用户名: 密码: 验证码:
大气气溶胶与痕量气体廓线MAX-DOAS遥测方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国区域性大气污染问题日趋明显,及时准确获取区域污染信息是研究、控制区域污染的前提。尽管我国已建立了以城市为中心的空气质量自动监测站,但不能完全反映大气污染状况,造成空气质量评价指标与公众直观感受不一致。近地面有限指标的监测,不能满足空气污染形成机制、演变和输送过程的研究需求。多轴差分吸收光谱(MAX-DOAS)技术能够对对流层、平流层污染物进行观测,提供气溶胶、痕量气体垂直分布数据,不仅能够更及时、迅速地获取更大区域的污染分布特征,还能够实现在相同观测模式下对卫星数据的校验。本文基于MAX-DOAS技术开展了大气气溶胶、痕量气体廓线监测方法的研究工作。
     本文采用自行研制的MAX-DOAS系统观测太阳散射光谱,并对该系统的关键指标,包括视场角、指向精度、杂散光水平、光谱定标等,进行了测试。结果说明系统性能满足观测需求。同时针对MAX-DOAS方法的关键问题进行了深入研究:利用多项式拟合去除散射影响,消除了夫琅禾费结构和Ring效应影响,在痕量气体截面处理中进行了I0效应修正,确定了NO2、O4的拟合波段,最终准确的反演出斜柱浓度。并通过长达16天的国内外同类仪器联合观测对比试验,验证了仪器性能和斜柱浓度反演精度。痕量气体斜柱浓度的成功获取是进一步研究的基础,本文着重于对大气气溶胶和痕量气体廓线的解析方法进行了研究。
     利用O4气体斜柱浓度和强度指数中包含着气溶胶信息的特点,研究了基于MAX-DOAS技术的气溶胶反演方法。本文首先利用辐射传输模型SCIATRAN进行模拟计算消除了O4气体吸收截面不准确造成的斜柱浓度误差,提高气溶胶的反演精度。然后分析了O4气体斜柱浓度、强度指数和气溶胶、观测仰角的相关性,通过权重函数量化了二者对气溶胶变化的敏感性。最后基于最优估算法构建了气溶胶消光廓线反演算法,采用了SCIATRAN模拟数据进行了反演算法的性能验证,结果表明算法能够实现对流层低层气溶胶的准确计算,并利用平均核矩阵确定了测量噪声、先验约束对反演解不确定度的影响,分析了反演误差。
     利用多个仰角的痕量气体斜柱浓度中包含着其垂直分布信息的特点,研究了基于MAX-DOAS技术的痕量气体廓线反演方法。本文首先分析了NO2气体斜柱浓度对NO2廓线变化的敏感性。针对NO2气体的弱吸收特性,确定采用线性最优估算法进行NO2廓线解析。随后采用SCIATRAN模拟数据进行了反演算法的性能验证,结果表明算法能够实现1km以下的NO2垂直分布的准确计算,并利用平均核矩阵确定了测量噪声、先验约束对反演解不确定度的影响,进行了误差分析。进一步,本文还提出了利用能见度资料快速计算近地面N02体积比浓度的方法。
     最后开展了MAX-DOAS的外场观测试验。大气气溶胶消光廓线的观测结果表明,上海地区的颗粒物分布在1km以下,边界层基本稳定。通过和激光雷达的观测数据对比,验证了算法的可行性。同时,试验中获取了N02气体垂直廓线,并将近地面层反演浓度和点式仪器进行了对比,验证反演结果。另外,利用能见度资料准确获取了地表N02的体积比浓度信息。
With severe regional air pollution problem in china, fast and accurate monitoring of regional air pollution is needed effective research and prevention of air pollution. Even air quality monitoring stations have been built centering on the cities, actual situation of air pollution can't been reported completely, causing the disagreement of air quality index and public intuitive feelings. Existing traditional point monitoring techniques can't fulfill the requirement of research in the production, evolution and transfer of air pollution. Multi-axis differential absorption spectroscopy (MAX-DOAS) technology can measure the pollutant in the troposphere and stratosphere, and provide the information of aerosol and trace gas distribution, not just derive the pollutant distribution in large region, but also being used in the validation of satellite data in same observation mode. In this thesis research on the remote sensing of aerosol and trace gas vertical distribution by MAX-DO AS technique has been carried out.
     Solar scatter spectrum is collected with MAX-DOAS instrument developed in our laboratory. Key parameters of MAX-DOAS was tested, include the field of view, pointing precision, stray light, spectral calibration and so on, showing good performance for monitoring requirement. Also, intensive study on unique problems of MAX-DOAS technique was conducted. The interference of scatter was removed with polynomial fitting, the effect of Fraunhofer structures and Ring effect were eliminated, I0effect correction was performed during the cross section processing, and the fitting windows of NO2, O4was determined. Finally the slant column density (SCD) has been retrieved precisely. A MAX-DOAS intercomparison campaign was attended, which included the instrument from home and abroad, and lasted for16days, and result evaluated the performance and SCD retrieval precision of MAX-DOAS further. Precisely retrieval of SCD is the guarantee of the following profile calculation, and in this thesis the work paid particular emphasis on the retrieval of aerosol and trace gas distribution.
     Based on the character that O4SCD and intensity index contain the information of aerosol, research on the aerosol retrieval with MAX-DOAS was carried out. At first, as O4absorption cross section inaccuracy cause the error of SCD, and this problem is solved with simulation of radiative transfer model. Then, the sensitivity of aerosol retrieval was analysed. The relationship between O4SCD, intensity index and aerosol, elevation angle was summarized, and the sensitivity was quantized with the weighting function. An aerosol extinction profile retrieval algorithm has been developed based on the optimal estimation method (OEM). The algorithm was validated with SCIATRAN simulated data, and result showed that the aerosol in the low troposphere can be derived precisely with this algorithm. The averaging kernel matrix was introduced for analyzing the effect of measurement noise and a priori information on the uncertainty of retrieval solution, and error analysis of the retrieval algorithm were carried out too.
     On account of that trace gas vertical distribution information can be derived from several SCD of different elevation angles, research on the trace gas profile retrieval wilh MAX-DOAS was carried out At first, the sensitivity of NO2SCD on the variation of profile is analysed in this thesis. For the speciality of weak absorption of NQ2, NO2vertical profile retrieval was fulfilled with linear optimal estimation method. Then the retrieval algorithm was validated with SCIATRAN simulated data, showing that this algorithm can be used for the the NO2profile retrieval below1km. The averaging kernel matrix was also introduced for analyzing the effect of measurement noise and a priori information on the uncertainty of retrieval solution, and used for error analysis. Moreover, a fast convert method from SCD to NO2concentration was developed.
     Field campaigns with developed MAX-DOAS instrument were held. Measurement result of aerosol extinction profiles showed that the particulate matter in Shanghai concentrated below1km, and the height of boundary layer was steady. Through the validation with Lidar, good agreement proved the feasibility of aerosol retrieval. The result of NO2vertical profile was also derived, and the concentrations of the lowest layer were validated with point measurement data. Furthermore, surface NO2mixing ratio information was derived based on the visibility data.
引文
程寅,陆亦怀,连翠华.2006.前向散射型能见度仪的研制[J].大气与环境光学学报,1(1):59-63.
    戴永江.2002.激光雷达原理[M].北京,国防工业出版社:39-42.
    杜小勇,张寅超,屈凯峰,等.2006.车载激光雷达探测低层大气中NO2[J].大气与环境光学学报,1(2):97-100.
    董云升,刘文清,刘建国,等.2009.北京城区限车期间气溶胶特征激光雷达观测研究[J].光学学报,29(2):292-297.
    国家环境保护总局.2012.中国环境状况公报[S/OL]. http://jcs.mep.gov.cn/hjzl/zkgb/.
    韩永,谢晨波,饶瑞中.2006.基于光散射技术的两种能见度探测方法的比较分析[J].35(2):173-177.
    韩明霞,过孝民.2006.我国城市的大气污染及其对居民的健康影响[J].城市化工,6:84-89.
    黄忠伟.2012.气溶胶物理光学特性的激光雷达遥感研究[D]:[博士].兰州:兰州大学,26-31
    刘文清,崔志成,董凤忠.2002.环境污染监测的光学和光谱学技术[J].光电子技术与信息,15(5):1-12.
    刘玉杰,牛生杰,郑有飞.2004.用CE-318太阳光度计资料研究银川地区气溶胶光学厚度特性[J].南京气象学院学报,27(5):615-623.
    李昂.2007.痕量气体和污染源排放的被动DOAS遥测技术研究[D]:[博士].合肥:中国科学院研究生院,37-51.
    李素文,姜恩华,陈得宝,等2010. Ring效应在散射光观测系统中的影响[J].光电工程,37(7):49-52.
    李蔚.2012.大气NO2柱浓度的地基MAX-DOAS观测研究[D]:[硕士].北京:中国气象科学研究院,35-37
    李浩,孙学金.2009.前向散射能见度仪测量误差的理论分析[J].红外与激光工程,38:1094-1099..
    李聪,王咏梅.2010.用PtNe灯对大气紫外成像光谱仪进行光谱定标[J].光谱学与光谱分析,30(12):3302-3309.
    毛节泰,张军华,王美华.2002.中国大气气溶胶研究综述[J].气象学报,60(5):625-634.
    秦敏,谢品华,刘建国,等.2005.基于二极管阵列PDA的紫外-可见差分吸收光谱(DOAS)系统的研究[J].光谱学与光谱分析,2005,25(9):1463-1467.
    宋炳超,刘文清,张玉钧,等.2003.谱线波长配准存在的问题及解决方法[J].量子电子学报,17(6):680-684.
    盛裴轩,等.2003.大气物理学[M].北京,北京大学出版社:48-55.
    石广玉,王标,张华,等.2008.大气气溶胶的辐射与气候效应[J].大气科学,32(4):826-840.
    司福祺,谢品华,Hereue K P,等.2008.超光谱成像差分吸收光谱技术研究[J].物理学报,57(9):6018-6022.
    司福棋,谢品华,窦科,等.2010.被动多轴差分吸收光谱大气气溶胶光学厚度检测方法研究[J].物理学报,59:2867-2873.
    王永生.1987.大气物理学[M].北京,气象出版社:33-37.
    王青梅,张以谟.2006.气象激光雷达的发展现状[J].气象科技,34(3):246-249.
    王跃思,辛金元,李占清,等.200.6中国地区大气气溶胶光学厚度与Angstrom参数联网观测(2004-08~2004-12)[J].环境科学,27:1703-1706.
    王婷,王普才,余环,等.2013.多轴差分吸收光谱仪反演大气N02的比对试验[J].物理学报,62(5):054206.
    谢品华,刘文清,郑朝晖,等.2000.差分光学吸收光谱(DOAS)技术在烟气SO2监测中的应用[J].光子学报,29(3):271-276.
    徐祥德,施晓辉,张胜军,等.2005.北京及周边城市群落气溶胶影响域及其相关气候效应[J].科学通报,27(6):1067-1076.
    徐晋,谢品华,司福祺,等.2012.地基多轴DOAS仪器的NO2斜柱浓度对比研究[J].光谱学与光谱分析,32(2):558-564.
    岳捷,林云萍,邓兆泽,等.2009.利用卫星数据和全球大气化学传输模式研究中国东部大城市对流层NO2季节变化原因[J].北京大学学报,3:116-124.
    章澄昌,周文贤.1995.大气气溶胶教程[M].北京,气象出版社:134-152
    曾书儿,王改利.1999.能见度的观测及其仪器应用[J].应用气象学报,10(2):207-212.
    周秀骥.1995.高等大气物理学[M].北京,气象出版社:750-752.
    周斌,刘文清,齐峰,等.2001.差分吸收光谱法测量大气污染的浓度反演方法研究[J].物理学报,50(9):1818-1823.
    张兴赢,张鹏,刘建国,等.2008.多轴差分吸收光谱仪(MAX-DOAS)地基遥感监测大气成分及其对卫星大气成分产品的真实性检验研究[C]。中国气象学会2008年年会卫星遥感应用技术与处理方法分会场论文集:57-62.
    张恭正,陈圣波,王明常,等.2010.基于SCIATRAN模型的Limb大气辐射传输模型[J].科学技术与工程,10(6):1506-1511.
    张浩.2011.60GHz毫米波无线通信系统调制及信道容量分析[D]:[硕士].青岛:中国海洋大学:21-28.
    张军强,吴清文,颜昌翔.2010.星载超光谱成像仪杂散光及其测量[J].光谱学与光谱分析,30(10):2861-2865.
    张军强,邵建兵,颜昌翔.2011.成像光谱仪星上光谱定标的数据处理[J].中国光学,4(2):175-181.
    Angstrom A.1964. Techniques of Determinig the Turbidity of the Atmosphere. Tellus,16(1): 64-75.
    Aliwell S R, Jones R L, Fish D J.1997. Mid-latitude observations of the seasonal variation of BrO: Zenith-sky measurements[J]. Geophysical Research Letters,24(10):1195-1198.
    Arpaq K H, Johnston P V, Miller H L, Sanders R W, Solomon S.1994. Observations of the stratospheric BrO column over Colorado,40°N[J]. Journal of Geophysical Research,99(D4): 8175-8181.
    Browell E V.1998. Differential absorption lidar (DIAL) measurements from air and space[J]. Appl Phys B,67(4):399-410.
    Buchwitz M.1999. User 's Guide for the Radiative Transfer Program GOMETRAN++ /SCIATRAN[S]. IUP University of Bremen:35-56.
    Bossmeyer J.2002. Ship-based multi-axis differential optical absorption spectroscopy measurements of tropospheric trace gases over the Atlantic Ocean[D]:[PhD]. Germany: University of Heidelberg,27-42.
    Barret B, De Maziere M D, Demoulin P.2002. Retrieval and characterization of ozone profiles from solar infrared spectra at the Jungfraujoch[J]. J Geophys Res,107(24):4788
    Bogumil K, Orphal J, Homann T, et al.2003. Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model:instrument characterization and reference data for atmospheric remote-sensing in the 230-2380nm region[J]. Journal of Photochemistry and Photobiology Chemistry,157(2-3):167-184.
    Boersma K F, Eskes H J, Brinksma E J, et al.2004. Error analysis for tropospheric NO2 retrieval from space[J]. J Geophys Res,109(4):311-319.
    Barnaba F, Putaud P J, Gruening C.2010. Annual cycle in co-located in situ, total column, and height resolved aerosol observations in the Po Valley (Italy):Implications for ground-level particulate matter mass concentration estimation from remote sensing[J]. Journal of Geophysical Research,115:D19209.
    Chen L F, Han D, Tao J H, Su L.2009. Overview of tropospheric NO2 vertical column density retrieval from space measurement[J]. Journal of Remote Sensing,7:343-354.
    Clemer K, Roozendael M V, et al.2010. Multiple wavelength retrieval of tropospheric aerosol optical properties from MAX-DOAS measurements in Beijing[J]. Atmos Meas Tech Discuss,3: 111-145
    Eisinger M, Richter A, LadstaTter W A, Burrows J P.1997. DOAS Zenith Sky Observations:1. BrO Measurements over Bremen (53° N) 1993-1994[J]. Journal of Atmospheric Chemistry, 26(1):93-108.
    Fernald F G 1984. Analysis of atmospheric lidar observations some comments[J]. Appl Opt, 23(5):652-655.
    Fish D J, Jones R L.1995. Rotational Raman scattering and the ring effect in Zenith-sky spectra[J]. Geophysical Research Letters,22(7):811-814.
    Fiedler M, Frank H, Gomer T, et al.1993. Ground-based spectroscopic measurements of stratospheric NO2 and OC1O in arctic winter 1989/90[J]. Geophysical Research Letters,20(10): 963-966.
    Frieb U, Monks P S, Remedios J J, et al.2006. MAX-DOAS O4 measurements:A new technique to derive information on atmospheric aerosols:2. Modeling studies[J]. J Geophys Res,111: D14203.
    Friedeburg C.2003. Derivation of Trace Gas Information combining Differential Optical Absorption Spectroscopy with Radiative Transfer Modelling[D]:[PhD]. Germany:IUP Heidelberg,35-55.
    Friedeburg C, Wagner T, Geyer A, et al.2002. Derivation of Tropospheric NO3 Profiles Using Off-axis-DOAS Measurements During Sunrise and Comparison with Simulations[J]. J. Geophys. Res,107(13):4168-4175.
    Friedeburg C, Pundt Ⅰ, Mettendorf K U, et al.2005. Multi-axis-DOAS measurements of NO2 during the BAB II motorway emission campaign[J]. Atmospheric environment,39(5):977-985.
    Grainger J F, Ring J.1962. Anomalous Fraunhofer line profiles[J]. Nature,193:762-765.
    Greenblatt G D, Orlando J J, Burkholder J B, Ravi shankara A R.1990. Absorption-Measurements of Oxygen between 330nm and 1140nm[J]. Journal of Geophysical Research Atmospheres,95(11):18577-18582.
    Harris G W, Winer A M, et al.1977. Measurement of HONO, NO3 and NO2 by long-path differential optical absorption spectroscopy in the Los Angeles basin:Optical and laser remote sensing[J]. Ser Opt Sci,39:106-113.
    Harvey J E, Kotha A.1995. Scattering effects from residual optical fabrication errors [J]. SPIE, 2576:155-174.
    Honninger G 2002. Halogen oxide studies in the boundary layer by multi axis differential optical absorption spectroscopy and active longpath-DOAS[D]:[PhD]. Germany:University of Heidelberg,36-60.
    Honninger G, Friedeburg C V, Platt, U.2004. Multi axis differential optical absorption spectroscopy (MAX-DOAS)[J]. Atmos Chem Phys,4:231-254.
    Honninger G, Platt U.2002. Observations of BrO and its vertical distribution during surface ozone depletion at Alert[J]. Atmospheric Environment,36(15):2481-2489.
    Heckel A, Richter A, et al.2005. MAX-DOAS measurements of formaldehyde in the Po-Valley[J]. Atmos Chem Phys,5:909-915
    Hendrick F, Van Roozendael M,et al.2007. Retrieval of stratospheric and tropospheric BrO profiles and columns using ground-based zenith-sky DOAS observations at Harestua,60°N[J]. Atmos Chem Phys,7:4869-4885.
    He Q, Li C, Mao J, Lau A K, Chu D A.2008. Analysis of aerosol vertical distribution and variability in Hong Kong[J]. Journal of Geophysical Research,113:D14211.
    Irie H, Kanaya Y, et al.2008. Validation of OMI tropospheric NO2 column data using MAX-DOAS measurements deep inside the North China Plain in June 2006:Mount Tai Experiment 2006[J]. Atmos Chem Phys,8:6577-6586
    Irie H, Kanaya Y, Akimito H, et al.2008. First retrieval of tropospheric aerosol profiles using MAX-DOAS and comparison with lidar and sky radiometer measurements[J]. Atmos Chem Phys,8:341-350.
    Irie H, Kanaya Y, Akimito H, et al.2009. Dual-wavelength aerosol vertical profile measurements by MAX-DOAS at Tsukuba, Japan[J]. Atmos Chem Phys,9:2741-2749.
    Junge C E.1958. Atmospheric Chemistry In Advances in Geophysics[M]. New York, Academic Press:57-64
    Kelly V. Chance and Robert J. D. Spurr.1997.Ring effect studies:Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum[J]. Applied optics,36(21):5224-5230.
    Kreher K, Johnston P V, Wood S W, Platt U.1997. Groundbased measurements of tropospheric and stratospheric BrO at Arrival Heights (78°S), Antarctica[J]. Geophys Res Lett,24: 3021-3024.
    Kutner M L.2003. Astronomy:A Physical Perspective[M].2nd ed. Cambridge University Press: 15-30.
    Kim K H, Kim M Y.2001. Comparison of an open path differential optical absorption spectroscopy system and a conventional in situ monitoring system on the basis of long term measurements of SO2, NO2, and O3[J]. Atmospheric Environment,35(24):4059-4072.
    Laan E, DeVries J, Kruizinga B.2000.Ozone monitoring with the OMI instrument[J]. Proceedings of SPIE,4132:334-343.
    Lowe A G, Adukpo D, Fietkau S, et al.2002. Multi-Axis-DOAS observations of atmospheric trace gases at different latitudes by the global instrument network BREDOM[C]. Proc.10th Sci. Conf. of IAMAS, CACGP and 7th Sci. Conf. of IGAC:102-132.
    Leser H, Honninger G, Platt U.2003. MAX-DOAS measurements of BrO and NO2 in the marine boundary layer[J]. Geophys Res Lett,30(10):1537-1544.
    Louisa J, Roland K, Leigh J, et al.2008. Comparison of OMI and ground-based in situ and MAX-DOAS measurements of tropospheric nitrogen dioxide in an urban area[J]. Jurnal of Geophysical Research,113:D16S39.
    Liu P, Zhao C, Zhang Q, et al.2009. Aircraft study of aerosol vertical distributions over Beijing and their optical properties[J]. Tellus B,61:756-767.
    Li X, Brauers T, Shao M, et al.2010. MAX-DOAS measurements in southern China:retrieval of aerosol extinctions and validation using ground-based in-situ data[J]. Atmospheric Chemistry and Physics,10:2079-2089.
    Li X, Brauers T, Hofzumahaus A et al.2013. MAX-DOAS measurements of NO2, HCHO and CHOCHO at a rural site in Southern China[J]. Atmospheric Chemistry and Physics,13: 2133-2151.
    Lee H, Irie H, Kim Y J, Noh Y, Lee C, Kim Y, Chun K J.2009. Retrieval of Aerosol Extinction in the Lower Troposphere Based on UV MAX-DOAS Measurements[J]. Aerosol Sci Technol,43: 502-509.
    Lee H, Kim Y J, Jung J, Lee C, Heue K P, Platt U, Hu M, Zhu T.2011. Combined measurements of a UV mini MAX-DOAS system and a TX for retrieval of ambient trace gas mixing ratio: Comparisons with combined RT M and MAX-DOAS methods[J]. J Environ Manage, 45:7218-7226.
    McKenzie R L, Johnston P V.1982. Seasonal variations in stratospheric NO2 at 45°[J]. Geophysical Research Letters,9:1255-1258.
    Miller H L, Weaver A, Sanders R W, Arpag K, Solomon S.1997. Measurements of arctic sunrise surface ozone depletion events at Kangerlussuaq, Greenland (67°N,51°W)[J]. Tellus B,49(5): 496-509.
    Marquard L C, Wagner T, Platt U.2000. Improved air mass factor concepts for scattered radiation differential optical absorption spectroscopy of atmospheric species[J]. Journal of Geophysical Research-Atmospheres,105(1):1315-1327.
    Marcel R D, Dirksen R J, Pieternel F.2006. Ozone Monitoring Instrument Calibration[J]. IEEE transactions on geoscience and remote sensing,44(5):1209-1237.
    Noxon J F.1975. Nitrogen dioxide in the stratosphere and troposphere measured by ground-based absorption spectroscopy[J]. Science,189(4202):547-549.
    Noxon J F, Norton R B, Henderson W R.1978. Observation of atmospheric NO3[J]. Geophysical Research Letters,5:675-678.
    Noxon J F, Whipple E C, Hyde R S.1979. Stratospheric NO2:1. Observational method and behavior at mid-latitude[J]. J Geophys Res,84:5047-5065.
    Noxon J F, Norton R B, Marovich E.1980. NO3 in the troposphere[J], Geophysical Research Letters,7(2):125-128.
    Platt U.1978. Dry deposition of SO2[J]. Atmospheric Environment,12(1):363-367.
    Platt U, Perner D.1979. Simultaneous measurements of atmospheric CH2O, O3 and NO2 by differential optical absorption[J]. J Geophys. Res,84(10):6329-6335.
    Platt U, Perner D.1980a. Direct measurements of atmospheric CH2O, HNO2, O3 and SO2 by differential absorption in the near UV[J]. J Geophys Res,1980,85 (12):7453-7458.
    Platt U, Perner D, Harris G W, et al.1980b. Detection of NO3 in the polluted troposphere by differential optical absorption[J]. Geophys Res Lett,7(1):89-92.
    Platt U, Marquard L, Wagner T, Perner D.1997. Corrections for zenith scattered light DOAS[J]. Geophysical Research Letters,24(14):1759-1762.
    Platt U, Stutz J.2008. Differential optical absorption spectroscopy(DOAS), Principles and applications[M]. Springer:314-330
    Perliski L M, Solomon S.1993. On the evaluation of air mass factors for atmospheric near-ultraviolet and visible absorption spectroscopy[J]. Journal of Geophysical Research,98(6): 10363-10374.
    Peter H M.2000. A review of atmospheric aerosol measurements [J]. Atmopsheric Enviroment,34: 1959-1999.
    Perner D, Ehhalt D H, Paetz H W, et al.1976. OH-radicals in the lower troposphere[J]. Geophysical Research Letters,3:466-468.
    Perner D, Platt U.1979. Detection of nitrous acid in the atmosphere by differential optical absorption[J]. Geophysical Research Letters,6(12):917-920.
    Perner D, Platt U.1980. Absorption of light in the atmosphere by collision induced pairs of Oxygen (O2)2[J]. Geophys Res Lett,7(12):1053-1056.
    Piternel F L, Gijsbertu H J. Mrcel R D, et al.2006. The Ozone monitoring instrument[J]. IEEE Trans Geosci Remote Sens,44(5):1093-1101.
    Piters A J M, Boersma K F, Kroon M, et al.2012. The Cabauw Intercomparison campaign for Nitrogen Dioxide measuring Instruments (CINDI):design, execution, and early results[J]. Atmos Meas Tech,5:457-485.
    Pommereau J P, Piquard J.1994. Observations of the vertical distribution of stratospheric OC1O. Geophysical Research Letters,21(13):1231-1234.
    Richter A, Eisinger M, Weiβenmayer A, et al.1999. DOAS Zenith Sky Observations:2. Seasonal Variation of BrO Over Bremen (53° N) 1994-1995 [J]. Journal of Atmospheric Chemistry,32(1): 83-99.
    Rodgers C D.2000. Inverse methods for atmospheric sounding:Theory and Practice[M]. Singapore:World Scientific Publishing Co,463-512.
    Rodgers C D, Connor B J.2003. Intercomparison of Remote Sounding Instruments[J]. J Geophys Res,108(3):4116-4122.
    Richter A, Burrows J P, Granier C, et al.2005. Increase in tropospheric nitrogen dioxide over China observed from space[J]. Nature,473:129-132.
    Sanders R W, Sloomon S, Smith J P, Perliski L, Miller H L, Mount G H, Keys J G, Schmeltekopf A L.1993. Visible and near-ultraviolet spectroscopy at McMurdo Station, Antarctica: Observations of OCIO from April to October 1991[J]. Journal of Geophysical Research,98(4): 7219-7228.
    Smith J P, Solomon S.1990. Atmospheric NO3:Sunrise disappearance and the stratospheric profile[J]. Journal of Geophysical Research,95(9):13819-13827.
    Smith J P, Solomon S, Sanders R, Miller H, Perliski J, et al.1993. Atmospheric NO3:Vertical Profiles at Middle and Polar Latitudes at Sunrise. Journal of Geophysical Research,98(5): 8983-8989.
    Solomon S, Schmeltekopf A L, Sanders R W.1987a. On the interpretation of zenith sky absorption measurements[J]. Journal of Geophysical Research,92(7):8311-8319.
    Solomon S, Mount G H, Sanders R W, Schmeltekopf A L.I987b. Visible spectroscopy at McMurdo Station, Antarctica to Observations of OCIO[J]. Journal of Geophysical Research, 92(7):8329-8338.
    Seinfeld J H, Pandis S N.2006. Atmospheric Chemistry and Physics:From Air Pollution to Climate Change[M].2nd ed. New Jersey:John Wiley & Sons Inc,312-319.
    Sinreich R, Friess U, Wagner T, Platt U.2005. Multi axis differential optical absorption spectroscopy (MAX-DOAS) of gas and aerosol distributions[J]. Faraday Discussions,130: 153-164.
    Sinreich R, Merten A, Molina L, et al.2012. Parameterizing radiative transfer to convert MAX-DOAS dSCDs into near-surface box averaged mixing ratios and vertical profiles [J]. Atmos Meas Tech Discuss,5:7641-7673.
    Takashima H, Irie H, Kanaya Y et al.2010. Enhanced NO2 at Okinawa Island, Japan caused by rapid air-mass transport from China as observed by MAX-DOAS [J]. Atmospheric Environment, 45(15):2593-2601.
    Volkamer R.1996. Absorption von Sauerstoff im Herzberg I System, und Anwendungen auf die Aromatenmessungen am European Photo Reactor[D]:[PhD], Germany:Univ. Of Heidelberg, Germany,33-41.
    Vandaele A C, Hermans C, Simon P C, et al.1998. Measurements of the NO2 absorption cross-section from 42000 cm'1 to 10000 cm-1 (238-1000 nm) at 220K and 294K[J]. Journal of Quantitative Spectroscopy & Radiative Transfer,59(3-5):171-184.
    Vigouroux C, Hendrick F, et al.2009. Ground-based FTIR and MAX-DOAS observations of formaldehyde at Reunion Island and comparisons with satellite and model data[J], Atmos Chem Phys,9:9523-9544.
    Vlemmix T, Piters A J M, Berkhout A J C, et al.2011. Potential and limitations of the MAX-DOAS method to retrieve the vertical distribution of tropospheric nitrogen dioxide [J]. Atmospheric Measurement Techniques Discussions,4:4013-4072.
    Vlemmix T, Piters A J M, Stammes P, et al.2010. Retrieval of tropospheric NO2 using the MAX-DOAS method combined with relative intensity measurements for aerosol correction[J]. Atmospheric Measurement Techniques Discussions,3:2317-2366.
    Wagner T.1999 Satellite Observations of Atomospheric Halogen Oxides[D]:[PhD]. Germany: IUP Heidelberg,74-92.
    Wagner T, Dix B, Friedeburg C V, et al.2000a. MAX-DOAS O4 measurements:A new technique to derive information on atmospheric aerosols—Principles and information content[J]. J Geophys Res,109:D22205.
    Wagner T, Otten C, Pfeilsticker K, et al.2000b, DOAS moonlight observation of atmospheric NO3 in the Arctic winter[J]. Geophys Res Lett,27(21):3441-3444.
    Wagner T, Chance K, Frieb U et al.2001. Correction of the Ring effect and I0-effect for DOAS observations of scattered sunlight[C]. Proc. of the 1st DOAS Workshop:1-13.
    Wagner T, Friedeburg C V, Wenig M, et al.2002. UV-visible observations of atmospheric O4 absorptions using direct moonlight and zenith-scattered sunlight for clear-sky and cloudy sky conditions[J]. J Geophys Res,107(20):4424.
    Wagner T, Burrows J P, Deutschmann T, et al.2007. Comparison of Box-Air-Mass-Factors and Radiances for Multiple-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) Geometries calculated from different UV/visible Radiative Transfer Models[J]. Atmospheric Chemistry and Physics,7(7):1809-1833.
    Wagner T, Deutschmann T, Platt U.2009. Determination of aerosol properties from MAXDOAS observations of the Ring effect[J]. Atmos Meas Tech,2:495-512.
    Weaver A, Solomon S, Sanders R W, et al. Atmospheric NO3 5 Off-axis measurements at sunrise: Estimates of tropospheric NO3 at 40°[J]. Journal of Geophysical Research,101(13): 18605-18612.
    Wittrock F, Mueller R, Richter A, et al.2000. Measurements of iodine monoxide(IO) above Spitsbergen[J]. Geophysical Research Letters,27(10):1471-1474.
    Zieger P, Weingartner E, Henzing J, et al.2011. Comparison of ambient aerosol extinction coefficients obtained from in-situ, MAX-DOAS and LIDAR measurements at Cabauw[J]. Atmospheric Chemistry and Physics,11:2603-2624.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700