liu Y. and Swelden W., Signal compression with smooth local trigonometric bases, Optical Engineering. 1994. 33(7) : 2125-2135
    [81] Lu J.. Healy D M. and Weaver J B., Signal recovery and wavelet reproducing kernels, IEEE Trans. SP. 1994. 42(7) : 1845-1849
    [82] Cetin A E., Ansari R., Signal recovery from wavelet transform maxima. IEEE Trans. SP. 1994, 42(1) : 194-196
    [83] Chen B S.. Chen Y L.. Multirate modeling of AR/MA stochastic signals and its application to combined estimation interpolation problem. IEEE Trans, SP. 1995. 43(10) : 2302-2312
    [84] Rioul O.. Vetterli M., Wavelets signal processing. IEEE Signal Processing. Mag, 1991,8(5) : 14-38
    [85] Vornell G W., Oppenheim A V, Estimation of fractal signals from noisy measurements using wavelets. IEEE Trans. SP, 1990. 40(3) : 611-623
    [86] Chen B S., Lin C W., Multiscale Wiener filter for restoration of fractal signal: Wavelet filter bank approach. IEEE Trans, SP. 1994, 42(11) : 2972-2982
    [87] Kadambe S., Boudreaux-Bartels G., Application of the wavelet transform for pitch detection of speech signals, IEEE Trans, Information Theory, 1992, 38(2) : 917-924
    [88] Kronland M., Morlet J., Grossmann A., Analysis of sound pattern through wavelet transforms. Int J Pattern Recog Art, 1987, 1: 273-302
    [89] Donoho D L., Johnstone I M., Kerkyacharian G.. et al.. Wavelet shrinkage: Asymptopia, J.R.Statist, Soc. B, 1995. 57(2) : 301-33
    [90] Polyga G., Szego G., Aufgaoben and lehrsatze aus der analysis, vol Ⅱ, Berline: Springer, 1971
    [91] Astrom K., Wittenmark B., Adaptive control, New York: Addison-Wesley Publishing Company, 1989
    [92] Narnendra K S., Annswamy A M., Stable adaptive systems, Englwood Cliffs: Prentice Hall, 1989
    [93] Su C Y., Stepanenko Y., Adaptive control of a class of nonlinear systems with fuzzy logic, IEEE Trans, on Fuzzy System, 1994, 2(4) : 285-294
    [94] Daubechies I., The wavelet transform, time-frequency localization and signal analysis, IEEE Trans, IT, 1990, 36(5) : 961-1005
    [95] Jin Q., et al., Optimal filter banks for signal decomposition and its applications in adaptive echo cancellation, IEEE Trans. on SP, 1996, SP_44(7) : 1669-1680
    
    
    [96] Mallat S., Multifrequency channel decomposition of images and wavelet models, IEEE Trans, ASSP, 1989, 37(12): 2091-2019
    [97] Koc C K., Chen G R. and Chui C K., Complxity analysis of wavelet signal decomposition and reconstruction, IEEE Trans on Aerospace and Electronic Systems, 1994, 30:910-918
    [98] Silva E., Ghanbari., On the performance of linear phase wavelet transform in low bit-rate coding, IEEE Trans Image Processing, 1996, 5(5): 689-704
    [99] Zhang X P., Tian L S. and Peng Y N., From the wavelet series to the discrete wavelet transform-the initialization, IEEE Trans on Signal Processing, 1996, 44: 129-133
    [100] Elias-Juarez A., Kantor J., On the application of wavelet to model predictive control, in Proc, 1992 Automatic Control Conf., Chicago, IL, 1992, pp. 1582-1586
    [101] Dentino M., McCool J., Widrow B., Adaptive filtering in the frequency domain, Proc IEEE, 1978, 66:1658-1659
    [102] Fleet D., Disparity from local weighted plase-correlation, IEEE Int Conf on Sys, Man & Cyber vol.1, San Antonio, Texas, 1994, pp. 48-56
    [103] Reed F A., Feintuch P L., A comparison of LMS adaptive cancellers implemented in the frequency domain and time domain, IEEE Trans Circuits System, 1981,28:610-615
    [104] Lee J C., Un C K., Performance of transform domain LMS adaptive digital filters, IEEE Trans Acoust Speech Signal Processing, 1986, 34:499-510
    [105] Griffiths L J., A continuously adaptive filter implemented as a lattice algorithms, IEEE Trans Commun, 1979, 27(6): 899-905
    [106] Erdol N., Basbug F., Wavelet transform based adaptive filtering, in Signal Processing-Ⅵ: Theories and applications, The Netherlands: Elsevier Science, 1992, pp. 1117-1120
    [107] Ferrara E R.. Fast implementation of LMS adaptive filters, IEEE Trans Acoust Speech Signal Processing, 1980, 28:474-475
    [108] Hosur S., Tewfik A., Wavelet transform domain LMS algorithm, IEEE Int Conf Acoust Speech Signal Processing, 1993, 3:508-510
    [109] Erdol N., Basbug F., Performance of wavelet transform based adaptive filters, IEEE Int Conf Acoust Speech Signal Processing, 1993, 3: 500-503
    [110] Dorslovochi M., Fan H., Wavelet-based adaptive filtering, IEEE Int Conf Acoust Speech Signal Processing, 1993, 3: 488-491
    [111] 王玲,宋国乡,紧支小波基的非对称性及改进,西安科技大学学报,1999,26(3):357—363
    [112] 赵瑞珍,宋国乡,小波框架的研究,西安科技大学学报,1999,26(3):293—297
    [113] 张新红,徐长龙,紧支集正交小波的自动联系函数及其导数运算,河南师范大学学报,1997,25(4):21—25
    
    
    [114]骆德汉,基于小波的神经网络在齿轮箱故障诊断中的应用研究,中国科技大学学报,1998,28(4):494—500
    [115]吕伯权,李天铎,吕崇德等,一种用于函数学习的小波神经网络,自动化学报,1998,24(4):548—551
    [116]傅瑜,徐国华,二进小波在轴承损伤检测中的应用,西安电子科技大学学报,1997,24(4):473-476
    [117]赵众,蒋慰孙,顾幸生,基于小波变换的产生过程监测,控制与决策,1999,14(1):19—24
    [118]吴耀军,陶宝祺,陈进等,小波基特征提取的复合材材料损伤检测,振动工程学报,1998,11(1):116—120
    [119]吴乐南编,数据压缩的原理与应用,北京:电子工业出版社,1995
    [120]田金文,柳斌,柳健等,基于小波分解和分形迭代的图像编码新方法,华中理工大学学报,1999,27(2):90--92
    [121]熊惠霖,张天序,具有平移和尺度不变性的图像小波多尺度特征,华中理工大学学报,1999,27(5):9-10
    [122]徐朝伦,王晓湘,柯有安,基于小波变换的纹理图像分类,电子科学学刊,1999,21(3):404-407
    [123]叶桦,章国宝,陈维南,基于小波变换的纹理图像分割,东南大学学报,1999,29(1):44—48
    [124]张永平,郑南宁,张元亮,非正交函数与图像自适应表示,电子学报,1999,29(1):31—33
    [125]万刚,朱常青,多进制小波及其在DEM数据有损压缩中的应用,测绘学报,1999,28(1):36—40
    [126]冯象初,宋国乡,边界积分方程小波解空间的收敛性,西安电子科技大学学报,1998,25(4)
    [127]王金义,王文元,指纹图像小波压缩中子图信息的研究,电子科学学刊,1998,20(5):584—590
    [128]韦志辉,程军,基于小波变换的一种新的图像质量评价方法,南京理工大学学报 1998,22(6):552—555
    [129]王大凯,魏海,小波分析应用于迭代分形和统计预测分形结合的图像编码方法,电子学报,1998,26(11):131—134
    [130]吴晓冬,李永明,陈弘毅,基于小波变换的混合域声音编码,清华大学学报,1998,38(9):28—32
    [131]刘轶,王长富,戴蓓倩,基于小波变换的基音同步叠加技术,中国科技大学学报,1998,28(4):470—475
    [132]李晶皎,孙杰,姚天顺,基于听觉及小波变换的汉语语音调值分析,控制与决策,1998,13(6):665—668
    [133]郑元谨,李乐民,闻懋生,基于小波变换的自适应多分辨率语音增强算法,电子科学学刊,1998,20(3):289—295
    [134]杜小武,尚海燕,分形插值方法在地层裂缝预测中的应用,西安电子科技大学学报,1998,25(2):174—176
    
    
    [135]李贤彬,丁晶,李后强,子波分析及其在水文水资源中的潜在应用,四川联合大学学报(工程科学版),1997,1(4):49—52
    [136]叶吴,王桂增,方崇智等,一种基于小波变换的导弹运输车辆故障诊断方法,自动化学报,1998,24(3):301—306
    [137]李楠,小波变换—一种新的雷达信号处理方法,现代雷达,1998(2):40—43
    [138]梁百川,李鸿,利用小波变换识别咏内调制信号,电子对抗,1998(3):1—12
    [139]郑容,文成林,施晨鸣,多分辨多模型激动目标跟踪,电子学报,1998,26(1):115—117
    [140]钟子发,吴彦华,李宏斌,在一帧采样数据中分选识别接受通带内同时存在的多目标通信信号,电子工程学报,1998,17(4):1—8
    [141]朱维彬,王鸿章,基于二分结构的更佳频率分辨率的实现,上海大学学报,1997,31(12),130—135
    [142]王航,谈克雄,朱德恒,用小波变换提取局部放电信号,清华大学学报,1998,38(6):119—122
    [143]程明琦,安建成,郑兆瑞,小波变换和信号的时频局部分析,太原工业大学学报,1999,30(3):254—257
    [144]周建勇,宋国乡,基于小波变换的信号重构,西安电子科技大学学报,1998,25(2):223—226
    [145]方晖,徐静娟,陈洪渊,一种有效提取微弱信号的新方法,化学学报,1998,1998,56(10):990—993
    [146]魏急波,程时昕,周铁强,用Malvar子波变换实现MCM信道不等宽分配,电子科学学刊,1999,21(3):374—378
    [147]李强,王正志,周宗潭,遥感图像的小波压缩方法,1998,20(2):69—73
    [148]郝鹏威,朱重光,基于小波的图像插值方法,遥感学报,1998,2(2):98—102
    [149]徐长江,宋文忠,基于小波变换的分频集员辨识,控制与决策,1997,12(1):48—52
    [150]曾凡锋,蔡自兴,马润津,基于小波变换的系统辨别方法,南昌大学学报,1998,20(2);15—18
    [151]刘占生,唐炳照,小波分析和分形几何在转子动静碰摩故障诊断中的应用,哈尔滨工业大学学报,1999,31(1):55-57
    [152]冯久朝,杨丰,B-样条小波变换生成新的汉字字形,西南师范大学学报,1999,24(1):31—35
    [153]郑小林,王志刚,吴楠等,抑制心阻抗信号呼吸基线漂移小波变换法,重庆大学学报,1997,20(5):58—62
    [154]李荣华,冯果枕编,微分方程数值解法,北京:高等教育出版社,1996
    [155]苏煜城,吴启光,奇异摄动问题数值方法引论,重庆:重庆出版社,1991
    [156]程正兴,小波分析算法与应用,西安:西安交通大学出版社,1998
    [157]宋国乡,数值泛函及小波分析初步,郑州:河南科技出版社,1993
    [158]叶彦谦等,极限环论,上海:上海科技出版社,1984
    [159]李林,应益荣,党新益,无穷远的意义、方法和应用,西北大学出版社,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700