用户名: 密码: 验证码:
壳聚糖基膜材料的制备、性能与结构表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对日益严峻的能源危机和“白色污染”等环境问题,壳聚糖凭借其良好的生物分解性,被认为是理想的生物质材料之一。凭借独特的抑菌杀菌作用、优越的成膜性和生物相容性,壳聚糖在食品包装和保鲜方面有着极大的发展前景。但目前壳聚糖膜材料在食品包装和果蔬保鲜方面应用时存在物理机械性能差、生产成本高等缺点。壳聚糖可以通过与其他材料共混改性,来改善其性能,同时降低生产成本。为此,本研究以壳聚糖为主要原料,选用淀粉、纤维素及其衍生物、二氧化钛(TiO2)等添加剂,复合制备了壳聚糖/淀粉可食膜、壳聚糖/纤维素抗菌膜、壳聚糖/TiO2保鲜膜,并研究了膜的性能;采用傅立叶红外光谱、X射线衍射、扫描电镜、热分析、激光粒度分析等现代分析手段,系统研究了壳聚糖基膜材料的结构,讨论了共混材料中各组分相互作用的机理。主要研究结论如下:
     (1)羧甲基纤维素钠(CMCNa)能够显著改善壳聚糖/淀粉可食膜的韧性,使膜断裂伸长率增加4.5倍;甲基纤维素(MC)能够增强改性壳聚糖/淀粉可食膜,使膜拉伸强度提高了71%;两种可食膜在碱液中基本不变形,对金黄色葡萄球菌和大肠杆菌的抗菌性都达到90%以上。壳聚糖/淀粉/CMCNa膜中同时存在COO和NH3,能够形成较强的NH3+-COO-离子键连接,生成聚合物电解质。MC能够与壳聚糖和淀粉形成稳固的氢键连接。
     (2)功率为50W的超声波处理微晶纤维素(MCC)60min后,与未活化的MCC比较,样品溶解时间减少了87%,溶解度增加了1.3倍。经活化处理后的样品OH缔合强度降低,游离出来的自由OH增加。NaOH尿素-硫脲体系下壳聚糖/纤维素抗菌膜的优化制备工艺是2.5%纤维素完全溶解于氢氧化钠、尿素、硫脲质量分数分别为8%、8%、6.5%的溶液中,与3.6%水溶性壳聚糖共混流延制膜,分别经过5%Na2SO4/5%H2SO,凝固液、0.5%的NaOH溶液、10%甘油浸泡并自然干燥。酸性体系下壳聚糖/纤维素抗菌膜的拉伸强度、断裂伸长率较壳聚糖膜分别提高了16.7%和5倍;碱性体系下壳聚糖/纤维素抗菌膜具有良好的柔软性,柔软度与卫生纸(一等品)接近。两种抗菌膜对金黄色葡萄球菌和大肠杆菌的抗菌性都大于99%。
     (3)超声波和阴离子表面活性剂(月桂酸钠)共同改性处理后的TiO2较未处理的原料平均粒径减少了21.4%、亲油化度提高了24%。直接共混法制备的壳聚糖/TiO2保鲜膜的拉伸强度、断裂伸长率较壳聚糖膜分别提高了50.4%和9.6倍;溶胶凝胶膜的拉伸强度又比直接共混膜提高了34%,透氧量下降73.7%,透二氧化碳量下降46.7%。溶胶凝胶膜使西红柿的保鲜时间由6天延长至11天。壳聚糖/TiO2保鲜膜中壳聚糖的-NH2、-CH、-OH与TiO2之间有较强的氢键作用。溶胶凝胶膜中的TiO2以无定形的形式存在,溶胶凝胶膜中的水分,除了结合松散的自由水外,还有与-NH2、-OH等连接的结合水。
     论文首次对比研究了CMCNa和MC对壳聚糖/淀粉可食膜特性的不同影响;提出了可用作内缓冲包装材料的NaOH-尿素-硫脲体系下壳聚糖/纤维素抗菌膜的制备工艺;将纳米TiO2溶胶进行改性后用于制备壳聚糖基保鲜膜,延长了果蔬的保鲜期,并发现了TiO2溶胶与壳聚糖的作用机理。
The environmental problems such as energy crisis and white pollution are increasingly serious. Chitosan is considered to be one of ideal biomass materials because of its good biodegradability. With unique antibacterial properties, excellent film-forming properties and biocompatibility, chitosan in food packaging and preservation has great prospects for development.
     But chitosan film has some drawbacks such as poor physical and mechanical properties and high cost of production which limit the application in food packaging and preservation. The properties of chitosan can be enhanced and the production cost can be reduced if other materials were introduced into chitosan. In this study, starch, cellulose and its derivatives, titanium dioxide were incorporated into chitosan. Chitosan/starch edible film, chitosan/cellulose antibacterial film and chitosan/titanium dioxide (TiO2) preservative film were then elaborated and properties of films are discussed.The structure of chitosan-based film was assessed through Fourier transform infrared spectroscopy, X-ray deffraction, scanning electron microscopy, thermal analysis and particle laser analyzer. The interaction mechanism of the various components in the blend films was discussed.The main conclusions are as follows:
     (1) Sodium carboxymethyl cellulose (CMCNa) significantly improved the toughness of the chitosan/starch edible film and the elongation-at-break of blend film increased by4.5times. The methyl cellulose (MC) enhanced the tensile strength of chitosan/starch edible film which increased by71%. The two edible films Immersed in alkaline solution keep the same shape. The antibacterial rates of the two edible films to bacillus coli and staphylococcus aureus were all more than90%. There was the strong ionic bond connection between NH5+and COO-in chitosan/starch/CMCNa film and polymer electrolyte was generated.The strong hydrogen bonding occurred among MC, chitosan and starch.
     (2) Microcrystalline cellulose (MCC) was processed by ultrasonic at50W for60min. Compared with the unactivated MCC, its dissolution time decreased by87%and solubility increased by1.3times. The hydroxy association strength decreases and free hydroxyl increased in the samples after the activation treatment. The optimized preparation process of chitosan/cellulose antimicrobial film in an aqueous solution of sodium hydroxide (NaOH)/urea/thiourea was obtained. Amixture of an aqueous solution was prepared by directly mixed NaOH/urea/thiourea in the ration8.0/8.0/6.5(w/w/w).2.5wt%cellulose was completely dissolved in the solution and then3.6wt%water-soluble chitosan was added. The resulting solution was cast onto a plate to get films which were immersed into5wt%Na2SO4/5wt%H2SO4coagulation liquid,0.5wt%NaOH solution,10%glycerol solution sequentially and were air-dried at room temperature. Compared with chitosan films, the tensile strength and elongation-at-break of chitosan/cellulose antimicrobial films elaborated under the acidic system increased by16.7%and5times respectively. Chitosan/cellulose antimicrobial films elaborated under the alkaline system had good flexibility and softnesses of antimicrobial films and toilet paper (first class) were roughly same. The antibacterial rates of the two antimicrobial films to bacillus coli and staphylococcus aureus were all more than99%.
     (3) Titanium dioxide (TiO2) was modified by ultrasonic and anionic surfactant (sodium laurate). Compared to unmodified TiO2, the average particle size decreased by21.4%, the lipophilic degree increased by24%. Compared with chitosan films, the tensile strength and elongation-at-break of chitosan/TiO2preservative films elaborated by direct blending method increased by50.4%and9.6times respectively. The tensile strength of chitosan/TiO2preservative films elaborated by Sol-gel method was higher than that of films by direct blending method, increasing by34%. The oxygen and carbon dioxide transmission rate of sol-gel films were lower than that of direct blending films, decreasing by73.7%and46.7%respectively. The preservative life of tomatoes packed in sol-gel films was extended from6days to11days. There was strong hydrogen bonding among-NH2,-CH,-OH and TiO2in chitosan/TiO2preservative films. TiO2in the sol-gel films was amorphous. In addition to free water, there was bound water connected with-NH2,-OH in the sol-gel films.
     The paper firstly comparatively studied the different effects of CMCNa and MC on properties of chitosan/starch edible films. Preparation process of chitosan/cellulose antibacterial film for inner cushioning packaging material in an aqueous solution of NaOH/urea/thiourea is provided. The paper prepared chitosan-based preservative films using TiO2after modification which extend the preservative life of fruits and vegetables and studied the mechanism of action of TiO2and chitosan in the sol-gel films.
引文
[1]北京合成纤维实验工厂编.合成纤维工业知识[M].北京:燃料化学工业出版社,1972.
    [2]毕会敏,马中苏,闫革华.马铃薯淀粉基可食薄膜的研究[J].吉林大学学报(工学版),2003,33(4):109-112.
    [3]别亚琴,刘维锦.湿相分离制备可生物降解壳聚糖膜的研究[J].化工新型材料,2008,36(6):64.
    [4]陈春霞,欧海龙.卫生纸柔软度的测定及不确定度评估[J].中华纸业,2009,30(4):77-79.
    [5]陈庆春,邓慧宇,马燕明.聚乙二醇在新材料制备中的作用及其机理[J].日用化学工业,2002,32(5):5-37.
    [6]陈维新.CMC可食性复合膜的研制[J].广州食品工业科技,2004,20(3):80-82.
    [7]陈文峻,蒯本科.植物叶绿素降解[J].植物生理学通讯,2001,37(4):336-338.
    [8]陈一,包永忠,翁志学,黄志明.纤维素的酸活化[J].纤维素科学与技术,2007,1:27-31.
    [9]谌小立,赵国华.影响可食性淀粉膜性能的因素研究[J].食品与发酵工业,2008,34(2):100-103.
    [10]程艳,张克诚.应用SAS软件优化武夷菌素产生茵发酵培养基[J].中国农学通报,2010,26(21):268-272.
    [11]丁延伟,范崇政.纳米二氧化钛表面包覆的研究[J].现代化工,2001,7(21):18-22.
    [12]董素芳,赵素梅.溶胶-凝胶法制备TiO2凝胶的影响因素分析[J].现代技术陶瓷,2005,(3):10-13.
    [13]董战峰,杜予民,樊李红等.壳聚糖/明胶/TiO2三元复合膜的制备与功能特性[J].功能高分子学报,2004,17(1):61-65.
    [14]杜予民,刘义,肖玲.过氧化氢/醋酸体系降解壳聚糖用其产物的抗菌活性研究[J].孝感学院学报,2001,21(6):9-12.
    [15]樊李红,杜予民,肖玲.壳聚糖及其衍生物共混改性膜的结构与性能[C].第三届甲壳素化学与应用研讨会论文集,浙江玉环,2001.
    [16]丰丽霞,李秀艳.纤维索的活化方法对纤维素在离子液体中溶解性能的影响[J].现代化工,2009,(S2):153-157.
    [17]冯德才,刘小林,杨其等.抗菌薄膜的最新研究进展[J].塑料科技,2005,(2):35.
    [18]付国柱,于运花等.纳米TiO2改性聚乙烯膜抗菌性能的研究[J].工程塑料应用,2003,31(4):37-39.
    [19]高俊凤.植物生理学实验指导[M].北京:高等教育出版社,2006,5.
    [20]高珊珊.利用物理溶解技术制作绿色纤维素包装膜[N].中国包装报,2008-07-21(007).
    [21]高卫卫,杜金华,于玲等.樱桃酒中有机酸种类和含量的研究[J].食品与发酵工业,2008, 34(10):145-148.
    [22]戈进杰.生物降解高分子材料及其应用[M].北京:化学工业出版社,2003,4.
    [23]巩桂芬.用于制备还原糖的植物纤维素的预处理方法研究[D].哈尔滨:哈尔滨工业大学,2010.
    [24]郭玉花,滕立军,黄震等PE/CaCO3保鲜膜研制及其在小油菜保鲜中的应用[J].包装工程,2006,27(4):59-61.
    [25]韩建兵,苏海佳,谭天伟.纳米TiO2/壳聚糖复合膜对大肠杆菌杀菌作用的研究[J].化工新型材料,2006,34(7):65-66.
    [26]何士敏,周先容,向邓云等.芦荟汁保鲜番茄的研究[J].食品科学,2007,28:349-352.
    [27]何小维,黄强.淀粉基生物降解材料[M].北京:中国轻工业出版社,2008,1.
    [28]贺莲萍,胡开堂.天然纤维素的溶解化学及其进展[A]//2009(第八届)中国造纸化学品开发应用国际技术交流会论文集[C].杭州:中国造纸化学品工业协会,2009:58-62.
    [29]胡正安.纳米二氧化钛SOL-GEL法制备技术研究[D].武汉:华中师范大学,2007.
    [30]黄持都,陈计峦,胡小松等.光对采后果蔬叶绿素降解动力学研究[J].农业工程学报,2008,24(10):233-238.
    [31]吉伟之,张峻,熊何建等.壳聚糖成膜特性的研究[J].食品科学,2001,22(9):33-35.
    [32]蒋东升,王永忠,王云斌等.载银纳米二氧化钛的表而改性[J].材料科学与工程学报,2008,26(4):613-615.
    [33]蒋柳云,李玉宝,张利等.壳聚糖/羧甲基纤维素复合膜的制备及性能研究[J].高分子材料科学与工程,2007,23(6):232-235.
    [34]蒋挺大.壳聚糖[M].北京:化学工业出版社,2007,1.
    [35]蒋子铎,吴壁耀,刘安华.二氧化钛的表而化学改性[J].现代化工,1991,5(5):14-18.
    [36]琚行松,黄培,徐南平等.溶胶稳定性对氧化锆超滤膜结构和性能的影响[J].膜科学与技术,1999,19(5):32-37.
    [37]库尔班江,赛丽曼.碘量法测水果蔬菜中Vc的含量[J].伊犁师范学院学报(自然科学版),2007,9(3):28-32.
    [38]赖凡,雷朝亮,钟吕珍.蝇蛆几糖对几种植物病原真菌的抑制作用[J].华中农业大学学报,1998,17(2):122-125.
    [39]赖富饶,吴晖等.二次通用旋转组合设计优化豆皮水溶性多糖的提取工艺[J].现代食品科技,2008,12:1259-1263.
    [40]黎秉环,干恩浦,刘跃平等.超高取代度羧甲基纤维素的热分析[J].高分子材料科学与工程,1999,15(6):151-154.
    [41]李坚.木材波谱学[M].北京:科学出版社,2003,3.
    [42]李勤奋,黄棣,王江等.可生物降解羧甲基纤维素/壳聚糖吸水保水材料的制备与表表征[J].高分子材料科学与工程,2010,26(12):118-121.
    [43]李炜罡,吕维平,王海滨等.抗菌材料进展[J].化工新型材料,2003,31(3):7-10.
    [44]李晓娥等.纳米二氧化钛有机化改性工艺研究[J].无机盐工业,2001,33(4):5-7.
    [45]李新华,索晓红.纤维素纤维发泡缓冲包装材料概述[J].包装工程,2007,28(4):182-184.
    [46]李永强,杨士花,高斌,等.二次通用旋转试验设计优化山茶花红色素提取的工艺[J].食品研究与开发,2009,30(11):160-162.
    [47]李志达,朱秋享,陈为旭等.可食性淀粉薄膜材料与性能研究[J].中国粮油学报,1997,12(3):28-31.
    [48]刘德礼,谢林生,马玉录.木质纤维素预处理技术研究进展[J].酿酒科技,2009,(1):105-110.
    [49]刘付胜聪,肖汉宁,李玉平等.纳米TiO2表面吸附聚乙二醇及其分散稳定性的研究[J].无机材料学报,2005,20(2):310-316.
    [50]刘晶.壳聚糖纳米复合涂膜的研究[D].贵阳:贵州大学,2007.
    [51]刘平,林华香,付贤智.掺杂TiO2光催化膜材料的制备及其灭菌机理[J].催化学报,1999,20(3):325-328.
    [52]刘士华,吕国胜.草莓果实成熟过程中糖、酸含量的动态变化[J].安徽林业科技,2011,37(5):24-27.
    [53]刘维锦,林志浩.纤维素/壳聚糖可生物降解膜的制备及力学性能[J].塑料工业,2003,31(12):44-46.
    [54]刘越,黄家兰.壳聚糖膜的制备及性能研究[J].武汉科技学院学报,2009,22(5):23-25.
    [55]刘早,陈玲等.甘油对高直链玉米淀粉成膜性能的影响[J].食品科学,2009,30(21):59-62.
    [56]吕春林,海棠,仁庆考日乐.马铃薯原淀粉与交联淀粉可食膜的制备及其性能的比较[J].中国食品添加剂,2010(3):215-217.
    [57]罗坤,尹静波,陈学思.纤维素衍生物与壳聚糖共混复合性能研究[R].2005年全国高分子学术论文报告会.
    [58]马浩,郑长青,李毅群等.纤维素/壳聚糖复合膜的制备及结构表征[J].纤维素科学与技术,2010,18(2):33-37.
    [59]马骁飞,于九皋.热塑性淀粉中氢键及其对性能的影响[J].化学学报,2004,62(12):1180-1184.
    [60]茅源NaOH/尿索溶液中纤维素膜和纤维的凝固条件研究[D].武汉:武汉大学,2005.
    [61]聂芸,周倩等.二次通用旋转组合设计优化茶皂素的提取工艺[J].食品与发酵工业,2010,12:190-199.
    [62]庞洪涛等.纳米二氧化钛/壳聚糖一维纳米复合材料制备及结构分析[J].功能材料,2007,38(2):313-315.
    [63]彭湘红,杜金萍,程德翔等.纳米二氧化钛/壳聚糖复合膜的光催化性能[J].化学与生物工 程,2008,25(5):13-15.
    [64]齐越.利用接枝改性淀粉制备保鲜包装材料的研究[D].天津:天津科技大学,2007.
    [65]邱春阳,张克铮.二氧化硅溶胶稳定性的研究[J].辽宁石油化工大学学报,2005,65(2):1-4.
    [66]阮美娟,郭福旺.应用SAS软件优化酶水解大豆蛋白质工艺[J].食品工艺,2006,27(7):112-114.
    [67]邵自强,门爽,朱怡超.不同预处理条件下纤维素的结构变化及其在中的溶解[J].应用化工,2006,35(8):587-590.
    [68]邵自强,王飞俊,谭惠民等.纤维素与壳聚糖混合体系膜的性能研究[J].纤维素科学与技术,2002,10(1):8-11.
    [69]宋纯鹏.植物衰老生理学[M].北京:北京大学出版社,1998:118-136.
    [70]宋杰,侯永发.微晶纤维素的性质与应用[J].纤维素科学与技术,1995,3(3):1-8.
    [71]谭惠民.超支化聚合物[M].北京:化学工业出版社,2005,57-65.
    [72]唐爱民,张宏伟,陈港,刘映尧,谢国辉.超声波处理对纤维素纤维形态结构的影响[J].纤维素科学与技术,2005,(1):26-32.
    [73]唐启义,冯明光.实用统计分析及其数据处理系统[M].北京:科学出版社,2002.
    [74]滕丽菊.壳聚糖复合膜的制备及其性能研究[D].广州:暨南大学,2008.
    [75]田春美,钟秋平.木薯淀粉/壳聚糖可食复合膜的制备及性能研究[J].食品研究与开发,2006,27(7):29.
    [76]王程,胡飞,邱礼平.高直接链玉米淀粉复合膜的应用特性及其对荷兰豆的保鲜研究[J].食品与发酵工业,2011,37(9):217-220.
    [77]工高升,郝军芳,隆言泉等.纤维素酶及其在造纸工业中的应用[J].北方造纸,1996,4(4):18-20.
    [78]十海平,张敏,朱伦辉等.不同包装材料对MAP毛竹笋品质影响的研究[J].四川食品与发酵,2006,42(134):50-52.
    [79]王怀芳,朱平,张传杰.氢氧化钠/尿素/硫脲溶剂体系对纤维素溶解性能研究[J].合成纤维,2008,(7):28-32.
    [80]王建中.二次回归旋转试验设计在纺织中的应用[J].现代商检科技,1997,7(1):11-14.
    [81]王琳玲,张文清,夏玮等.壳聚糖及其衍生物抗菌性质的研究进展[J].上海生物医学工程,2006,27(2):111-114.
    [82]王明力.具有抗菌功能的壳聚糖复合膜研究及应用[D].贵阳:贵州大学,2008.
    [83]工男,工晓敏.抗菌材料及其在包装中的应用[J].高分子材料科学与工程,2002,18(4):124-128.
    [84]王群,杜予民,樊李红等.壳聚糖-淀粉-苯甲酸钠三元共混膜的结构和性能[J].武汉大学学报(理学版),2003,49(6):725-730.
    [85]王升智,高波,周智慧等.重组大肠杆菌DH5α生长曲线的测定[J].兽医科技,2010,(11):96-97.
    [86]王淑珍.可食性淀粉包装膜的研制[J].食品科学,1993,(3):21-23.
    [87]王献玲,方桂珍,胡春平.超声波活化处理对微晶纤维素结构和氧化反应性能的影响[J].高等学校化学学报,2007,28(3):565-567.
    [88]王献玲,方桂珍.不同活化方法对微晶纤维素结构和氧化反应性能的影响[J].林产化学与工业,2007,27(3):67-71.
    [89]王秀文,刘占龙,金桂菊等.胶原-壳聚糖冻干海绵的制备及其抑菌作用[J].中国生化药物杂志,2002,23(4):187-188.
    [90]王英锋,李雪,刘云义.溶胶-凝胶法制备TiO2溶胶[J].合成化学,2008,16(6):705-708.
    [91]王勇,张昊,张军等.纳米TiO2/再生纤维素复合薄膜的制备及光催化性能[J].复合材料学报,2007,24(3):35-39.
    [92]王渊龙,程博闻,赵家森.纤维素的活化[J].天津工业大学学报,2002,(2):83-86.
    [93]闻燕,杜予民,李湛.壳聚糖/TiO2复合膜的制备和性能[J].武汉大学学报(理学版),2002,48(6):701-704.
    [94]翁诗甫.傅里叶变换红外光谱分析[M].北京:化学工业出版社,2010,5.
    [95]吴峰,蔡继业.壳聚糖/纳米TiO2杂化材料的制备及抗菌性能表征[J].高分子材料科学与工程,2008,24(3):148-151.
    [96]吴俊红,王家俊,厉依俏等.壳聚糖/羟丙基甲基纤维索包装薄膜的结构与性能[J].浙江理工大学学报,2010,27(1):64-68.
    [97]吴腊英.纳米二氧化钛粒子分散性的研究[J].中国稀土学报,2003,21(25):546-549.
    [98]吴晓霞,李建科,余朝舟.魔芋葡甘聚糖-壳聚糖-羧甲基纤维素钠复合可食性保鲜膜研究[J].食品工业科技,2008,29(2):236-238.
    [99]吴远根,叶丹,邱树毅等.不同处理的壳聚糖膜力学性能研究[J].食品科学,2005,26(增刊):15-18.
    [100]武军,陈维冬,郭志斌等.纳米TiO2在纤维素溶液中的分散性能[J].武汉大学学报(理工版),2008,54(4):427-430.
    [101]西山昌史.生物降解泡沫塑料的制造方法[P].JP:05295075,1993.
    [102]夏启斌,李忠,邱显扬等.六偏磷酸钠对蛇纹石的分散机理研究[J].矿冶工程,2002,22(2):51-54.
    [103]夏杨毅等.提高淀粉包装膜强度研究[J].西南农业大学学报,1999,(3):279-283.
    [104]谢刚,朱华山,张皓东等.纳米二氧化钛表而改性的研究[J].昆明理工大学学报(理工版),2004,29(4):12-15.
    [105]熊汉国.淀粉基生物质材料的制备、特性及结构表征[D].湖北:华中农业大学,2007.
    [106]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2003,171-172.
    [107]徐惠,孙涛.硅烷偶联剂对纳米TiO2表面改性的研究[J].涂料工业,2008,38(4):1-3,17.
    [108]徐庭巧.纳米SiOx/壳聚糖复合物特性及保鲜功能研究[D].浙江:浙江大学,2010.
    [109]许彩霞,陈日耀,郑曦等CS-CMC聚合物电解质膜的制备及在电生成FeO42-中的应用[J].化学学报,2006,64(8):784-788.
    [110]许秋颖,王鹏.纳米TiO2复合有机抗菌涂膜的制备及性能表征[J].涂料工业,2005,34(5):19-21.
    [111]薛金国.水果Vc种类和含量及其在草莓加工过程中的损失[J].浙江农业科学,2009(1):135-137.
    [112]杨君.可食性膜及其研究进展[J].广东农工商职业技术学院学报,2001,(5):77-86.
    [113]杨凌霄,李素芬,刘廷国等.水溶性壳聚糖的制备及其应用初探[J].食品与发酵工业,2010,36(10):89-93.
    [114]杨文亮,李友明,李滨.超声预处理对纳米二氧化钛改性效果的影响[J].无机盐工业,2008,40(8):27-29.
    [115]杨宜功等.用酶法—醋化复合变性淀粉制可食性包装膜的研究[J].食品工业科技,1997,(1):28-30.
    [116]杨玉良,胡汉杰,周其风等.高分子物理[M].北京:化学工业出版社,2001,14-25.
    [117]杨远谊.抗菌保鲜膜研究及进展[J].包装工程,2007,28(6):201-203.
    [118]姚超,陈志刚,龚方红等.一种纳米TiO2粉体防团聚的新方法[J].无机化学学报,2006,22(6):1000-1006.
    [119]叶君,梁文芷,范佩明等.超声波处理引起纸浆纤维素结晶度变化[J].广东造纸,1999,(2):6-10.
    [120]叶磊,何立千,高天洲,李丽云.壳聚糖的抑菌作用及其稳定性研究[J].北京联合大学学报(自然科学版),2004,18(1):79-82.
    [121]余萍,林曦,刘艳如.水溶性低聚壳聚糖/壳聚糖和山苍籽油抑菌效果比较[J].药物生物术,1999,6(3):171-173.
    [122]余萍,郑怡.水浴性壳聚糖的抑菌作用研究[J].中国海洋药物,2001,(2):42-44.
    [123]袁毅,张黎明,高文远.穿龙薯蓣微晶纤维素的制备及其理化性质研究[J].生物质化学工程,2007,41(4):22-26.
    [124]岳晓华,沈月新,寿霞等.壳聚糖-甲基纤维素复合膜的制作研究与性能测定[J].农产品加上,2005,3:28-30.
    [125]岳晓华,沈月新.可食性壳聚糖膜性能的研究[J].食品科学,2002(8):62-67.
    [126]曾风彩,武军.增塑剂对纤维素膜表而结构和性能的影响[J].包装工程,2006,27(1):16--23.
    [127]曾坤伟,李夜平,方月娥.水溶性微品壳聚糖的制备及结构[J].应用化学,2002,19(3): 216-219.
    [128]张邦建,李长文等.应用SAS软件优化分析影响固态发酵白酒杂醇油的生成因素[J].酿酒科技,2011,5:46-49.
    [129]张会芳,刘桂珍,张超.草莓果实硬度影响因素及其调控措施研究进展[J].长江蔬菜(学术版),2009(12):4-7.
    [130]张俐娜,郭继,杜予民NaOH/硫脲水溶液中纤维素/甲壳素共混膜的制备及其结构和性能[A]//第三届甲壳素化学与应用研讨会论文集[C].北京:武汉大学甲壳素研究开发中心,2001:243-248.
    [131]张俐娜,阮东,高山俊.溶解纤维素的硫脲碱水溶剂及制备再生纤维素膜的方法[P].CN1126760C.2003-11.
    [132]张俐娜.天然高分子改性材料及应用[M].北京:化学工业出版社,2006,4.
    [133]张锐,方桂珍,马英梅等.羧甲基纤维素-壳聚糖共混膜的性能表征[J].林产化学与工业,2010,30(1):43-48.
    [134]张田林,张所信,吴剑平等.天然纤维素为基质的生物降解塑料研究进展[J].淮海工学院学报,2001,10(3):25-27.
    [135]张显策,张顺花,李慧艳.壳聚糖/纳米TiO2复合膜的制备及其性能分析[J].浙江理工大学学报,2007,24(6):225.
    [136]郑化,杜予民.纤维索/羧甲基壳聚糖共混膜结构与抗菌性能[J].高分了材料科学与工程,2002,18(4):124-128.
    [137]钟秋平,夏文水.壳聚糖木薯淀粉明胶复合可食抗菌保鲜膜性能的研究[J].食品科学,2006,27(6):59-64.
    [138]周金平,张俐娜,杜予民等.氢氧化钠/尿素水体系制备甲壳素/纤维素共混材料的方法[P].CN1389504A,2003.
    [139]周金平.纤维素新溶剂及再生纤维素功能材料的研究[D].武汉:武汉大学,2001.
    [140]周小菊,张嫦,刘东等.聚乙二醇对纳米二氧化钛性质和应用的影响[J].化学研究与应用,2007,19(9):1036-1040.
    [141]周晓东,朱平,工炳等.纤维素的活化对其浴解性能的影响[J].现代纺织技术,2008,5:4-7.
    [142]周晓东,朱平,张建波.纤维索/纳米TiO2抗菌复合膜的制备及性能研究[J].染整技术,2008,:30(3):6-8.
    [143]A Isogaia, R H Atallab. Preparation of cellulose-chitosan polymer blends[J]. Carbohydrate,1992,19:25-28.
    [144]Almeida EVR, Frollini E, Castellan A, et al.Chitosan, sisal cellulose, and biocomposite chitosan/sisal cellulose films prepared from thiourea/NaOH aqueous solution[J].Carbohydrate Polymers,2010,80(3):655-664.
    [145]Bourtoom T, Chinnan MS. Preparation and properties of rice starch-chitosan blend biodegradable film[J]. Lwt-food Science and Technology,2008,41(9):1633-1641.
    [146]Chao Ming Shih, Yeong Tarng Shieh, Yawo Kuo Twu. Preparation and characterization of cellulose/chitosan blend films[J]. Carbohydrate Polymers,2009,78(1):169-174.
    [147]Chillo S, Flores S, Mastromatteo M, et al. Influence of glycerol and chitosan on tapioca starch-based edible film properties[J]. Journal of Food Engineering,2008, 88(2):159-168.
    [148]Cho Y W.Cho Y N, Chung S H, et al. Water-soluble chitin as a wound healing accelerator[J]. Biomaterials,1999(20):2139-2145.
    [149]Cooksey Kay. Antimicrobial food packaging materials[J]. Additives for Polymers, 2001, (8):6-10.
    [150]de Mesquita JP, Donnici CL, Teixeira IF, et al. Bio-based nanocomposites obtained through covalent linkage between chitosan and cellulose nanocrystals[J]. Carbohydrate Polymers,2012,90(1):210-217.
    [151]Devlieghere F.,Vermmeulen A., Debevere J. Chitosan:antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables [J].Food Microbiology,2004,21 (6):703-714.
    [152]D L Morgado, E Frolini,A Castellan, et al.Biobased films prepared from NaOH/thiourea aqueous solution of chitosan and linter cellulose[J]. Cellulose,2011,18: 699-712.
    [153]Durango A M, Soares N F F. Microbiological evaluation of an edible antimicrobial coating on minimally processed carrots[J].Food Control,2006,17(4):336-341.
    [154]E V R Almeida, E Frollini, A Castellan, et al. Chitosan, sisal cellulose, and biocomposite chitosan/sisal cellulose films prepared from thiourea/NaOH aqueous solution[J]. Carbohydrate Polymers,2010,80(3):655-664.
    [155]Felt O,Carrel A, Baehni P. Chitosan as tear substitute:a wetting agent endowed with antimicrobial efficacy[J].Journal of Ocular Pharmacology and Therapeutics,2000, 16(3):261-270.
    [156]Hadwiger L A, Kendra D F, Fristensky B W, et al. Chitosan both activates genes in plants and inhibits RNA synthesis in fungi. Chitin in nature and technology [M]. New York:Plenuw Press,1986,209-225.
    [157]Jun-Feng Su,Zhen Huang, Xiao-Yan Yuan, et al.Structure and properties of carboxymethyl cellulose/soy protein isolate blend edible films crossl inked by Mailard reactions[J].Carbohydrate Polymers,2010,79:145-153.
    [158]Kemell M, Pore V,Ritala M, et al. Atomic layer deposition in nanometer level replication of cellulosic substances and preparation of photocatalytic TiO2/cellulose composites[J]. Journal of the American Chemical Society,2005,127(41):14178-14179.
    [159]Khan MA, Rahman MA, Khan RA, et al. Preparation and characterization of the mechanical properties of the photocured chitosan/starch blend film[J]. Polymer-plastics Technology and Engineering,2010,49(7):748-756.
    [160]Lagaron JM, Fendler A. High water barrier nanobiocomposites of methyl cellulose and chitosan for film and coating applications[J]. Journal of Plastic Film & Sheeting, 2009,25(1):47-59.
    [161]Lin Bao-feng, Du Yu-min, Li Yan-ming,et al. The effect of moist heat treatment on the characteristic of starch-based composite materials coating with chitosan[J]. Carbohydrate Polymers,2010,81 (3):554-559.
    [162]Liu Fu-jun, Qin Bing, He Ling-hao, et al. Novel starch/chitosan blending membrane: antibacterial, permeable and mechanical properties[J]. Carbohydrate Polymers,2009,78 (1):146-150.
    [163]Loredana Mariniello, Prospero Di Pierro, Carla Esposito, et al. Preparation and mechanical properties of edible pectin-soy flour films obtained in the absence or presence of transglutaminase[J]. Journal of Biotechnology,2003,102(2):191-198.
    [164]Makoto Hasegawa, Akira Isogai,Shigenori Kuga, et al. Preparation of cellulose-chitosan blend film using chloral/dimethylformamide[J]. Polymer,1994,35 (5):983-987.
    [165]Makoto Kanogol降解塑料合成[J].合成树脂,1992,38(1):18.
    [166]Maria B Vasconez, Silvia K Flores, Carmen A Campos. Antimicrobial activity and physical properties of chitosan-tapioca starch based edible films and coatings [J]. Food Research International,2009,42:762-769.
    [167]Meilert K T, Laub D, Kiwi J. Photocatalytic self-cleaning of modified cotton textiles by TiO2 clusters attached by chemical spacers[J]. Journal of Molecular Catalysis A:Chemical,2005,237:101-108.
    [168]Morgado DL, Frollini E, Castellan A, et al. Biobased films prepared from NaOH/thiourea aqueous solution of chitosan and linter cellulose[J]. Cellulose,2011, 18(3):699-712.
    [169]Nishiyamam, Masashi, Kogyo Zairyo. The manufacture of biodegraded plastics[P], JP:03418207,1990.
    [170]Papineau A M, D G Hoover, D Knorr, et al. Antimicrobial effect of watersoluble chitosans with high hydrostatic pressure[J]. Food Biotechnology,1991,5(1):45-57.
    [171]Paralikar S A,Simonsen J, Lombardi J.Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes[J]. Journal of Membrane Science,2008,320(1):248-258.
    [172]Park S Y, Marsh K S, Rhim J M. Characteristics of different molecular weight chitosan films affected by the type of organic solvents[J]. Food Engineering and Physical Properties,2002,67 (1):194-197.
    [173]Sangsuwan J, Rattanapanone N, Rachtanapun P. Effect of chitosan/methyl cellulose films on microbial and quality characteristics of fresh-cut cantaloupe and pineapple [J].Postharvest Biology and Technology,2008,49(3):403-410.
    [174]Shen Xiao-li, Wu Jia-min, Chen Yong-hong, et al. Antimicrobial and physical properties of sweet potato starch films incorporated with potassium sorbate or chitosan[J].Food Hydrocolloids,2010,24(4):285-290.
    [175]Talja.R A, Helen H, Roos Y H, et al. Effect of various polyols and polyol contents on physical and mechanical properties of potato starch-based films [J]. Carbohyd Polym, 2007,67 (3):288-295.
    [176]Tao Y, Pan J, Yan S, et al. Tensile strength optimization and characterization of chitiosan/TiO2 hybrid film[J]. Materials Science and Engineering B,2007,138(1): 84-89.
    [177]Tome LC, Fernandes SCM, Sadocco P,et al. Antibacterial thermoplastic starch-chitosan based materials prepared by melt-mixing[J]. Bioresources,2012,7(3):3398-3409.
    [178]Tuhin M0, Rahman N, Haque ME, et al. Modification of mechanical and thermal property of chitosan-starch blend films[J]. Radiation Physics and Chemistry, 2012,81(10):1659-1668.
    [179]Usenik V, Fabcic J, Stampar F. Sugars, organic acids, phenolic composition and antioxidant activity of sweet cherry[J]. Food Chemistry,2008,107:185-192.
    [180]Vasconez MB, Flores SK, Campos CA, et al. Antimicrobial activity and physical properties of chitosan-tapioca starch based edible films and coatings [J]. Food Reaearch International,2009,42(7):762-769.
    [181]Wijman J G, Kant J,Smolders C A. Phase separation phenomena in solution of polysulfone in mixtures of a solvent and a non-solvent relationship with membrane formation[J]. Polymer,1985,26(1):539-542.
    [182]Wu Hai-xia, Liu Chang-hua, Chen Jian-guang,et al. Oxidized pea starch/chitosan composite films:structural characterization and properties[J]. Journal of applied polymer science,2010,118(5):3082-3088.
    [183]Wu Yu-bey,Yu Shu-huei,Mi Fwu-long,et al. Preparation and characterization on mechanical and antibacterial properties of chitsoan/cellulose blends [J].Carbohydrate Polymers,2004,57 (4):435-440.
    [184]Yang Dong, Li Jie, Jiang Zhong-yi, et al. Chitosan/TiOz nanocomposite pervaporation membranes for ethanol dehydration[J]. Chemical Engineering Science, 2009,64(13):3130-3137.
    [185]Yang Dong-zhi,Liu Xiao-fei,Li Zhi,et al. On the factors influencing the antibacterial activity of chitosan[J].Chinese Journal of Applied Chemistry,2000, 17(6):598.
    [186]Y X Xu, K M Kim, M A Hanna, et al. Chitosan- starch composite film:preparation and characterization [J]. Industrial Crops and Products,2005,21 (2):185-192.
    [187]Zhong Qiu-ping, Xia Wen-shui. Physicochemical properties of edible and preservative films from chitosan/cassava starch/gelatin blend plasticized with glycerol[J].Food Technology and Biotechnology,2008,46(3):262-269.
    [188]Zhong Yu, Li Yun-fei. Effects of storage conditions and acid solvent types on structural, mechanical and physical properties of kudzu starch (Pueraria lobata)-chitosan composite films[J]. Starch-starke,2011,63(9):579-586.
    [189]Zhong Yu, Li Yun-fei, Zhao Yan-yun. Physicochemical, microstructural, and antibacterial properties of ss-chitosan and kudzu starch composite films[J]. Journal of Food Science,2012,77(10):280-286.
    [190]Zhong Yu, Song Xiao-yong, Li Yun-fei. Antimicrobial, physical and mechanical properties of kudzu starch-chitosan composite films as a function of acid solvent types [J]. Carbohyarate Polymers,2011,84(1):335-342.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700