用户名: 密码: 验证码:
高速铁路相邻过渡段路基动响应及长期动力稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,中国已拥有世界上最大规模以及最高运营速度的高速铁路网,高速铁路要求轨道结构具有高平顺性和高稳定性。路基及其与刚性结构物连接处所设置的过渡段,其长期动力稳定性和后续的沉降变形对列车能否高速运行将起到控制作用。过渡段是路基的薄弱环节,是高铁路基中需要研究的重要结构物之一,而对于相邻过渡段之间相互影响的动力特性也有必要进行深入分析。本文在总结国内外路基动力响应及过渡段等相关问题研究现状的基础上,以武广高速铁路相邻过渡段为研究对象,结合国家自然科学基金项目和铁道部科技研究计划重大项目,采用现场参数测试、现场动响应测试、室内动力试验、理论分析和仿真计算等手段,对过渡段路基的动响应特性、动力稳定性和长期变形特性开展了深入研究。主要工作和研究成果如下:
     (1)通过现场波速试验获取了相邻涵-路过渡段路基各结构层填料的动模量、剪切波速、压缩波速和动泊松比等基本动力学参数。通过现场激振试验获取了典型断面的动刚度、动阻尼比和竖向振动无阻尼固有频率。涵顶/过渡段/普通路基的路基综合刚度比的分析表明,过渡段的设置保证了刚性结构物与路基之间的平稳过渡。路基的固有频率与动刚度成正比,但不同刚度断面之间的固有频率差值不大。
     (2)基于经验模式分解方法、希尔伯特变换等信号处理技术和随机振动理论,提出了一种利用环境激励下路基振动信号识别路基固有频率的系统方法。利用该方法获取了相邻涵-路过渡段典型断面的路基固有频率,并与其他方法进行了对比验证,表明该方法的识别结果可靠且测试方便,识别结果较其他方法更全面。
     (3)武广高速铁路“联调联试”期间和正式运营20个月后,先后对试验工点相邻涵-路过渡段路基进行了2次大型现场动响应测试。采用经验模式分解等信号分析方法对测试信号进行预处理,以剔除噪声干扰及趋势项,并通过假设检验筛选出有效测试结果。在此基础上,对动响应进行了时域统计、振动频谱基本特征分析,并利用小波方法获取振动信号不同频段的振动能量比,进行路基振动特性的深入分析。具体的分析内容包括:
     ①路基动响应(动应力、振动加速度、振动速度、动位移)沿线路纵向的分布规律;
     ②路基综合刚度以及轴重、车速等行车因素对路基动响应、振动能量分布的影响,并结合自振频率识别结果分析了引起路基振动的主导激振源:
     ③短间距相邻涵洞对其间普通路基动响应、振动能量的叠加影响;
     ④对比分析了不同路基结构层动响应、振动能量特征,以上述分析此为基础评价了过渡设置的实际效果,并对其设计提出建议。
     ⑤将两次测试的路基动响应、频谱特征及振动能量分布进行对比,结果表明相邻涵-路过渡段的稳定性、线路纵向的整体平顺性良好。根据运营期前后动响应和振动能量的大小、分布与衰减规律的变化情况,提出了应以路基上、下部结构层刚度的合理匹配为原则进行路基设计。
     (4)基于路基填料的室内、外参数试验以及运营期间路基动响应实车测试结果,采用临界动应力法、有效振速法和动剪应变法对相邻涵-路过渡段路基进行动力稳定性验算。再结合两次现场实车测试的动响应及其对比结果、运营期附加沉降监测结果分析评价了相邻涵-路过渡段的长期动力稳定性。
     (5)利用路基填料的室内动力试验数据,拟合其累积塑性应变与加载次数的关系式并获取拟合参数;结合基于FLAC3D三维差分软件所建仿真模型计算的偏动应力结果,计算循环动载作用下的路基累积塑性变形,并与现场大型疲劳试验结果进行对比验证。这种仿真计算和室内动力试验相结合的思路可为高速铁路路基的累积塑性变形预测提供参考。
     (6)建立武广高速铁路典型断面的动力有限元分析模型,模型中基床底层、路基本体采用等效非线性本构关系,其参数利用A、B组填料动三轴试验拟合的动剪切模量比、动阻尼比与动剪应变的关系式确定。应用该模型,计算了动力计算参数不同取值组合的144种工况下的路基动响应,并建立计算结果数据库。在此基础上分析了动力计算参数对路基动响应的影响,拟合了路基动变形、偏动应力与动力计算参数的非线性函数关系式。指出在路基设计中,应保证路基各结构层的动弹性模量、动阻尼比达到较好的匹配水平。
Currently China has the world's largest high-speed rail network, and the operating speed is also the highest of the world. The track structure of high speed railway demands for high ride comfort and high stability. The long-term dynamic stability and subsequent settlement of the roadbed, especially the transition section between soil subgrade and rigid structure, play a controlling role in the motion of train with high velocity. Transition sections are prone to problems. Therefore, Transition sections are the important structures of high-speed railyway subgrade need to study. And the dynamic characteristics of the interaction between closely spaced transition sections need in-depth analysis. In this dissertation, status quo of researches on the subgrade dynamic response and problems of transition sections at home and abroad were summarized. Based on which, also combined with the project of National Natural Science Foundation of China and the major project from Ministry of Railways'science and technology research plan, the dynamic response characteristics, dynamic stability and long-term deformation characteristics of closely spaced transition sections subgrade for Wuhan-Guangzhou high speed railway, were deep researched by means of in-situ parametric tests, in-situ train-induced vibration tests, laboratory dynamic experiments, theoretical analysis and simulation. The main research work and results of this thesis are as follows:
     (1) For roadbed of closely spaced culvert-subgrade transition sections, the basic dynamic parameters of each structure layer such as dynamic modulus, shear wave velocity, dynamic Poisson's ratio and so on, were obtained through in-situ wave-velocity test. And for the typical sections, the dynamic stiffness, damping ratio and undamped natural frequency were acquired via in-situ vibration-exciting experiments. The integrated dynamic stiffness ratio of roadbeds for culvert/transition section/soil subgrade show that the existing transition sections have been ensuring the smooth transition from culverts to soil subgrades. Although the natural frequency of subgrade goes up in proportion to the dynamic stiffness, there is not essential difference in natural frequency between subgrade sections with different dynamic stiffness.
     (2) Based on random vibration theory and signal processing techniques including the Empirical Mode Decomposition method (EMD) and Hilbert transform, an identification method of subgrade natural frequency using the vibration signals induced by ambient excitation was proposed. Then the natural frequencies of the typical section in the closely spaced culvert-subgrade transition sections were identified by the proposed method. The identification results were compared with results from other methods. Comparisons demonstrate that the proposed method is reliable and facilitaes operate, and the identification results are more comprehensive than results from other methods.
     (3) In-situ train-induced vibration tests were twice performed in the closely spaced culvert-subgrade transition sections for Wuhan-Guangzhou high-speed railway. One was in the original trial operation period; the other was at twenty months after formal operation. The original vibration signals of subgrade were firstly processed by the EMD to eliminate noise and trend items. Then the effective signals were filtered from the whole by Hypothesis testing. On basis of which, the dynamic response and basic spectrum characteristics of the subgrade were analyzed respectively in time and frequency domains. Furthermore, wavelet analysis method was introduced to perform in-depth analysis of subgrade's vibration characteristics. Detailed analyses include:
     ①The longitudinal distribution law of the subgrade dynamic response (dynamic stress, vibration acceleration, vibration velocity, dynamic displacement);
     ②The effects of driving factors including train speed, axle load and so on, as well as effects of subgrade stiffness on the subgrade dynamic response and the distribution of subgrade vibration energy. Also the major excitation sourses causing subgrade vibration were analyzed combined with the identified natural frequencies;
     ③The superimposed effects of two closely spaced culverts on the dynamic responses and vibration energies of the soil subgrade between the two culverts;
     ④The dynamic responses and vibration energy charactristics of different subgrade structure layers were analyzed and compared. Base on all the analyses above, the transition effect on the existing transition section was evaluated, and design suggestions about transition section were put forward;
     ⑤The dynamic responses, frequency characteristics and vibration energy distribution of the subgrade obtained in the two train-induced vibration tests were compared. The results proved that the subgrade of the closely spaced culvert-subgrade transition sections is stable and smooth longitudinally along the railway line. Based on the changes of dynamic responses and vibration energies in magnitude, distribution law and decay law before and after operation, the suggestion that the stiffness of upper layer of subgrade should match the one of lower layer was put forward.
     (4) Based on the laboratory and in-situ parametric experiments, as well as in-situ train-induced vibration tests in formal operation period, the dynamic stability of the subgrade of the closely spaced culvert-subgrade transition sections was checked from the aspects of critical dynamic stress, effective vibration velocity and dynamic shear strain. Then, taking into account the comparison of dynamic responses got from the two in-situ train-induced vibration tests and the additional settlements during the formal peration period, the long-term dynamic stability of the subgrade of the closely spaced culvert-subgrade transition sections was evaluated.
     (5) The formula of the relationship between cumulative plastic strain and loadings times, as well as the parameters needed in the formula was obtained by laboratory dynamic experiments. Combined with the dynamic deviator stresses calculated through the simulation model established by the three dimensional differential calculation programmer FLAC3D, the cumulative plastic deformations of the sugrade were obtained. The calculated results were compared with the results from the in-situ cyclic vibration test. The comparison demonstrated that the thinking based on both simulation calculation and laboratory experiment was reasonable and applied to predict the cumulative plastic deformations of subgrade for high-speed railway.
     (6) The dynamic finite element analysis model of the typical section for Wuhan-Guangzhou high-speed railway was established. The relationships between dynamic shear modulus, dynamic damping ratio and dynamic shear strain obtained through laboratory dynamic experiments of the A and B group fillings, were applied in the analysis model as paramaters of the equivalent nonlinear constitutive relation of the corresponding subgrade structure layers. Using the model, dynamic responses of subgrade were calculated144times when the dynamic calculation parameters ranged. Based on which, the effects of dynamic calculation parameters on subgrade dynamic response were analyzed, and the nonlinear formulas of relationships between them were deduced. The design suggestion for subgrade, that the dynamic elastic modulus and dynamic damping ration of every structure layer should match each other, was put forward.
引文
[1]孔祥安.TVG-法国高速铁路[M].成都:西南交通大学出版社,1997:1-26.
    [2]王其昌.高速铁路土木工程[M].成都:西南交通大学出版社,2000:1-58.
    [3]Von Eschenbach H Ebner, Tost S, Maiwald B. Verformungen an Bahnstrecken der Deutschen Bahn AG mit Fester Fahrbahn:Ursachen, Sanierung, Vermeidung-Ein Erfahrungsbericht [C]. Vortrage der Baugrundragung, Mainz, 2002.
    [4]De Barros, F. C. P. and Luco, J. E.. Response of a layered viscoelastic half-space to a moving point load [J]. Wave Motion,1994,19:189-210.
    [5]Dieterman H A, Mertikine A. Critical velocities of a harmonic load moving uniformly along an elastic layer [J]. ASME Journal of Applied Mechanics,1997, 64:596-600.
    [6]Jones D V, Houed D D L, Peplow A T, et al. Ground vibration in the vicinity of a moving harmonic rectangular load on a half-space [J]. European Journal of Mechanics-A/Solids,1998,17:153-166.
    [7]Kaynia A M, Madshus C, Zackris-son P. Ground vibration from high-speed trains: prediction and countermeasures[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2000,126(6):531-537.
    [8]Hall L. Simulations and analyses of train-induced ground vibrations [D]. Stockholm, Sweden:Royal Institute of Technology,2000.
    [9]Heelis M E, Collop A C, Dawson R D. The'Bow-wave' effect in soft subgrade beneath high speed rail lines[C]. Performance Verification of Constructed Geotechnical Facilities, Geotechnical Engineering Special Publication,2000: 338-349.
    [10]Fryba, L. History of Winkler foundation[J]. Vehicle System Dynamics,1995,24: 7.
    [11]S.铁木辛柯.工程中的振动问题[M].北京:人民铁道出版社,1979.
    [12]王其昌,陆银根.铁路新型轨下基础应力计算[M]北京:中国铁道出版社,1987.
    [13]ESVELD C. Modern Railway Track [M].2nd Ed. Zaltbommel:MRT Productions,2001.
    [14]P. M. Mathews, Vibrations of a beam on elastic foundation[J]. ZAAM. Z. angew. Math. Mech,1958,38:105-115.
    [15]Filippov, I. G. Method of solving equations of motion of viscoelasitc media[J]. Mekhnika Kompozitnykh Materialov,1973,9(3):35-429.
    [16]Labra, J.J. An axially stressed railroad track on an elastic continuum subjected to a moving load[J]. Acta Mechanica,1975,22(1):29-113.
    [17]Kim, Seong-Min. Vibration and stability of axial loaded beams on elastic foundation under moving harmonic loads[J]. Engineering Structures,2004,26(1): 95-105.
    [18]孙璐,邓学钧.匀速运动的线源荷载激励下无限长梁动力分析[J].应用数学和力学,1998,19(4):341-347.
    [19]J.T Kenney J, Pasadena, Calif. Steady-State vibration of beam on elastic foundation for moving load[J]. Journal of Applied Mechanics,1954,11: 359-364.
    [20]Y. H. Chen. Response of an infinite Timoshenko beam on a viscoelastic foundation to a harmonic moving load[J]. Journal of Sound and Vibration,2001, 241(5):24-809.
    [21]赵坪锐,章元爱,刘学毅.无砟轨道弹性地基梁板模型[J].中国铁道科学,2009,30(3):1-4.
    [22]Eason, G. The stresses produced in a semi-infinite solid by a moving surface force[J]. Int. J. Eng. Sci,1965. (2):581-609.
    [23]Fryba. L. Vibration of solids and structures under moving loads[J]. noodhoff international pulishing, Groningen, The Netherlands.1972.
    [24]Jones, D. V. Petyt. M.. Ground vibration in the vicinity of a strip load a two-dimensional half-space model[J]. Journal of Sound and Vibration,1991.147 (1):155-166.
    [25]Jones. D. V. Petyt. M. Ground vibration in the vicinity of a strip Load. An elastic layer on a rigid foundation[J]. Journal of Sound and Vibration,1992,152 (3):501-515.
    [26]Jones, D. V. Petyt. M. Ground vibration in the vicinity of a strip load:an elastic layer on an elastic half-space[J]. Journal of Sound and Vibration,1993,161(1): 1-18.
    [27]Jones, D. V. Petyt,M. Ground vibration in the vicinity of a rectangular load on a half-space[J]. Journal of Sound and Vibration,1993,166(1):141-159.
    [28]Krylov, V. and C. Ferguson. Generation of low frequency ground vibrations from railway trains[J]. Applied Acoustics,1994,42(3):199-213
    [29]Krylov, V. V. Generation of ground vibration by superfast trains[J]. Appl. Acoustics,1995, (44):149-164.
    [30]张昀青,刘维宁,张振刚.列车荷载作用下周围物体的动力响应解[J].铁道学报,2003,25(4):85-88.
    [31]蒋建群,周华飞,张土乔.弹性半空间体在移动集中荷载作用下的稳态响应[J].岩土工程学报,2004,26(4):440-44.
    [32]王常晶,陈云敏.列车荷载在地基中引起的应力响应分析[J].岩石力学与工程学报,2005,24(7):1178-1186.
    [33]黄晶,罗强,李佳,等.车辆轴载作用下无砟轨道路基面动应力分布规律探讨[J].铁道学报,2010,32(2):60-65.
    [34]蔡峨.粘弹性力学基础[M].北京:北京航空航天大学出版社,1989.
    [35]Molenkamp F, Smith I M. Hysteretic and viscous material damping[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1980,4:293-311.
    [36]Hung, H. H. Yang, Y. B. Elastic waves in visco-elastic half-space generated by various vehicle loads[J]. Soil Dynamics and Earthquake Engineering,2001, 21(1):1-17.
    [37]Dinkel, Jens Bitzenbauer. J. Dynamic interaction between a moving vehicle and an infinite structure excited by irregularities-Fourier transforms solution[J]. Archive of Applied Mechanics,2002,72(2):199-211.
    [38]Grundmann H., M. Lieb, E. Trommer. The response of a layered half-space to traffic loads moving along its surface[J]. Archive of Applied Mechanics,1999, 69:55-67.
    [39]L. ABC ALSHAIKH, D. TLRHAN and Y. MENGI. Two-Dimensional Transient Wave Pagation in Viscoelastic Layered Media[J]. Journal of Sound and Vibration. 2001,244 (5):837-858.
    [40]Lefeuve-Mesgouez, G Peplow, A. T. Le Houedec, D. Surface vibration due to a sequence of high speed moving harmonic rectangular loads[J]. Soil Dynamics and Earthquake Engineering,2002,22(6):459-473.
    [41]Swaddiwudhipong S, Chow Y K. Dynamic response of surface foundations on layered media[J]. Earthquake Engineering and Structural Dynamics,1991, 20(11):1065-1081.
    [42]楼梦麟,林皋.粘弹性地基中人工边界的被动反射效应[J].水利学报,1986,(6):20-30.
    [43]王复明,林皋.层状地基分析的样条半解析法及其应用[M].郑州:河南科学技术出版社,1988.
    [44]姬亦工,王复明,栾茂田.层状粘弹性地基动力响应的样条半解析法[J].岩工程学报,2002,24(1):34-37.
    [45]Matsuura A. Impulsive response of an elastic layered medium in the anti-plane wave field based on a Thin-Layered element and Discrete wave number method[J]. Structural Eng/Earthquake Eng,1993,459(22):119-128.
    [46]Matsuura A. Simulation for analyzing direct derailment limit of running vehicle on oscillating tracks[J]. Structural Engineering/Earthquake Engineering,1998, 15(1):63-72.
    [47]Sheng Xiao-zhen, Jones C J C, Petyt M. Ground vibration generated by a harmonic load acting on a railway track[J]. Journal of Sound and Vibration,1999, 225(1):3-28.
    [48]Sheng Xiao-zhen, Jones C J C, Petyt M. Ground vibration generated by a load moving along a railway track[J]. Journal of Sound and Vibration,1999.228 (1): 129-156.
    [49]Dieterman, H. A. and A. V. Metrikine. The equivalent stiffness of a half-space interacting with a beam[J]. Critical velocities of a moving load along the beam. European J. Mech. A/Solids,1996,15(1):67-90.
    [50]Amir, M. Kaynia, Chirstian Madshus, et al. Ground vibration from high speed trains:prediction and countermeasure[J]. Journal of Geotechnical and Geoenvironmental Engineering, Proceedings of the ASCE 2000.126(6): 531-537.
    [51]谢伟平,于艳丽,李红兵.高速移动荷载下轨道系统振动模拟的数值算法[J].武汉理工大学学报,2001,23(12):57-59.67.
    [52]谢伟平,王国波.移动荷载作用下轨道系统的动力特性分析[J].郑州大学 学报(工学版),2003,24(1):24-27.
    [53]聂志红,刘宝琛,李亮等.移动荷载作用下轨道路基动力响应分析[J].中国铁道科学,2006,27(2):15-19.
    [54]Sheng X, Jones C J C, Thompson D J. A theoretical model for ground vibration from trains generated by vertical track irregularities [J]. Journal of Sound and Vibration,2004,272:937-965.
    [55]Lombaert G, Degrande G, Kogut J, et al. The experimental validation of a numerical model for the prediction of railway induced vibrations [J]. Journal of Sound and Vibration,2006,297:512-535.
    [56]Manabe Katsushi. Multiple-wheel induced vibration of rail with surface irregularity [J]. Quarterly Report of Railway Technical Research Institute,2004, 45(3):136-141.
    [57]冯青松,雷晓燕,练松良.不平顺条件下高速铁路轨道振动的解析研究[J].振动工程学报,2008,21(6):559-564.
    [58]和振兴,翟婉明.高速列车作用下板式轨道引起的地面振动[J].中国铁道科学,2007,28(2):7-11.
    [59]胡安峰,伍云利,孙波等.高速列车荷载作用下无砟轨道-地基竖向耦合动力响应研究[J].工程力学,2012,29(3):237-243.
    [60]郝瀛.铁道工程[M].北京:中国铁道出版社,2000.
    [61]DIN Deutsches Institut fur Normungung, e. V. DIN-Fachbericht 101, Einwirkungen auf Brucken,2. Auflage[S]. Beuth Verlag GmbH Berlin Wien Zurich,2003.
    [62]H.H. Jenkins, J.E. Stephenson, G. A. Clayton, et al. The Effect of Track and Vehicle Parameters on Wheel/Rail Vertical Dynamic Forces[J]. Railway Engg. Jounal,1974, Vol.3, No.1.
    [63]C. O. Frederick. Blueprint for Track Research[C], Symposium on the Relation between Wheel and Track, Peking, Oct.1980.
    [64]T. M. Dawn and C. G Stanworth. Ground Vibrations by Passing Trains[J], Journal of Sound and Vibration,1979,66(3):355-362.
    [65]潘昌实,GN.Pande.黄土隧道列车动荷载响应有限元初步数定分析研究[J].土木工程学报,1984,17(4):18-28
    [66]梁波.高速铁路路基的动力特性及土工合成材料的应用研究[D].成都:西 南交通大学,1998.
    [67]梁波,蔡英.不平顺条件下高速铁路路基的动力分析[J].铁道学报,1999,21(2):84-88.
    [68]国外高速铁路技术发展研究资料之四—法国TGV高速铁路[R].铁道部科情所编译,1991.
    [69]梁波,罗红,孙常新.高速铁路振动荷载的模拟研究[J].铁道学报,2006,28(4):89-94.
    [70]梁波,孙常新.高速铁路路基动力响应中的双峰现象分析[J].土木工程学报,2006,39(9):117-122.
    [71]孙常新,胡金虎,梁波.准高速铁路路基动力响应数值模拟[J].计算力学学报,2010,27(1):173-176.
    [72]Yoshihiko S. Theoretical analysis on vibration of ballasted track[J]. QR&RTRI, 1988,29(1):41-46.
    [73]Chu K H, et al. Dynamic Interaction of Railway Train and Bridges[M]. Vehicle System Dynamics,1989.
    [74]Hanazato, Toshikazu, Ugai, Keizo, et al. Three-dimensional analysis of traffic-induced ground vibrations. Journal of Geotechnical Engineering,1991, 117(8):1133-1151.
    [75]Grassie S L. Review of workshop:aims and open questions[J]. Vehicle System Dynamics Supplement,1995(24):380-386.
    [76]李军世,李克钏.高速铁路路基动力反应的有限元分析[J].铁道学报,1995,17(1):66-75.
    [77]潘昌实,谢正光.地铁区间隧道列车振动测试与分析[J].土木工程学报,1990,23(2):21-28.
    [78]潘昌实,李德武.北京地铁列车振动对环境影响的探讨[J].振动与冲击,1995,14(4):29-34,78.
    [79]张璞.列车振动荷载作用下上下近距离地铁区间交叠隧道的动力响应分析[D].上海:同济大学.2001.
    [80]张玉娥.地铁区间隧道列车振动响应测试与数值分析[D].兰州:兰州铁道学院,1988.
    [81]雷晓燕.高速列车对道碴的动力响应[J].铁道学报,1997,19(1):114-121.
    [82]雷晓燕,陈水生.高速铁路轨道结构空间动力分析[J].铁道学报,2000, 22(5):76-80.
    [83]Cai. zhenqi. Modelling of rail track dynamics and wheel-rail interaction[D]. Canada:Queen's University at Kingston,1992.
    [84]Ripke B, Knothe K. Simulation of High Frequency Vehicle-track Interactions[J]. Vehicle System Dynamics,1995,24(Supp 1.):72-85.
    [85]Oscarsson J, Dahlberg T. Dynamic Train/Track/Ballast Interaction computer Models and Full-scale Experiments[J]. Vehicle System Dynamics,1998, 28(Supp 1.):73-84.
    [86]Auersch L. Vehicle-track interaction and Soil Dynamics[J]. Vehicle System Dynamics,1998,28(Supp 1):553-558.
    [87]Wu, S. F, Zhou, Z. Simulation of vehicle pass-by noise radiation Transactions of the ASME[J]. Journal of Vibration and Acoustics,1999,121(2):197-203.
    [88]Drozdziel J, Sowinski B, Groll W. The Effect of Railway Vehicle-track System Geometric Deviation on its Dynamics in the Turnout Zone [J]. Vehicle System Dynamics,1999,33 (Suppl.):641-652.
    [89]Gurule S, Wilson N. Simulation of Wheel/rail Interaction in Turnouts and Special Track work[J]. Vehicle System Dynamics,1999,33(Supp 1.):143-154.
    [90]Oscarsson J. Dynamic Train-track-ballast Interaction with Unevenly Distributed Track Properties[C].17th IAVSD Symposium on Dynamics of Vehicles on Roads and on Tracks, Lyngby, Denmark,2001.
    [91]翟婉明.车辆-轨道垂向耦合动力学[D].成都:西南交通大学,1991.
    [92]翟婉明.车辆-轨道垂向系统的统一模型及其耦合动力学原理[J].铁道学报,1992,14(3):10-21.
    [93]翟婉明,孙翔.低动力作用轮轨系统垂向动力参数研究与设计[J].铁道学报,1993,15(3):1-10.
    [94]翟婉明,孙翔,詹斐生.机车车辆与轨道垂向相互作用的计算机仿真研究[J].中国铁道科学,1993,14(1):42-50.
    [95]Zhai Wanming, Sun Xiang. A Detailed Model for Investigating Vertical Interaction between Railway Vehicle and Track[J]. Vehicle System Dynamics, 1994,23(Supplement):603-615.
    [96]翟婉明.高速铁路轮轨系统的最优动力设计原则[J].中国铁道科学,1994,15(2):16-21.
    [97]翟婉明,高速铁路轮轨冲击振动的特征及其控制原理[J].铁道学报,1995,17(3):28-33.
    [98]翟婉明,蔡成标等.车辆-轨道相互作用统一模型及软件的试验验证[J].铁道学报,1996,18(4):42-46.
    [99]Zhai W M, Cai C B. Coupling Model of Vertical and Vehicle/track Interactions[J]. Vehicle System Dynamics,1996,26(1):61-79.
    [100]Zhai W, Cai Z. Dynamic Interaction between a Lumped Mass Vehicle and a Discretely Supported Continuous Rail Track[J]. Computers & Structures,1997, 63(5):987-997.
    [101]翟婉明,任尊松.提速列车与道岔的垂向相互作用研究[J].铁道学报,1998,20(3):33-38.
    [102]Zhai W M. Wheel/rail Dynamic Interactions on Turnouts[C]. Proceedings of 12th International Wheelset Congress, Qingdao, September 1998:447-451.
    [103]翟婉明,韩卫军,蔡成标等.高速铁路板式轨道动力学特性研究[J].铁道学报,1992,21(6):65-69.
    [104]翟婉明,蔡成标等.轨道刚度对列车行走性能的影响[J].铁道学报,2000,22(6):80-83.
    [105]Zhai W M, True H. Vehicle Track Dynamics on a Ramp and on the Bridge: Simulation and Measurements [J]. Vehicle System Dynamics,2000, 33(Supplement):604-615.
    [106]翟婉明,蔡成标,王其昌等.列车提速对线路的动力影响研究与对策[J].中国铁道科学,2002,21(3):11-20.
    [107]Zhai W M, Cai C B, Wang Q C, et al. Dynamic Effects of Vehicles on Tracks in the case of Raising Train Speed[J]. Journal of Rail and Rapid Transit.2001, 215(F2):125-135.
    [108]翟婉明.车辆-轨道耦合动力学(第三版)[M].北京:科学出版社,2007.
    [109]苏谦.高速铁路路基空间时变耦合系统动力分析模型及其应用研究[D].成都:西南交通大学,2001.
    [110]Knothe K. Past and future of vehicle/track interaction [J]. Vehicle System Dynamic Supplement,1995,45(24):1-3.
    [1]1]李成辉.轨道结构振动理论研究[D].成都:西南交通大学,1996.
    [112]LI Ding-qing, Erneset T. Wheel/Track Dynamic Interaction Track Substructure Perspective[J]. Vehicle System Dynamic,1995,24(Supp):183-196.
    [113]梁波,蔡英,朱东生.车-路垂向耦合系统的动力分析[J].铁道学报,2000,22(5):65-71.
    [114]Liang Bo, Cai Ying, Zhu Dong-sheng. Dynamic Analysis of the Vehicle-Subgrade Model of Vertical Coupled System[J]. Journal of Sound and Vibration,2001(1):79-93.
    [115]马学宁,梁波.高速铁路路基结构时变系统耦合动力分析[J].铁道学报,2006,28(5):65-70.
    [116]马学宁,梁波.列车速度对车辆-轨道-路基系统动力特性的影响[J].中国铁道科学,2009,30(2):7-13.
    [117]苏谦,蔡英.高速铁路路基结构空间时变系统耦合动力分析[J].西南交通大学学报,2001,36(5):509-513.
    [118]苏谦.高速铁路路基空间时变耦合系统动力分析模型及其应用研究[D].成都:西南交通大学,2001.
    [119]徐鹏,蔡成标.列车-有砟轨道-路基空间耦合动力学模型[J].工程力学,2011,28(3):191-197.
    [120]马学宁,梁波,高峰.高速铁路板式无砟轨道-路基结构动力特性研究[J].铁道学报,2011,33(2):72-78.
    [121]Bettess P, Zienkiewicz O C. Diffraction and refraction of surface waves using finite and infinite elements[J]. International Journal for Numerical Methods in Engineering,1977,11:1271-1290.
    [122]Astley R J, Eversman W. Finite element formulations for acoustical radiation[J]. Journal of Sound and Vibration,1983,88(1):47-64.
    [123]Cremers L, Fyfe K R, Coyette J P. A variable order infinite acoustic wave envelope element[J]. Journal of Sound and Vibration,1994,171(4):483-508.
    [124]Burnett D S. A three-dimensional acoustic infinite element based on a prolate spheroidal multi-pole expansion[J]. The Journal of the Acoustical Society of America,1994,6(5):2798-2816.
    [125]Burnett D S, Holford R L. An ellipsoidal acoustic infinite element[J]. Computer Methods in Applied Mechanics and Engineering,1998,164:49-76.
    [126]赵崇斌,张楚汉,张光斗.用无穷元模拟半无限平面弹性地基[J].清华大学学报,1986,26(1):51-64.
    [127]Zhang C, Zhao C. Coupling method of finite and infinite elements for strip foundation wave problems[J]. Earthquake Engineering and Structural Dynamics, 1987,15:839-851.
    [128]聂志红,阮波,李亮.铁路道床路基动力响应的参数影响[J].交通运输工程学报,2004,4(1):34-37.
    [129]Kausel, E. Local Transmitting Boundaries[J]. J. Engng. Mech.,1988,114(6): 1011-1027.
    [130]Ekevid Torbjorn, Wiberg Nils-Erik. Wave propagation related to high-speed train a scaled boundary FE-approach for unbounded domains[J]. Computer Methods in Applied Mechanics and Engineering,2002,191(36):3947-3964.
    [131]Takemiya, H. and Sukeyasu, Y. Transient response of rigid strip foundations on a half-space/stratum soil due to impulsive loads[J]. Computer Methods and Advances in Geomechanics,1994,2:993-998.
    [132]Takemiya, H. Fei, G. and Sukeyasu, Y.2-D Transient Soil-surface foundation interaction and wave propagation by time domain BME[J]. Earthquake Engineering and Structural Dynamics,1994,23:931-945.
    [133]Takemiya, H. Field vibration mitigation by honeycomb WIB for pile foundations of a high-speed train viaduct[J]. Soil Dynamics and Earthquake Engineering,2004,24(1):69-87.
    [134]边学成.高速列车运动荷载作用下地基和隧道的动力响应分析[D].杭州:浙江大学,2005.
    [135]廖振鹏.杨柏坡,袁一凡.暂态弹性波分析中人工边界的研究[J].地震工程与工程振动,1982,2(1):1-11.
    [136]Lysmer. J. and R. L. Kulemeyer. Finite Dynamic Model for Infinite Media[J]. J. Engng. Mech. Div. ASCE,1969,95:759-877.
    [137]Liu Jingbo, Lu Yandong. A direct method for analysis of dynamic soil-structure interaction based on interface idea[M]. In:Zhang Chuhan, Wolf J P. edited, Dynamic Soil-Structure Interaction. Academic Press,1997.258-273.
    [138]Deeks A J, Randolph M F. Axisymmetric time-domain transmitting boundaries[J]. Journal of Engineering Mechanics, ASCE,1994,120(1):25-42.
    [139]刘晶波,吕彦东.结构-地基动力相互作用问题分析的一种直接方法[J].土木工程学报,1998,31(3):55-64.
    [140]刘晶波,谷音,杜义欣.一致粘弹性人工边界及粘弹性边界单元[J].岩土工程学报,2006,28(9):1070-1075.
    [141]刘晶波,王振宇,杜修力,等.波动问题中的三维时域粘弹性人工边界[J].工程力学,2005,22(6):46-51.
    [142]谷音,刘晶波,杜义欣.三维一致粘弹性人工边界及等效粘弹性边界单元[J].工程力学,2007,24(12):31-37.
    [143]Hall, Lars. Simulations and analyses of train-induced ground vibrations in finite element models[J]. Soil Dynamics and Earthquake Engineering,2003, 23(5):403-413.
    [144]陈震.高速铁路路基结构动力有限元分析[J].路基工程.2007,(2):14-16.
    [145]董亮,赵成刚,蔡德钩等.高速铁路路基的动力响应分析方法[J].工程力学,2008,25(11):231-236,240.
    [146]董亮,赵成刚,蔡德钩等.高速铁路无砟轨道路基动力特性数值模拟和试验研究[J].土木工程学报,2008,41(10):82-86.
    [147]Gutowski,T.G. Dym, C.L. Propagation of ground vibration:a review[J]. Journal of Sound and Vibration,1976,49(2):179-193.
    [148]Dwan, T. M. Stanworth, C.G.. Ground vibrations from passing trains[J]. Journal of Sound and Vibration,1979,8:355-62.
    [149]Melke, J. Kraemer, S.. Digital techniques in the measurement of underground railway vibration and the rating of track isolation systems[C]. Proeeedings-International Conference on Noise Control Engineering,1981: 891-894.
    [150]Heckl, Maria A. Railway noise-can random sleeper spacings[J]. Acustica, 1995,81(6):559-564.
    [151]Fujikake T. A prediction method for the propagation of ground vibration from railway trains[J]. Journal of Sound and Vibration,1986,111(2):357-360.
    [152]Okumura Kuno, K. Statistical analysis of field data of railway noise and vibration collected in an urban area[J]. Applied Acoustics,1991,33(4):263-280.
    [153]Takemiya, H. Substructure simulation of inhomogeneous track and layered ground dynamic interaction under train passage[J]. Journal of Engineering Mechanics,2005,131(7):699-711.
    [154]Norwegian Geotechnical Institute NGI Report No515136-1 (October) Vibration criteria for road and rail traffic Vibbase-A database for measured vibrations from road and rail traffic[R].1995.
    [155]Turunen-Rise, I. H, Brekke, A, Harvik, L, et al. Vibration in dwellings from road and rail traffic-Part Ⅰ:a new Norwegian measurement standard and classification system[J]. Applied Acousties,2003,64(1):71-87.
    [156]Madshus, C. Bessason, B. Harvik, L. Prediction model for low frequency vibration from high-speed railways on soft ground[J]. Journal of Sound and Vibration,1996,193(1):195-203.
    [157]Madshus, C. Kaynia, A. M. High-speed railway lines on soft ground:dynamic behaviour at critical train speed[J]. Journal of Sound and Vibration,2000,231(3): 689-701.
    [158]Mehdi Bahrekazemi, Anders Bodare. Effects of lime-cement soil stabilization against train induced ground vibrations. Geotechnical Special Publication[J], 2003,120(1):562-574.
    [159]Takemiya, H. Simulation of traek-ground vibrations due to a high-speed train:the case of X-2000 at Ledsgard[J]. Journal of Sound and Vibration,2003, 261(3):503-526.
    [160]Schwarz. P. und Laier(1989d):Schlupbericht zu den bodenmechanischen Messungen bei Fahrten mit ICE/V und Lokzug in den Jahren 1987 und 1988, Neubaustrecke Hannover-Wurzburg, Prufamt fur Grundbau, Bodenmechanik und Felsmechanik, TU Munchen[R].1989.
    [161]Schwarz, P. und Laier(1991a):Schluβbericht zum Versuchsprogramm, Feste Fahrbahn Kutzenhausen, Ausbaustrecke Gunzburg-Augsburg, Prufamt fur Grundbau, Bodenmechanik und Felsmechanik, TU Munchen[R].1991.
    [162]Neidhart, TH., Fischer, R.. Hotz, C., Johmann. S.(2002):Optimierung des Unterbaus der Festen Fahrbahn-Messtechnische uberprufung unter Betrieb[R]. Vortrag Bahnbau. Berlin.2002.
    [163]Arcadis Consult Gmbh(2004):Bericht zu Verformungs und Erschutterungs messungen unter Betrieb im Versuchsfeld 2, Versuchsfeld 4 und an der EU Petersberg. BA Mitte der NBS KRM vom Okt[R], Ergebnisbericht im Auftrag der DB AG TBM 1 (unveroffentlicht),2004.
    [164]Kocan, D. (2005):Erfahrung mit der Fahrbahn der SFS Koln-Rhein/Main nachderi Jahren Betrieb. EI-Eisenbahningenieur(56) 11/205.
    [165]Baugrund Dresden (2006):Abschlienβender Messbericht zu der 3. Messkampagne im Los Nord, Neubaustrecke Nurnberg-Ingolstadt, im Auftragvon DB Projekt Bau Gmbh (unveroffentlicht).2006.
    [166]杨灿文,龚亚丽.列车通过时路基的动应力和振动[J].土木工程学报,1963,9(2):49-57.
    [167]茅玉泉.交通运输车辆引起的地面振动特性和衰减[D].兵器工业部第六设计研究院,1987.
    [168]曾树谷.铁路轨道动力测试技术[M].北京:中国铁道出版社,1988.
    [169]蔡英等.大秦重载铁路路基的动力响应及分析.重载铁路线路结构与养护[M].北京:中国铁道出版社,1992.
    [170]蔡英,黄时寿.重载铁路的线路动力学测试及分析[J].西南交通大学学报,1993,91(3):92-98.
    [171]周神根.高速铁路路基基床设计[J].路基工程,1997,72(3):1-5.
    [172]王炳龙,余绍锋,周顺华等.提速状态下路基动应力测试分析[J].铁道学报,2000,22,增:79-81.
    [173]律文田,王永和.秦沈客运专线路桥过渡段路基动应力测试分析[J].岩石力学与工程学报,2004,236(3):500-504.
    [174]陈雪华,律文田,王永和.高速铁路路—桥过渡段动力响应研究[J].振动与冲击,2006,25(2):95-98.
    [175]孙常新,梁波,杨泉.秦沈客运专线路基动应力响应分析[J].兰州铁道学院学报(自然科学版),2003,22(4):110-112.
    [176]刘尧军,郭增强,赵玉成.秦沈客运专线不同填料路基动力特性的试验研究[J].石家庄铁道学院学报.2004,17(2):19-22.
    [177]聂志红,李亮,刘宝琛,等.秦沈客运专线路基振动测试分析[J].岩石力学与工程学报,2005,24(6):1067-1071.
    [178]高广运,李志毅,冯世进等.秦-沈铁路列车运行引起的地面振动实测与分析[J].岩土力学,2007(9):1817-1822,1827.
    [179]肖宏,蒋关鲁,魏永幸.遂渝线无砟轨道桩网结构路基现场动车试验测试分析[J],铁道学报,2010,32(1):79-84.
    [180]SHAER A A, DUHAMEL D, SAB K, et al. Experimental settlement and dynamic behavior of a portion of ballasted railway track under high speed trains[J]. Journal of Sound and Vibration,2008,316(1-5):211-233.
    [181]TATSUYA ISHIKAWA, ETSUO SEKINE, SEIICHI MIURA. Cyclic deformation of granular material subjected to moving-wheel loads[J]. Canadian Geotechnical Journal,2011(48):691-703.
    [182]曹新文,蔡英.铁路路基动态特性的模型试验研究[J].西南交通大学学报,1996,31(1):36-41.
    [183]Selig, E. T.& Dellorusso V. Ballast reformance evalution with box tests. Bullet 692, AREA:208-239.
    [184]Shenton M. J. Deformation of railway ballast under reference loading condition. Rail Struction Dynamics and Design.1975:157-175.
    [185]苏谦,蔡英.高速铁路级配碎石基床表层不同厚度动态大模型试验研究[J].铁道标准设计,2001,21(8):2-4.
    [186]詹永祥,蒋关鲁,牛国辉等.高速铁路无碴轨道桩板结构路基模型试验研究[J].西南交通大学学报,2007,42(4):400~403,408.
    [187]詹永祥,蒋关鲁.无碴轨道路基基床动力特性的研究[J].岩土力学,2010,31(2):392-396.
    [188]邹春华,周顺华,王炳龙等.路基不均匀沉降对有砟轨道沉降影响的模型试验[J].同济大学学报(自然科学版),2011,39(6):862-869.
    [189]边学成,蒋红光,金皖锋等.板式轨道-路基相互作用及荷载传递规律的物理模型试验研究[J].岩土工程学报,2012,34(8):1488-1495.
    [190]杨广庆,刘树山,刘田明.高速铁路路基设计与施工[M].北京:中国铁道出版社,1999:95-11].
    [191]杨广庆,刘宪福,叶朝良.高速铁路路基与桥梁过渡段技术措施分析[J].铁道标准设计,2001,5:38-39.
    [192]杨广庆,贾志武.高速铁路路基与桥梁过渡段施工技术研究[J].铁道标准设计,2000,2:21-23.
    [193]路基与桥梁过渡段的调查与分析国家“九五”计划科技攻关项目(95-411-02-01)研究报告之九[R].铁道部科学研究院铁道建筑研究所,1996.
    [194]西南交通大学列车与线路研究所.福夏铁路轨道过渡段关键技术研究[R].铁道第二勘察设计研究院委托项目研究报告(TTRI-2003-06),2003.
    [195]罗强.高速铁路路桥过渡段动力学特性分析及工程试验研究[D].成都:西南交通大学,2003:4-5.
    [196]Kerr A D, Moroney B E. Track transition problems and remedies[J]. Bulletin 742-American Railway Engineering Association,1995(724):267-298.
    [197]佐藤吉彦,三浦重.以走行安全和乘车舒适性考虑的线路结构的折角限度[R].铁道技术研究所报告.
    [198]国外高速铁路标准及规程汇编(第四、五册).德国铁路土工建筑规范(DS836)[S].铁道部标准计量研究所,1995.
    [199]日本国有铁道编,陈耀荣等译.土工结构物设计标准和解说[M].北京:中国铁道出版社,1982.
    [200]C. H. Gobel, U. C. Weisemann. Effectiveness of a reinforcing geogrid in a railway subbase under dynamic loads[J]. Geotextiles and Geomembranes, 1994(13):91-99.
    [201]王其昌,蔡成标,罗强等.高速铁路路桥过渡段轨道折角限值的分析[J].铁道学报,1998,20(3):109-113.
    [202]罗强,蔡英,翟婉明.高速铁路路桥过渡段的动力学性能分析[J].工程力学,1999,16(5):65-70.
    [203]罗强,蔡英.高速铁路路桥过渡段技术处理措施的研究[J].铁道工程学报,1999(3):30-33.
    [204]罗强,蔡英.高速铁路路桥过渡段变形限值与合理长度研究[J].铁道标准设计,2000,6:2-4.
    [205]王于,翟婉明,王其昌等.一种确定轨道过渡段长度的新方法[J].铁道工程学报,1999,4:25-28.
    [206]蔡成标,翟婉明,赵铁军等.列车通过路桥过渡段时的动力作用研究[J].交通运输工程学报,2001,1:17-19.
    [207]蔡成标,翟婉明,王其昌.不同轨下基础轨道连接的动力特性分析[J].铁道学报,2002,24(2):79-82.
    [208]梁波等.京秦线提速路涵过渡段动力仿真与试验对比[J].铁道学报,2003,25(5):92-96.
    [209]蔡成标,翟婉明.遂渝线路基上板式轨道动力性能计算及评估分析[J].中国铁道科学,2006,27(4):17-21.
    [210]梁波,蔡英.土工合成材料在高速铁路路桥过渡段中的应用[J].铁道学报,1999,21(10):64-67.
    [211]黄晚清,陆阳,罗书学,等.秦沈客运专线路涵过渡段动应力测试与分析 [J].西南交通大学学报,2005,40(2):220-223.
    [212]张泉,罗强.遂渝铁路刚性路基动应力测试分析[J].铁道标准设计.2006(2):18-20.
    [213]颜胜才,罗强.遂渝铁路路涵过渡段动应力测试分析[J].铁道标准设计.2006(7):1-3.
    [214]李佳,罗强.遂渝铁路无碴轨道路隧过渡段路基面动应力测试分析[J].铁道标准设计.2008(4):77-81.
    [215]毛利军,雷晓燕,杜厚智.提速线路轨道过渡段动力响应分析[J].华东交通大学学报,2001,18(1):35-40.
    [216]刘林芽,雷晓燕,刘晓燕.既有线路桥过渡段的设计与动力学性能评价[J].铁道标准设计,2004,(1):9-10.
    [217]雷晓燕.轨道过渡段刚度突变对轨道振动的影响[J].中国铁道科学.2006,27(5):42-45.
    [218]刘林芽,雷晓燕,练松良.提速铁路过渡段的动力响应测试分析[J].铁道工程学报.2005(5):15-19.
    [219]李献民,王永和,杨果林等.高速下过渡段路基动响应特性研究[J].岩土工程学报,2004,26(1):100-104.
    [220]李献民,王永和,律文田,肖宏彬.土工格栅加固路桥过渡段的动测试分析[J].中南大学学报,2004,356(5):860-864.
    [221]李献民,肖宏彬,王永和.行车速度对桥路过渡段路基动应力的影响[J].地震工程与工程振动,2005,25(1):49-53.
    [222]李献民,王永和,倪宏革,阮波.动力分散型机车在路涵过渡段的动应力-应变研究[J].岩土力学,2004,256(7):1167-1170.
    [223]卿启湘,王永和,赵明华.秦沈客运专线路桥(涵)过渡段路基的动力特性分析[J].岩土力学,2008,29(9):2415-2421.
    [224]郭建湖.高低不平顺条件下高速铁路桥-隧过渡段路基的动力特性[J].铁道科学与工程学报,2008,5(4):7-13.
    [225]胡萍,王永和,卿启湘.改良土填筑过渡段基床底层的动力特性分析[J].中南大学学报,2009,40(6):1705-1711.
    [226]胡萍.高速铁路无砟轨道密集过渡段路基动力试验与仿真分析[D].长沙:中南大学,2010.
    [227]陈果元,魏丽敏,杨果林.胡家屯中桥路桥过渡段动力特性试验研究[J]. 振动与冲击,2010,29(6):184-188.
    [228]陈果元,杨果林,魏丽敏.不同型式路桥过渡段动力特性对比分析[J].铁道科学与工程学报,2008,5(4):44-49.
    [229]张协崇.客运专线涵-涵过渡段动力特性试验研究及仿真分析[D].长沙:中南大学,2009.
    [230]童发明.高速铁路相邻涵洞间过渡段路基动力响应相互影响分析[D].长沙:中南大学,2010.
    [231]马伟斌,韩自力,朱忠林.高速铁路路桥过渡段振动特性试验研究[J].岩土工程学报,2009,31(1):124-128.
    [232]孟凡会,侯永峰,吴涛.路桥过渡段的三维数值模拟分析[J].岩土力学,2007,28(supp.):849-854.
    [233]许杰,王峰,项宝余等.提速对既有线路桥过渡段路基动力响应影响分析[J].岩土工程学报,2010,32(supp2.):241-244.
    [234]须场诚,关根悦夫.A Study on Decrease of Reinforced Roadbed Thickness in Reinforcement Roadbed[R].铁道总研报告(Proc.JSCE),1991.
    [235]苏谦,蔡英.高速铁路路基变形分析[J].路基工程,2000,88(1):1-3.
    [236]TAVENAS F, et al. Lateral displacements in clay foundations under embankments[J]. Can Geotech J,1979,16:532-550.
    [237]蒋关鲁,孔祥辉,孟利吉等.无砟轨道路基基床的动态特性[J],西南交通大学学报,2010,45(6):855-862.
    [238]吴世明.土动力学[M].北京:中国建筑工业出版社,2000.
    [239]Prevost J H. Anisotropic Undrained Stress-Strain Behavior of Clay[J]. Journal of Geotechninal Engineering,1978,104(8):1075-1090.
    [240]Prevost J H. Plasticity Theory foe Soil Stress-Strain Behavior[J]. Journal of Engineering Mechanics,1978,104(5):1177-1194.
    [241]Mroz Z, Norris V A, Zienkiewica O C. An anisotropic Critical Model for Soils Subjected to Cyclic Loading[J]. Geotechnique,1981,31(4):451-470.
    [242]Prevost J H. A Simple Plasticity Theory for Frictional Cohesionless Soils[J]. Soil Dynamic and Earthquake Engineering,1985,4(1):9-17.
    [243]Dafalias Y F, Herrmann L R. A Boundary Surface Soil Plasticity Model[C] Proceeding International Symposia Soils under Cyclic Trains Load. Rotterdam: Balkema Public,1980,335-356.
    [244]Bardet J P. Modeling of Sand Behavior With Bounding Surface Plasticity[C] Proc of 2nd Int Symp on Num Models in Geomechanics.1986:79-90.
    [245]栾茂田.土动力非线性分析中的变参数Ramberg-Osgood本构模型[J].地震工程与工程振动,1992,12(2):69-78.
    [246]Seed, H. B. and Idriss, I. M., Soil Moduli and Damping Factor for Dynamic Response Analyses, Report No. UCB/EERC-70/10[R]. Univ. of California, Berkeley, Califonia,1970.
    [247]Konder, R. L.. Hyperbolic Stress-Strain Response:Cohesive Soils[J]. Journal of the soil Mechanics and Foundations Division,1963,89(1):115-144.
    [248]Hardin, B. O. and Drnevich, V. P.. Shear Modulus and Damping in Soils: Design Equations and Curves[J]. Journal of the Soil Mechanics and Foundation Engineering Division, ASCE,1972,98(7):667-692.
    [249]Iwan W. D.. On a class of models for the yielding behavior of continuous and composite system[J]. Journal of Applied Mechanics, ASME,1967,34(3): 612-617.
    [250]沈珠江.一个计算砂土液化变形的等价黏弹性模型[C].第四届全国土力学及基础工程学术会议论文集,北京:建筑工业出版社,1986:199-207.
    [251]谢定义,张建民.周期荷载下饱和砂土瞬态孔隙水压力的变化机理与计算模型[J].土木工程学报,1990,23(2):51-60.
    [252]陈国兴,庄海洋.基于Dacidenkov骨架曲线的土体动力本构关系及其参数研究[J].岩土工程学报,2005,27(8):860-864.
    [253]迟世春.郭晓霞.杨峻.土的动力Hardin-Drnevich模型小应变特性及其阈值应变研究[J].岩土工程学报,2008,30(2):243-249.
    [254]Heath D. L. Design of conventional rail track foundation[J]. Proc. of the Institution of Civil Engineers,1972,51(3):49-57.
    [255]汤康民,蒋忠信.膨胀性红土铁路路基基床动力反应分析[J].西南交通大学学报,1994,29(1):71-78.
    [256]蔡英,曹新文.重复加载下路基填土的临界动应力和永久变形初探[J],西南交通大学学报,]996,31(1):1-5.
    [257]Hargis, Louis L. A study of strain characteristics in a limestone gravel subjected to repetitive load[R]. College Station:Texas A&M University,1963.
    [258]Barksdale. Repeated loading text evaluation of base course materials[R]. Georgin Institute of Technology,1972:101-121
    [259]Monismith, C. L. Ogawa, N. and Freeme, C. R. Permanent deformation characteristics of subgrade soils due to repeated loading[J]. Transportation Research Record,1975,537:1-17.
    [260]Brown S F, et al. Repeated load triaxial testing of a silty clay[J]. Geotechnique, 1975,25(1):95-114.
    [261]U. S. Department of Transportation. A theory for track maintenance life prediction[R].1979.
    [262]George B, Rober V W, Allen W M. Permanent displacement of sand with cyclic loading[J]. J. Geotech. Engr. ASCE,1984:1606-1623.
    [263]Li, D. Q.. Wheel-track dynamic interaction track substructure perspective[J]. Vehicle System Supplement,1995,24:183-196.
    [264]Li, D. Q. and Selig, E. T. Cumulative Plastic Deformation for Fine-grained Subgrade Soils[J]. Journal of Geotechnical Engineering,1996,122(12): 1006-1013.
    [265]Jin-Chun Chai and Miura, N. Traffic-load-induced permanent deformation of road on soft subsoil[J]. Journal of Geotechnical and Geoenvironmental Engineering,2002, (10):907-916.
    [266]Gidel G, Hornych P, Chauvin J J, et al. A new approach for investigating the permanent deformation behaviour of unbound granular material using the repeated load triaxial apparatus[J]. Bulletin des Laboratories des Points et Chaussees,2001,233:5-21.
    [267]Abdelkrim M, Bonnet G, Buhan P. A computational procedure for predicting the long term residual settlement of a platform induced by repeated traffic loading[J]. Computers and Geotechnics,2003,30(6):463-476.
    [268]王建华,要明伦.软黏土不排水循环特征的弹塑性模拟[J].岩土工程学报,1996,18(3):11-18.
    [269]陈云敏,陈颖平,黄博.应力水平对结构性软黏土静力和动力变形特性影响的试验研究[J].岩石力学与工程学报,2006,25(5):937-945.
    [270]钟辉虹,黄茂松,吴世明等.循环荷载作用下软黏土变形特性研究[J].岩土工程学报,2002,24(5):629-632.
    [271]黄茂松,李进军,李兴照.饱和软黏土的不排水循环累积变形特性[J].岩 土工程学报,2006,28(7):891-895.
    [272]铁道科学研究院.京秦客运通道提速改造工程第一次试车运行试验研究报告[R].北京:铁道科学研究院,2000.
    [273]闫澍旺.往复荷载作用下重塑软土的变形特性[J].岩土工程学报,1991,14(4):34-37.
    [274]钟辉虹,汤康民,黄茂松.铁路粘土路基动力特性试验研究[J].西南交通大学学报.2002,37(5):488-490.
    [275]杨广庆.水泥改良土的动力特性试验研究[J].岩石力学与工程学报,2003,22(7):1156-1160.
    [276]毛成,邱延峻.膨胀土与改性膨胀土的动力特性试验研究[J].岩石力学与工程学报,2005,24(10):1783-1788.
    [277]边学成,蒋红光,申文明等.基于模型试验的高铁路基动力累积变形研究[J].土木工程学报,2011,44(6):112-119.
    [278]王智猛,蒋关鲁,魏永幸等.高速铁路基床现场循环加载试验研究[J].岩土力学,2010,31(3):760-764.
    [279]苏谦,白皓,黄俊杰等.刚性地基低路堤长期动力特性原位试验研究[J].土木工程学报,2011,44:147-151.
    [280]周援衡,王永和,卿启湘等.全风化花岗岩改良土高速铁路路基填料的适宜性试验研究[J].岩石力学与工程学报,2011,30(3):625-634.
    [281]邓天天.高速铁路无碴轨道改良土路基疲劳试验及其仿真分析[D].长沙:中南大学,2010.
    [282]胡一峰,李怒放.高速铁路无砟轨道路基设计原理[M].北京:中国铁道出版社,2010.
    [283]German Railway Standard Ril 836. Erdbauwerke planen, bauen und instand halten[S].1999,2008.
    [284]Esienmann J, Leykauf G. Feste Fahrbahn fur Schienenbahnen, Beton-Kalender 2000 [M]. Ernst& Sohn Berlin.2000.
    [285]TB 10621-2009,高速铁路设计规范(试行)[S].中华人民共和国铁道部.北京:中国铁道出版社,2010.
    [286]TB1001-2005,铁路路基设计规范[S].铁道部第一勘测设计院,北京:中国铁道出版社,2005.
    [287]TB10625-2001,高速铁路设计规范(试行)[S].中国铁道科学研究院,北京: 中国铁道出版社,2009.
    [288]DS 836, Vorschrift fur Erdbauwerke, Entwurf von Richtlinie 836[S]. DB Netz Deutsche Bahn Gruppe,1997.
    [289]RUMP R, EHLING B, REHFELD E. Wirkung von Verkehrser-schutterungen auf Erdbauwerke und ungebundene Tragschichten im Oberbau. In:ETR45, Nr. 7/8(1996).
    [290]REHFELD E. Wirkung der Zuguberfahrt auf Oberbau, Unterbau und Untergrund[J]. Eisenbahningenieur,2000,51(12).
    [291]Gotschol A. Veranderlich Elastisches und Plastisches Verhalten Nichtbingdiger Boden und Schotter unter Zyklisch-dynamischer Beanspruchung[R]. Schriftenreihe Geotechnik Universitar Kassel,2002, Heft 12.
    [292]Hu Y, Gartung E, Priihs H, Muller B. Bewertung der dynamischen Stabilitat von Erdbauwerken unter Eisenbahnverkehr [J], Geotechnik 2003,26(1).
    [293]Hu Y, Haupt W, Muller B. Res Col-Versuche zur Priifung der dynamischen Langzeitstabilitat von TA/TM-Boden unter Eisenbahnverkehr [J]. Bautechnik 81, Heft 4,2004.
    [294]Vogel W, Lieberenz K. Gebrauchstauglichkeit von Bahnstrecken auf weichem Untergrund [J]. EI-Der Eisenbahningenieur,2008,9.
    [295]Wegener D, Weisemann U, Neidhart T, Neumann G. Ertuchtigung von Eisenbahnstrecken auf Weichschichten [J]. EI-Der Eisenbahningenieur,2008,12.
    [296]Fischer R, Kipper R, Moede M, Mortag M, Wegener D. Untergrundertiichtigung eines Streckenabschnittes uber Weichschicht [J] EI-Der Eisenbahningenieur,2009,6.
    [297]Vucetic M. Cyclic threshold shear strain soils[J]. J. Geotech. Engrg., ASCE, 1994,120(12).
    [298]Silver M L, Seed H B. Volume changes in sand during cyclic loading[J]. J. Soil Mech. And Found. Div., ASCE,1971,97(9).
    [299]Dobry R, Yokel F Y, Ladd R S. Liquefaction potential of overconsolidated sands in moderately seismic areas[C]. Proc. Conf. on Earthquake Engrg., Knoxville, Tenn., Ann Arbor Science Publishers Inc. Ann Arbor Mich.1981,2.
    [300]Dobry R, Ladd R S, Yokel F Y, et al. Prediction of pore water pressure buildup and liquefaction of sands during earthquakes by the cyclic strain method [R]. Nat. Bureau of Standards Build. Sci. Series 138, Washington D. C.,1982.
    [301]Ladd R S, Dobry R, Dutko P, et al. Pore water pressure build up in clean sands because of cyclic straining [J]. ASTM, Geotech. Test. J.,1989,12(1)
    [302]杨果林,刘晓红.高速铁路无砟轨道红黏土路基沉降控制与动力稳定性[M].北京:中国铁道出版社,2010.
    [303]刘晓红.高速铁路无砟轨道红黏土路基动力稳定性研究[D].长沙:中南大学,2011.
    [304]刘晓红,杨果林,方薇.武广高铁无碴轨道路堑基床长期动力稳定性评价[J].中南大学学报(自然科学版),2011,42(5):1393-1398.
    [305]卢肇英(译).轨道力学[M].中国铁道出版社,1981.
    [306]Wu Wangqing, Zhang Geming, Zhu Kaiming, et al. Development of inspection car for measuring railway track elasticity[C]. Proceeding of 6th International Heavy Haul Conference, Cape Town,1997.
    [307]Li D, Thompson R, Kalay S. Development of continuous lateral and vertical track stiffness measurement techniques[C]. Proceeding of Railway Engineering Conference, London,2002.
    [308]Berggren E, Jalenius A, Bengtsson B E. Continuous track stiffness measurement:An effective method to investigate the structural conditions of the track[C]. Proceeding of Railway Engineering Conference, London,2002.
    [309]Norman C, Farritor S, Arnold R, et al. Design of a system to measure track modulus from a moving railcar[C]. Proceeding of Railway Engineering Conference, London,2004.
    [310]严传家(译).振动工程大全[M].中国机械工程出版社,1993:1-8.
    [311]吴世明(译).土动力学原理[M].浙江大学出版社,1984:1-5.
    [312]苏向前,刘康和.面波法和单孔检层法波速测试的工程应用[J].长江工程职业技术学院学报,2006,23(3):1-5.
    [313]伍兹.土壤动力性能的测定[C].地震工程和土动力学问题译文集.地震出版社,1985.
    [314]Stokoe, K, H., Ⅱ. and Woods, R. D. In-Situ Shear Wave Velolity by Cross-Hole Method[J]. Journal of the Soil Mechanics and Foundation Division, ASCE,1972,98(5):443-460.
    [315]GB/T 50269-97,地基动力特性测试规范[S].国家技术监督局,中华人民共 和国建设部,1998:34-37.
    [316]何群.全风化花岗岩高速铁路路基的动力特性及稳定性研究[D].长沙:中南大学,2007:10-17,129-151.
    [317]熊建国,许贴燕.分层土自振特性分析[J].地震工程与工程振动,1986,16(4):21-35.
    [318]陈龙珠,吴世明.用机械阻抗法求成层地基的固有频率[J].岩土工程学报,1989,11(2):82-87.
    [319]杨学林,陈云敏,蔡袁强等.利用地脉动确定地基自振频率[J].岩土工程学报,1995,17(4):51-55.
    [320]杨学林.短周期地脉动信号的分析与应用[D].杭州:浙江大学,1994.
    [321]Stojkovic M(王天龙译).根据脉动特性确定卓越周期和场地结构的等效模型[C].国际地震工程会议译文集.上海:同济大学出版社,1984:100-112.
    [322]李中付,宋汉文,华宏星等.基于环境激励的模态参数识别方法综述[J].振动工程学报,2000,13(S):578-585.
    [323]钟佑明,秦树人,汤宝平.一种振动信号新变换法的研究[J].振动工程学报,2002,15(2):233-238.
    [324]韩建平,王飞行,李慧.基于振动台试验的模态参数识别算法比较研究[J].华中科技大学学报(城市科学版),2008,25(3):57-60.
    [325]Albert Benveniste, et al. Polyreference version of sub-space algorithms for output only structural identification[C].18th IMAC,2000:620-624.
    [326]Huang N E, Shen Z, Long S R. A new view of nonlinear water waves:the hilbert spectrum[J]. Annual Review of Fluid Mechanics,1999,31:417-457.
    [327]Huang N E, Shen Z, Long S R, et al. The ages of large amplitude coastal Seiches on the caribben coast of puerto rico[J]. Journal of physical oceanography, 2000,30:2001-2012.
    [328]李中付,华宏星,宋汉文等.非稳态环境激励下线性结构的模态参数辨识[J].振动工程学报,2002,15(2):139-143.
    [329]李中付,华宏星.一种非稳态环境激励下线性结构的模态参数辨识方法[J].振动与冲击,2008,27(3):8-12.
    [330]陈隽,徐幼麟.HHT方法在结构模态参数识别中的应用[J].振动工程学报,2003,16(3):383-388.
    [331]韩建平,李达文.基于Hilbert-Huang变换和自然激励技术的模态参数识 别[J].工程力学,2010,27(8):54-59.
    [332]于德介,程军圣,杨宇.机械故障诊断的Hilbert-Huang变换方法[M].科学出版社,2006:2-36.
    [333]Huang N E, Shen Z, Long S R et al. The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proc. R. Soc. Lond. A.1998,454:903-995.
    [334]李夕兵,张义平,左宇军,等.岩石爆破振动信号的EMD滤波与消噪[J].中南大学学报(自然科学版),2006,37(1):150-154.
    [335]张安兵,刘新侠,高井祥,等.基于经验模式分解和相空间重构的采空区地表动态变形混沌性态及时变规律研究[J].岩土力学2010,31(10):3191-3196.
    [336]王济,胡晓.MATLAB在振动信号处理中的应用[M].北京:中国水利水电出版社,2006:114-117.
    [337]D. E. Newland. An introduction to random vibration and spectral analysis[M]. China Machine Press,1975. (In Chinese)
    [338]陈隽,徐幼麟.经验模式分解在信号趋势项提取中的应用[J].振动、测试与诊断,2005,25(2):101-104.
    [339]无砟轨道过渡段路基的变形控制技术及施工工艺的试验研究[R].铁道第四勘察设计院,中南大学,2009.
    [340]Bendat J S, Piersol A G. Random data:analysis and measurement procedures [M]. New York:John Wiley&Sons, Inc,2000.
    [341]汤宝平,秦树人,谭善文.基于快速小波变换的信号分析系统[J].重庆大学学报(自然科学版),2001,24(1):34-39.
    [342]文莉,刘正士,葛运建.小波去噪的几种方法[J].合肥工业大学学报,2002,25(2):167-172.
    [343]Dowine T. R, Silverman. B W. The discrete multiple wavelet transform and thresholding methods[J]. IEEE Trans SP.1998.46(9):2558-2561.
    [344]Donnbo D. Denoising by soft-thresholding[J]. IEEE Trans on IT,1995,4(3): 613-625.
    [345]庄楚强,何春雄.应用数理统计基础[M],华南理工大学出版社.2006.
    [346]冯卫国,武爱文.概率论与数理统计(第3版)[M],上海交通大学出版社,2010.
    [347]李献民.高速铁路加筋过渡段静动力特性数值分析及试验研究[D].长沙:中南大学,2004.
    [348]YANG F, FONDER G A. Dynamic response of cable stayed bridges under moving loads[J]. Journal Engineering Mechanics, American Society of Civil Engineers,1998,124(7):741-747.
    [349]PESTEREV A V, BERGMAN L A. Response of a non-conservative continuous system to a moving concentrated load[J]. Journal of Apply Mechanics,1998,65:436-444.
    [350]James H. McClellan, Ronald W. Schafer, Mark A. Yoder (周利清等译).信号处理引论[M].北京:电子工业出版社,2005.
    [351]胡昌华,李国华.基于MATLAB 7.X的系统分析与设计—小波分析(第3版)[M].西安:西安电子科技大学出版社,2008:1-7.
    [352]崔臻,盛谦,刘加进等.基于小波包的地下洞室群地震响应及其频谱特性研究[J].岩土力学,2010,31(12):3901-3906.
    [353]陈士海,魏海霞,张子华等.钢筋混凝土结构爆破地震响应频谱及幅值变化规律分析[J].振动与冲击,2011,30(1):213-217.
    [354]Mallat S. Atheory for multiresolution signal decomposition:the wavelet representation[J]. IEEE Trans. Pattern Anal. Machine Intell.,19.89,11(7): 674-693.
    [355]屈畅姿,王永和,魏丽敏,等.武广高速铁路路基振动现场测试与分析[J].岩土力学,2012,33(5):1451-1456,1461.
    [356]王济,胡晓. MATLAB在振动信号处理中的应用[M].北京:中国水利水电出版社,2006.
    [357]李洪涛,舒大强,卢文波等.建筑物对爆破振动中不同频率能量成分的响应特征[J].振动与冲击,2010,29(2):154-158.
    [358]雷晓燕.铁路轨道结构数值分析方法[M].北京:中国铁道出版社,1998.
    [359]铁建设[2004]157号,京沪高速铁路设计暂行规定[S].北京:中国铁道出版社,2004.
    [360]Durrwang R, Hotz C, Schulz G. Erfahrungen mit dem Erdbaukonzept ARCADIS-Messungen unter Verkehr[J]. EI-der Eisenbahningenieur,2005,1 (56).
    [361]Kocan D. Erfahrung mit der Fahrbahn der SFS Koln-Rhein/Main nach drei Jahren Betrieb[J]. El-der Eisenbahningenieur,2005,11(56).
    [362]陈雪华.高速铁路无碴轨道过渡段路基的动力特性研究[D].长沙:中南大学,2006:97-100.
    [363]Kerr A D,上海铁道学院轨道教研室译.轨道力学与轨道工程[M].北京:中国铁道出版社,1988:199-215.
    [364]武广客运专线花岗岩全风化层改良土及路堑工程特性试验研究[R].铁道第二勘察设计院,武广客运专线公司,中南大学,中铁十二局,2009.
    [365]Empfehlungen des Arbeitskreises 9 "Baugrunddynamik" [S]. Deutsche Gesellschaft fur Erd-und Grundbau e.V., Ausgabe 2002.
    [366]Tohno I, Iwata S, Shamoto Y. Land subsidence caused by repeated loading[C] //Proceedings of the 12th International Conference on Soil Mechanics and Foundation Engineering. Blazil:Rio De Janeiro,1989:1819-1822.
    [367]董亮,蔡德钩,叶阳升,等.列车循环荷载作用下高速铁路路基累积变形预测方法[J].土木工程学报,2010,43(6):100-108.
    [368]Fast langrage analysis of continua in three dimension [R]. [s.1.]:Itasca Consulting Group, Inc.,1997.
    [369]陈育民.FLAC/FLAC3D基础与工程实例[M].中国水利水电出版社,2009.
    [370]K. J. Bathe and E. L. Wilson. Numerical Methods in Finite Element Analysis (Prentice-Hall civil engineering and engineering mechanics series)[M]. Prentice-Hall,1976.
    [371]Robert E. Ahlf. Track structures:the basics [J]. Railway Track & Structures. 1955(2):14-15.
    [372]梁波,张艳美,韩自力.京秦提速工程车-路动力仿真与试验的对比研究[J].工程力学,2004,21(1):159-164.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700