用户名: 密码: 验证码:
三维数值水池及船舶操纵性水动力数值计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从2010年开始,我国在船舶工业总量上就已超过韩国和日本,成为世界第一。但在科技水平和核心竞争力方面,与发达国家还有不小的差距,船舶工业由大到强还有很长的一段路要走。为此,国务院发布了《船舶工业加快结构调整促进转型升级实施方案(2013-2015年)》,该方案指出开展船舶和海洋工程装备关键技术攻关,培育提高科技创新能力,对于提高产业核心竞争力,努力实现船舶工业由大到强的转变,具有重要的现实意义。船舶CFD技术是CFD在船舶和海洋工程领域应用所产生的高新技术。近十多年来,随着高速度、大容量计算机的快速发展和数值模拟技术的进步,采用计算流体动力学方法解决船舶操纵性问题成为了可能,该方法打破了长期以来完全依靠物理水池去估算船舶水动力性能的传统,将数值水池作为一种与试验水池优劣互补、相辅相成的手段应用于船舶操纵运动水动力数值模拟中。
     本文所做的主要工作有:
     (1)构建了用于研究船舶操纵性的三维数值波浪水池。采用仿物理造波和纯数值造波两种造波方法造波,海绵层阻尼消波法消波,构建数值波浪水池,实现数值波浪水池模拟。从网格尺寸、时间步长和离散格式等多个方面对规则波的数值衰减问题进行了分析研究。
     (2)对影响船舶操纵的舵和螺旋桨进行了水动力数值研究。研究了不同展弦比,不同厚度比条件,不同雷诺数下,敞水舵的水动力性能的升力和阻力,并将数值模拟的结果与试验数据进行验证比较,吻合性较好,得到了不同舵角下舵周围的压力和速度分布,观察分析了舵周围流体的分离现象。以四叶螺旋桨KP458为研究对象,对螺旋桨水动力性能进行研究,得到了不同进速系数下的螺旋桨的推力系数和扭矩系数,绘制了敞水螺旋桨的水动力性能曲线。
     (3)对船模直航和斜航试验的操纵运动进行了数值模拟。计算了带自由面的DTMB5415船模粘性流场,并将计算结果与试验值进行了比较。以KCS船型为研究对象,通过采用“叠模”模型和带自由面的VOF方法分别对船模直航运动进行了数值模拟,并将两者的计算结果分别与试验值进行了比较。通过计算不同航速下带自由面的KCS船模直航阻力,获得一系列相应的力和力矩等数据,采用最小二乘法线性拟合得到了KCS船模直航阻力水动力导数。将大连海事大学的实习船“育鲲”轮作为研究对象,进行了船模直航阻力的数值模拟,得到了相关的水动力导数。以KVLCC2M为研究对象,对船模斜航运动的粘性流场进行了数值模拟,得到了不同漂角下船舶的侧向水动力系数和首摇力矩系数,从而计算了相应的水动力导数。船模直航和斜航试验的数值模拟为航海模拟器中采用船舶CFD计算水动力导数奠定了基础,为船舶CFD实用化研究提供一种新的思路。
Chinese shipbuilding industry has grown at overwhelming pace to dominate the top global ranks till the year of2010. However, compared with the developed countries, Chinese shipbuilding industry still has a long way to go in improving shipbuilding science and core competitiveness.Therefore, the state council issued regulations on speeding up structural adjustment and promoting the transformation and upgrading of shipbuilding industries from2013to2015. The regulations indicate that it is very urgent to tackle key technology of ship and marine engineering and improve the scientific and technological innovation. Enhancing of the core competiveness will make Chinese shipbuilding industry stronger. Ship computational fluid dynamics technology is high-tech industries on application of ship and ocean engineering using CFD. In recent ten years, with the rapid development concerning high speed and large capacity of computer and numerical simulation. It is possible to solve ship maneuverability through CFD. The new method is different with traditional method which depends on experimental tank to estimate ship hydrodynamic performance. The numerical tank will be used to study the ship maneuver motion together with the physical experimental tank.
     The main work of the paper lies in:
     (1) Numerical wave tank is established to perform the research in the field of ship maneuverability. The wave-generation methods of physical making-wave and pure numerical making-wave are employed to generate the numerical wave in the numerical wave tank respectively. The method of wave damping absorber is used to absorb the numerical wave in the numerical wave tank. The regular wave attenuation is analyzed on the aspect of mesh size, time step and discretization scheme.
     (2) Hydrodynamic numerical research is made on the important equipments of ship maneuver, such as rudder and propeller. The numerical computation of lift coefficient and drag coefficient for3D rudder is performed at different aspect ratio and thickness ratio and Reynolds number. The numerical results are compared with experimental results, and a good agreement is demonstrated. The pressure and velocity fields are obtained under different rudder angles. At the same time, the separation phenomenon of the viscous flow around rudder is observed and analyzed. Take four blades propeller KP458as the subject of propeller research, the propeller thrust coefficients and torque coefficients is gained in different advance coefficients, and the curve of propeller hydrodynamic performance is drew.
     (3) Hydrodynamic numerical research on ship direct motion and oblique motion is carried out. Viscous flow around DTMB514ship model with free surface is calculated, and the numerical results are compared with experimental results. The two methods are introduced to simulate the KCS model. The free surface is considered for the first method. The second method ignores the free surface, in other words, a mirror image which replaces the free surface is applied. The results with different methods are compared with experimental results respectively. Viscous flow around KCS model in different velocities is simulated, the force and moment are gained, and the hydrodynamic derivatives are calculated with the least-squares method. The motor vessel "YUKUN" which is the training vessel of Dalian Maritime University also is taken as the object to simulate the ship direct motion, and the hydrodynamic derivatives are calculated. KVLCC2M which is one of the standard ship form used in the comparative research is taken as the main object, and the numerical simulation of viscous flow around KVLCC2M ship model in oblique motion is carried out. The lateral force coefficients and yaw moment coefficients under different drift angles are calculated, and the hydrodynamic derivatives are gained. These hydrodynamic numerical results will be considered to use in marine simulator in the future, and it will be a good way for ship CFD practical research.
引文
[1]中华人民共和国国务院.船舶工业加快结构调整促进转型升级实施方案(2013-2015年)[BE/OL].(2013-07-31)[2013-08-01]http://www.gov.cn/zwgk/2013-08/04/content_2460962.htm.
    [2]MARIN. Software Sales[BE/OL].[2013-08-01].http://www.marin.nl/web/Facilities-Tools/ Software/Software-Sales.htm.
    [3]SHIPFLOW. Shipflow products [BE/OL].[2013-08-01].http://www.flowtech.se/.
    [4]MIT (Massachusetts institute of technology) news.New tack to be tried for America's Cup [BE/OL]. (1994-03-02). [2013-08-01].http://web.mit.edu/newsoffice/1994/yacht-0302.html.
    [5]郭达译.CFD—船舶设计者使用的一种新的重要工具[J].中外船舶科技,1998,34(3):18-21.
    [6]HSVA. Software developed and distributed by HSAV [BE/OL]. [2013-08-01].http://www.hsva.de/
    [7]郭海强.船舶性能数值水池的研究及其若干应用[D].上海:上海交通大学,2009.
    [8]Clement, A.H. Benchmark Test Cases for Numerical Wave Absorption[C].Proceedings of the 9th International Offshore and Polar Engineering Conference,Brest, France,1999,3:266-289.
    [9]MARZI J. VIRTUE-The Virtual Tank Utility in Europe Extending the Scope and Capabilities of Maritime CFD[C].Proceedings of the 7th International Conference on hydrodynamics, Ischia, Italy, October,2006,563-572
    [10]DUFFY A, HARRIES S, MARZI J.et al. VIRTUE:Integrating CFD ship design[C].Proceedings of the 7th International Conference on hydrodynamics, Ischia Italy, Oct.,2006,615-624.
    [11]吴秀恒,刘祖源,施生达,冯学知著.船舶操纵性[M].北京:国防工业出版社,2005,9.
    [12]Chislett.M.S and Strom-Tejsen, J. Planar motion mechanism tests and full-scale steering and manoeuvring predictions for a MARINER class vessel [M]. Hydro-and Aerodynamics Laboratory. Report No.Hy-6,1965.
    [13]International Maritime Organization (IMO). Interim Standards for Ship Maneuverability [S]. Resolution A.751 (18),1993.
    [14]International Maritime Organization (IMO). Standards for Ship Maneuverability[S]. Resolution MSC.137(76),2002.
    [15]International Towing Tank Conference(ITTC). The Maneuvering Committee[R]. Final Report and Recommendations to the 24th ITTC.2005
    [16]张秀凤.航海模拟器中六个自由度船舶运动数学模型的研究[D].大连:大连海事大学,2009.
    [17]Longuet-Higgins, M.S. and Cokelet, E.D.The deformation of steep surface waves on water:I.A numerical method of computation [C].Proceedings of the Royal Society of London, Series A350, 1976:1-26.
    [18]Vinje, T and Brevig, P. Numerical simulation of breaking waves [J]. Advances in Water Resources,1981,4(2):77-82.
    [19]Vinje T, Brevig P. Nonlinear Ship Motions[C]. Proceedings of the 3rd. International Conference on Num. Ship Hydro. Paris, France,1981:rV3-1-IV3-10.
    [20]Wang, P., Yao, Y and Tulin, M.P. Wave group evolution, wave deformation, and breaking: Simulations using LONGTANK, a numerical wave tank [J]. International Journal for Offshore and Polar Engineering,1994,4(3):200-205.
    [21]Zhang, S., Yue, D. K. P. and Tanizawa, K., Simulation of plunging wave impact on a vertical wall [J]. International Journal of Fluid Mechanics,1996,327:221-245.
    [22]Dommermuth, D. G. and Yue, D. K. P., Numerical simulations of nonlinear axisymmetric flows with a free surface [J]. International Journal of Fluid Mechanics,1987,178:195-219.
    [23]Ferrant, P. Three-dimensional unsteady wave-body interactions by a Rankine boundary element model [J]. Ship Technology Research,1993,40(4):165-175.
    [24]Ferrant, P., Simulation of strongly nonlinear wave generation and wave-body interactions using a 3-D MEL model [C]. Proceedings of the 21st Symposium on Naval Hydrodynamics, Trondheim, Norway,1996:93-109.
    [25]Ferrant, P. Runup on a cylinder due to waves and current:Potential flow solution with full nonlinear boundary conditions [C]. Proceeding of the 8th International Offshore and Polar Engineering Conference,1998,3:332-339.
    [26]Orlanski, I.A simple boundary condition for unbounded hyperbolic flow [J]. Journal of Computational Physics,1976,21(3):251-269.
    [27]Baker, G. R., Meiron, D. I. and Orszag, S. A. Application of a generalized vortex method to nonlinear free-surface flows [C]. Proceedings of the 3rd International Conference on Numerical Ship Hydrodynamics, Paris,1981:179-191.
    [28]Israeli, M. and Orszag, K. F. Approximation of radiation boundary conditions [J]. Journal of Computational physics,1981,41 (1):115-135.
    [29]吴乘胜,朱德祥,顾民.数值波浪水池及顶浪中船舶水动力计算[J].船舶力学,2008,12(2):168-179.
    [30]吴乘胜,朱德祥,顾民.数值波浪水池中船舶顶浪运动模拟研究[J].船舶力学,2008,12(5):692-696.
    [31]朱仁传,缪国平,向红贵等.数值水池及其在船舶与海洋工程中的应用[J].上海造船,2007,72(4):21-23.
    [32]方昭昭,朱仁传,缪国平.数值波浪水池中航行船舶辐射问题的数值模拟[J].水动力学研究与进展A辑,2011,26(1):65-72.
    [33]李宏伟.数值水池造波方法研究[D].哈尔滨:哈尔滨工程大学,2009.
    [34]詹杰民,李毓湘.数值水池的一种有效的数值消波方法[J].水动力学研究与进展(A辑),2002,17(1):46-52.
    [35]齐鹏,王永学.三维数值波浪水池技术与应用[J].大连理工大学学报,2003,43(6):825-830.
    [36]李超,规则波中船模纵向运动的数值模拟以应用研究[D].大连:大连舰艇学院,2010:45-46.
    [37]杨波,舰船规则波中多自由度摇荡运动数值模拟研究[D].大连:大连舰艇学院,2012:45-60.
    [38]邹早建.IMO船舶操纵性标准与操纵性预报研究[C].第八届全国海事技术研讨会论文集,2002.
    [39]野本兼作.船舶操纵性和控制及其在船舶设计中的应用[D].1980.
    [40]Hess J L, Smith A M O. Calculation of non-lifting potential flow about arbitrary three dimensional bodies [J]. Journal of Ship Research,1964,8(10):22-44.
    [41]Karasuno K, Maekawa K, Saito Y, Ikeda H. An Element-Type Mathematical Model Derived From a Simplified 3D Vortex System on Ship-Hull Hydrodynamic Forces During Slow-Speed Maneuvring Motion[C], International Conference on Marine Simulation and Ship Manoeuvrability, Orlando, Florida, USA, May,2000.
    [42]Beukelman W, Journee J M J. Hydrodynamic Transverse Loads on Ships in Deep and Shallow Water[C]. The 22nd International Conference on Hydrodynamics and Aerodynamics in Marine Engineering, Varna, Bulgaria, October,2001.
    [43]Toxopeus. S.L., Calulation of hydrodynamic manoeuvring coefficients using viscous-flow calculation [C]. Proceedings of 7th International Conference on Hydrodynamic, Ischia, Italy, October, 2006.
    [44]Toxopeus. S.L., Validation of Slender-body method for prediction of linear manoeuvring coefficients using experiments and viscous-flow calculations[C]. Proceedings of 7th International Conference on Hydrodynamic, Ischia, Italy, October,2006.
    [45]Jacquin E., Guillerm P.-E., Drouet A., Perdon P., Alessandrini B. Ship maneuvers simulation using free-surface RANS solver[C]. Proceedings of the 7th International Conference on Hydrodynamic, Ischia, Italy, October,2006.
    [46]Jacquin E.,Guillerm P.-E.,Drouet A.,Perdon P. Simulation of unsteady ship maneuvering using free-surface RANS solver[C]. The 26th symposium on Naval Hydrodynamics, Rome, Italy, September,2006.
    [47]Tao Xing, Jun Shao, Frederick Stern. BKW-RS-DES of Unsteady Vortical Flow for KVLCC2 at Large Drift Angles[C]. The 9th International Conference on Numerical Ship Hydrodynamics, Ann Arbor, Michigan, August,2007.
    [48]Antonio Pinto-Heredero, Tao Xing, Frederick Stern. URANS and DES analysis for a Wigley hull at extreme drift angles [J]. Journal of Marine Science and Technology, April,2010, 15(4):295-315.
    [49]Gao Q.X, Vassalos. D. Simulation of wave effect on ship hydrodynamics by RANSE [J]. Fluid Mechanics and Its Applications,2011,97(1):723-733
    [50]Van der Ploeg, A. Treatment of the free surface boundary conditions in PARNASSOS [C]. Numerical Towing Tank symposium, Varna,2005
    [51]Alessandrini B, Delhommeau G. Viscous Free Surface Flow Past a Ship in Drift and in Rotating Motion[C].22nd Symposium on Naval Hydrodynamics, Washington, DC, USA, August,1998.
    [52]Toshiko ARII, Akihiro KOBAYASHI, Kazuhiko HASEGAWA. Performance Analysis of Single-propeller/Twin-rudder System by Computational Fluid Dynamics [C]. The International Conference on Marine Simulation and Ship Maneuverability. Singapore, March,2012.
    [53]Van S.H., Kim W.J., Yoon H.S., Lee Y.Y., Park I.R. Flow measurement around a model ship with propeller and rudder [J]. Experiments in Fluids,2006,40(4):533-545
    [54]Fukui Yo. A Study on interaction coefficients between hull and rudder in maneuvering model using CFD [C]. The International Conference on Marine Simulation and Ship Maneuverability. Singapore, March,2012.
    [55]Tanaka S, Kimura K. A Numerical Study on Hydrodynamic Interaction among Oblique Ship Hull, Propeller and Rudder[C]. International Conference on Marine Simulation and Ship Maneuverability, Kanazawa, Japan, August,2003.
    [56]Simonsen C D, Stern F.RANS Maneuvering Simulation of Esso Osaka with Rudder and a Body-Force Propeller [J]. Journal of Ship Research,2005,49(2):98-120.
    [57]Dubbioso G., Durante D., Broglia R. and Mauro S. Comparison of experimental and CFD results for a tanker like vessel [C]. The International Conference on Marine Simulation and Ship Maneuverability. Singapore, March,2012.
    [58]Felli. M., Greco. L., Colombo. C., Salvatore. F., Di Felice, F., Soave. M. Experimental and theoretical investigations of propeller-rudder interaction phenomena[C].26th Symposium on Naval Hydrodynamics, Rome, Italy, September,2006.
    [59]Streckwall, H., Salvatore, F. Results from the Wageningen 2007 Workshop on Propeller Open Water Calculations Including Cavitation[C]. The Royal Institute of Naval Architects Marine CFD 2008 Conference, Southampton, U.K., March,2008.
    [60]Simonsen C D, Stern F. Flow Pattern around an Agpended Tanker Hull Form in Simple Maneuvering Conditions [J]. Computers&Fluids,2005,34(2):169-198.
    [61]K. Wockner, P. Soukup, T. Rung. Boundary Conditions for Free Surface Flows[C].10th Numerical Towing Tank Symposium, Hamburg, September,2007.
    [62]Bensow, R. Liefvendahl, M. Implicit and Explicit Subgrid Modeling in LES Applied to a Marine Propeller[C].38th Fluid Dynamics Conference and Exhibit. (AIAA-2008-4144), Seattle, WA, USA,2008.
    [63]Toxopeus, S.L.. Deriving mathematical manoeuvring models for bare hull ships using viscous-flow calculations[C], International Conference on Computational Methods in Marine Engineering,2007
    [64]McDonald H, Whitfield D. Self-Propelled Maneuvering Underwater Vehicles[C].21st Symposium on Naval Hydrodynamics, Trondheim, Norway, June,1996.
    [65]Sato T, Izumi K, Miyata H. Numerical Simulation of Maneuvering Motion[C].22nd Symposium on Naval Hydrodynamics, Washington D.C., USA, August,1998.
    [66]Cura Hochbaum A, Vogt M. Towards the Simulation of Seakeeping and Manoeuvring Based on the Computation of the Free Surface Viscous Ship Flow[C].24th Symposium on Naval Hydrodynamics, Fukuoka, Japan, July,2002.
    [67]Jensen GsKlemt M, Xing-Kaeding Yon the Way to the Numerical Basin for Seakeeping and Manoeuvring[C].9th International Symposium on Practical Design of Ships and Other Floagng Structures, Liibeck-Travemunde, Germany, September,2004.
    [68]Xing-Kaeding Y. Unified Approach to Ship Seakeeping and Maneuvering by a RANSE [D] Method. Ph.D. Dissertation, Report No.634, TU Hamburg-Harburg, Germany, March,2006.
    [69]杨超峰,吴宝山,沈泓萃.肥大型船模操纵性水动力CFD预报的试验验证分析[J].船舶力学,2006,10(4):25-32.
    [70]杨仁友,沈泓萃,姚惠之.螺旋桨敞水性能CFD不确定度分析[J].船舶力学,2010,14(5):472-480.
    [71]胡小菲,黄振宇,洪方文.螺旋桨非定常力的黏性数值分析[J].船舶力学,2009,13(11):734-739
    [72]沈定安,马向能,孙芦忠等.波浪中船舶操纵性预报[J].船舶力学,2000,4(4):15-27
    [73]潘子英,吴宝山,沈泓萃.CFD在潜艇操纵性水动力工程预报中的应用研究[J].船舶力学,2004,8(5):42-51.
    [74]吴乘胜,陈雄,孙立宪.静水中自由船模拖曳CFD模拟方法研究[J].船舶力学,2010,14(8):823-833.
    [75]沈定安,孙澄溥,甘品章.肥大型船舶操纵性正交试验研究[J].船舶力学,1999,3(1):27-36.
    [76]高秋新.船舶CFD研究进展[J].船舶力学,1999,3(8):74-78.
    [77]蔡荣泉,陈凤明,冯学梅.使用FLUENT软件的螺旋桨敞水性能计算分析[J].船舶力学,2006,10(10):41-45.
    [78]张志荣,李百齐,赵峰.螺旋桨/船体粘性流场的整体数值求解[J].船舶力学,2004,8(10):19-26.
    [79]马向能,冯骏.船舶操纵性计算预报中的不确定度评定[J].船舶力学,2011,15(8):853-860.
    [80]Zou Z.J. and Soding H. A Panel Method for Lifting Potential Flows around Three-dimensional Surface-Piercing Bodies[C].20th Symposium on Naval Hydrodynamics, Santa Barbara, California, USA, August,1994.
    [81]马兴磊,邹早建.KCS船型浅水操纵水动力计算[J].船海工程,2008,37(3):4-6.
    [82]田喜民.船舶操纵运动粘性水动力数值与试验研究[D].上海:上海交通大学,2008
    [83]杨勇,邹早建,张晨曦.深浅水中KVLCC船体横荡运动水动力数值计算[J].水动力学研究与进展A辑,2011,26(1):85-93.
    [84]王化明,邹早建,田喜民等.船舶在浅水域横向停靠运动粘性水动力计算[J].船舶力学,2010,14(7):723-731.
    [85]石强,尤云祥,缪国平.两层流体中矩形箱浮体的附加质量和阻尼系数[J].海洋工程,2007,25(2):33-42.
    [86]杨春蕾,朱仁传,缪国平,范菊,李裕龙.基于CFD方法的船/桨/舵干扰数值模拟[J].水动力学研究与进展,2011,26(11):667-673.
    [87]黄昊,郭海强,朱仁传,缪国平.粘性流中船舶横摇阻尼计算[J].船舶力学,2008,12(8):568-573.
    [88]朱仁传,郭海强,缪国平,余建伟.一种基于CFD理论船舶附加质量与阻尼的计算方法[J].上海交通大学学报,2009,43(2):198-203.
    [89]朱仁传,缪国平,林兆伟,向红贵.运动船体甲板上浪的三维数值模拟[J].水动力学研究与进展,2008,23(1):7-13
    [90]李冬荔,杨亮,聂武.操纵运动船舶的水动力计算研究[J].船舶工程,2009,31(2):8-11.
    [91]李冬荔.粘性流场中船舶操纵水动力导数计算[J].哈尔滨工程大学学报,2010,31(4):421-427.
    [92]李冬荔,王彪,杨亮.船舶操纵线性水动力导数计算方法研究[J].中北大学学报(自然科学版),2008,29(6):531-537.
    [93]李冬荔,杨亮,张洪雨等.基于CFD方法的船舶操纵性能预报[J].武汉理工大学学报,2009,31(24):120-123.
    [94]王超,黄胜,常欣,郭春雨.基于滑移网格与RNG κ-ε湍流模型的桨舵干扰性能研究[J].船舶 力学,2011,15(7):715-721.
    [95]黄胜,王超,王诗洋.不同湍流模型在螺旋桨水动力性能计算中的应用与比较[J].哈尔滨工程大学学报,2009,30(5):481-485.
    [96]杨波,万林,王骁等.纯横荡和旋臂试验的数值模拟[J].舰船科学技术,2008,30(4):138-141.
    [97]吴明,石爱国,杨波等.基于CFD的船舶斜浪三自由度运动仿真研究[J].计算机应用研究,2013,30(7):2233-2235.
    [98]张谢东,吴秀恒.三维RANS方程求解斜航船体粘性绕流[J].中国造船,2001,42(1):6-11.
    [99]罗伟林.基于支持向量机方法的船舶操纵运动建模研究[D].上海:上海交通大学,2009.
    [100]罗伟林,邹早建.基于最小二乘支持向量机的船舶操纵运动建模[J].系统仿真学报,2008,20(13):3381-3384.
    [101]王化明,邹早建.双桨双舵船舶操纵性预报研究[J].武汉理工大学学报(交通科学与工程版),2006,30(1):124-127.
    [102]徐锋,邹早建,尹建川.基于支持向量机的船舶操纵运动在线建模[J].船舶力学,2012,16(3):218-225.
    [103]张显库,杨盐生.不对称信息理论与非线性鲁棒控制算法[J].控制与决策,2005,20(11):43-46.
    [104]李铁山,杨盐生,杜嘉立,洪碧光.一类不确定非线性系统的鲁棒自适应跟踪控制[J].哈尔滨工程大学学报,2005,26(2):152-155.
    [105]张秀凤,尹勇,金一丞.规则波中船舶运动六自由度数学模型[J].交通运输工程学报,2007,7(3):40-43.
    [106]李铁山,杨盐生,洪碧光.船舶直线航迹控制的鲁棒自适应非线性设计[J].大连海事大学学报,2004,30(4):1-5.
    [107]任俊生,杨盐生,刘秀文.高速水翼船操纵模拟器中运动数学模型的研究[J].系统仿真学报,2005,17(2):316-318.
    [108]林小平,刘祖源,程细得.操纵运动潜艇水动力计算研究[J].船海工程,2006,(3):12-15.
    [109]刘清,吴秀恒,邹早建,刘祖源.用RBF网络学习船舶操纵运动的动态特性[J].武汉交通科技大学学报,2000,24(2):117-120.
    [110]余志兴,吴秀恒,张乐文.限制水域中三维船舶操纵运动水动力计算[J].武汉交通科技大学学报,1996,20(6):39-44.
    [111]莫建.波浪中船舶六自由度操纵运动数值仿真[D].哈尔滨:哈尔滨工业大学,2009.
    [112]王福军编著.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004,9.
    [113]Launder B.E., Spalding D.B. Lectures in Mathematical Models of Turbulence [M]. Academic Press, London,1972.
    [114]Yakhot V., Orzag S.A. Renormalization group analysis of turbulence.1. basic theory [J]. Journal of Scientific Computing,1986,1(1):3-51.
    [115]Shih T.H., Liou W.W., Shabbir A., Yang Z.G., Zhu J. A new κ-ε eddy viscosity model for high Reynolds number turbulent flows [J]. Computers & Fluids,1995,24(3):227-238.
    [116]Launder B.E., Spalding D.B. Lectures in Mathematical Models of Turbulence[R]. Academic Press, London, England,1972.
    [117]Wilcox D.C. Turbulence modeling for CFD [M]. DCW Industies,1994.
    [118]Menter F.R. Two-equation eddy-viscosity turbulence models for engineering application [J]. American Institute of Aeronautics and Astronautics Journal,1994,32(8):1598-1605.
    [119]Patanker S.V., Spalding D.B. A calculation processure for heat, mass and momentum transfer in three-dimensional parabolic flows [J]. International Journal of Heat Mass Transfer,1972, 15(10):1787-1806.
    [120]Patanker S.V. Numerical Heat Transfer and Fluid Flow [M].Hemisphere, Washington,1980
    [121]Van Doormal J.P., Raithby G.G. Enhancement of the SIMPLE method for prediciting incompressible fluid flows [J]. Numerical Heat Transfer,1984,7:147-163
    [122]Issa R.I. Solution of the implicitly discretised fluid flow equations by operator-splitting [J]. Journal of Computational Physics,1986,62(1):40-65.
    [123]Tzabiras G.D. A Numerical Study of 2D Steady Free Surface Flows [J]. International Journal for Numerical Method in Fluids,1997,25(5):567-598.
    [124]Hirt CW, Nichols BD. Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries [J]. Journal of Computational Physics,1981,39 (1):201-225.
    [125]邹志利著.水波理论及其应用[M].北京:科学出版社,2005.
    [126]张亚群.造波机的控制及其实现[D].武汉理工大学,2007.5.
    [127]梅琴生编.船用舵[M].北京:人民交通出版社,1981.
    [128]盛振邦,刘应中主编.船舶原理(下册)[M].上海:上海交通大学出版社,2004.
    [129]Rankine, J.M. On the mechanical principles of the action of propellers[J].Transaction of the Royal Institute of Naval Architects,1865,6:13-30
    [130]苏玉民,黄胜编著.船舶螺旋桨理论[M].哈尔滨:哈尔滨工程大学出版社,2003.
    [131]王国强,董世汤编著.船舶螺旋桨理论与应用[M].哈尔滨:哈尔滨工程大学出版社,2005.
    [132]应业炬主编.船舶快速性[M].北京:人民交通出版社,2007.7.
    [133]倪崇本,朱仁传,缪国平,范佘明.一种基于CFD的船舶总阻力预报方法[J].水动力学研究与进展,2010,25(5):579-585.
    [134]余健伟,朱仁传,缪国平,倪崇本.渔政船的阻力计算与预报研究[J].水动力学研究与进展,2011,26(2):134-139.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700