用户名: 密码: 验证码:
太阳能选择性吸收涂层光谱发射率测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源危机和环境污染问题的凸显,新能源利用技术受到世界各国的重视,尤以太阳能热发电技术倍受青睐。在太阳能热发电领域,太阳能集热管是太阳能-热能转换的核心部件,集热管涂层的光谱发射率是决定太阳能吸收效率的基础技术指标,是决定太阳能热发电系统效率的关键因素。光谱发射率测量技术对优化涂层结构设计和提高涂层制备工艺具有重要的科学价值,对推动太阳能热发电技术发展、解决能源危机和环境污染具有深远的社会意义。
     针对发射率假设模型在集热管涂层原位多光谱发射率测量中存在的问题,解决多层膜系涂层的发射率模型问题,实现涂层发射率多光谱原位测量是发射率测量领域亟待解决的重要问题之一。针对尚无统一参考反射标准的现状,解决反射法测量对参考反射标准的依赖问题,实现无参考反射标准的光谱发射率量值传递具有重要的理论意义,是本文研究的另一重要问题。模拟涂层的高真空工作环境,解决积分球反射计在红外光谱测量领域的应用难题,研制高真空、宽光谱的太阳能选择性吸收涂层光谱发射率测量系统是本文要解决的关键技术问题。针对上述问题,开展本文的研究工作,主要研究内容如下:
     (1)集热管涂层发射率的原位多光谱测量方法研究。针对集热管涂层的多层膜结构,分析金属的电磁波穿透深度及反射特性,研究吸收膜光学常数与金属掺杂体积数的依赖关系、吸收膜厚度对复合膜系反射率的影响规律,建立基于膜结构参数的金属-陶瓷涂层发射率模型。建立光谱辐射亮度测量值与发射率模型计算值之间的约束方程,推导基于自适应模拟退火算法的发射率模型参数求解方法,实现涂层发射率的原位测量。基于傅里叶光谱仪的光谱辐射亮度测量值,与现有的两种发射率假设模型相比,基于膜系结构参数模型的涂层多光谱发射率测量值与能量法测量值的一致性更好。
     (2)积分球反射法的发射率量值传递方法研究。针对涂层试样常温发射率的测量难题,解决积分球反射法对参考反射标准的依赖问题,分析有限立体角的辐射功率分布规律,推导探测器表面与试样的入射辐照面所张立体角的函数关系,以探测器表面所张立体角内辐射功率的测量电压值对试样入射功率进行标定。推导截面积与探测器表面积相等的积分球球冠的球面度函数,建立试样反射辐射功率的推导方法。标定测量电压值与光谱发射率量值之间的传递系数,建立光谱发射率的量值传递模型。
     (3)研制太阳能选择性吸收涂层光谱发射率测量系统。建立10-3Pa的高真空测量环境,解决高温发射率测量的涂层氧化问题;研制玻璃-镀铝的红外光谱高反射积分球,解决积分球反射计在红外宽光谱发射率测量的应用难题;研究多级重叠谱线的消除方法,解决谱线重叠对发射率测量的干扰问题;研究动态赋值的加热方法,解决高真空环境下加热超调温度的控制难题。建立300-900K、0.4-10μm的高真空、宽光谱发射率测量系统。
     (4)利用太阳能选择性吸收涂层光谱发射率测量系统,标定了积分球反射法发射率量值传递模型的传递系数。高、低发射率材料的发射率测量实验表明,发射率的量值传递值与文献值具有一致性;选择性吸收涂层试样的发射率测量实验表明,Mo-SiO2涂层试样的光谱发射率测量曲线与文献数据曲线一致。分析测量系统的不确定度,估计了发射率测量结果的不确定度为0.029。
The solar thermal power technology has been paid more attention by countriesall over the world with the energy crisis and environmental pollution. In the solarpower generation, selective absorbing coatings are the key components of thesolar-thermal energy conversion. Spectral radiance characteristic of the coatings isthe underlying technology indicator to determine the absorption efficiency and keyfator influencing on the efficiency of the solar thermal power generation system.Emissivity measurements have an important scientific value for coatings to enhancethe absorption of solar energy and reduce its thermal radiation losses at hightemperature by improving the design and preparation of coatings, and a far-reachingsignificance for solving the problem of energy crisis and environmental pollution bypromoting the development of solar thermal power generation technology.
     The multi-spectral emissivity measurement method based on the assumingmodel has its limitations for in-situ measurement. It is important to solve theproblem of emissivity model for multilayer materials in order to achieve in-situemissivity measurement of collector coatings. Without the uniform referencestandard, emissivity measurement technology based on integrating spherereflectometer is impossible to solve problems arised from the emssivity quantitytransmission. It has an important theoretical significance to achieve the emissivityquantity transmission without the utilization of reference standard. For the oxidationof remarkable selectivity coatings and significant change of its spectral emissivity, itis the key technology problem solved in this paper to develop the spectral emissivitymeasurement system for solar selective absorbing coating. According to theproblems above, the main research contents are as follows:
     An in-situ multi-spectral emissivity measurement method of collector tubecoatings is proposed. For the multi-layer structure of coatings, electromagnetic wavepenetration depth and reflective characteristics of metal films are analysised. Therelations between optical constants of absorbing film and metal-doped volumenumber, and the influence of the absorption film thickness on the reflectivity of thecomposite membrane are studied. The emissivity model of metal-ceramic coatingfilm structure parameters is established. The method to achieve emissivity modelparameters in adaptive simulated annealing is proposed with the constraint equationsbetween measurement values of spectral radiance and calculated values withemissivity model. Using the spectral radiance values measured by the fouriertransform infrared spectrometer, the consistency of values measured by multi-spectral emissivity measurement method based on the structural parametersmodel of coatings and values measured by energy method is better than two existingassume models.
     A new quantity transmission method of spectral emissivity measurement basedon integrating sphere reflectometer is proposed. Based on the radiation powercalibration, the incident radiation power of the sample is derived by a function of themeasured voltage of detector and solid angle relationship formula between theprojection area of the sample and the sensitive area of detector. The reflectedradiation power of the sample is derived by a function of the measured outputvoltage of integrating sphere and steradian formula of its output hole. Thetransimissin model of spectral emissivity is established by determining the transfercoefficient between measured voltages and spectral emissivities.
     A spectral emissivity measurement system for the solar selective absorbingcoating is developed. The high vacuum equipment with10-3Pa is developed to avoidthe oxidation of coatings being measured at high temperature. A silica glassintegrating sphere vacuum-plated with Al on its internal surface is developed tosolve the spectral emissivity measurement problems in the infared region. Thedifficult problem of temperature overshooting control in the heating process underhigh vacuum is solved with dynamic heating algorithm of target temperature value.The emissivity measurement system in the range0.4-10μm and in the temperaturefrom300K to over900K is built.
     Based on the emissivity measurement system for the solar selective absorbingcoating, the transfer coefficient between measured voltages and spectral emissivitiesis calibrated. Measurement experiments of the high and low emissivity materialshow that the transfered values of emssivity is consistent with literature values. Theemissivity of the Mo-SiO2coating sample is measured, its measurement curve isconsistent with literature data. The uncertainty is analyzed and estimated emissivitymeasurement standard uncertainty is0.029.
引文
[1] Crabtree G W, Lewis N S. Solar energy conversion[J]. Physics Today,2007,60(3):37-42.
    [2] Kalogirou S A. Solar thermal collectors and applications[J]. Progress in energyand combustion science,2004,30(3):231-295.
    [3] Reynolds P. Spectral emissivity of99.7%aluminium between200and540℃[J]. British Journal of Applied Physics,1961,12(3):111-114.
    [4] Del Campo L, Pérez-Sáez R B, Esquisabel X, et al. New experimental devicefor infrared spectral directional emissivity measurements in a controlledenvironment[J]. Review of scientific instruments,2006,77(11):113111.
    [5] Fu Q, Lu C, Liu J. Selective coating of single wall carbon nanotubes with thinSiO2layer[J]. Nano Letters,2002,2(4):329-332.
    [6] McDonald G E. Spectral reflectance properties of black chrome for use as asolar selective coating[J]. Solar Energy,1975,17(2):119-122.
    [7] Shen Q, Kobayashi J, Diguna L J, et al. Effect of ZnS coating on thephotovoltaic properties of CdSe quantum dot-sensitized solar cells[J]. Journalof Applied Physics,2008,103(8):084304.
    [8] Zhang Q-C, Shen Y. High performance W-AlN cermet solar coatings designedby modelling calculations and deposited by DC magnetron sputtering[J]. Solarenergy materials and solar cells,2004,81(1):25-37.
    [9] McDonald G. A preliminary study of a solar selective coating system using ablack cobalt oxide for high temperature solar collectors[J]. Thin Solid Films,1980,72(1):83-88.
    [10] Wolfe J D, Belkind A I, Laird R E. Durable low-emissivity solar control thinfilm coating[M]. Google Patents.1994:27-33.
    [11] Lampert C M, Washburn J. Microstructure of a black chrome solar selectiveabsorber[J]. Solar Energy Materials,1979(1-2):81-92.
    [12] Hong H, Jin H-G, Ji J, et al. Solar thermal power cycle with integration ofmethanol decomposition and middle-temperature solar thermal energy[J].Solar Energy,2005,78(1):49-58.
    [13] Odeh S, Behnia M, Morrison G. Performance evaluation of solar thermalelectric generation systems[J]. Energy Conversion and Management,2003,44(15):2425-2443.
    [14] Singh N, Kaushik S, Misra R. Exergetic analysis of a solar thermal powersystem[J]. Renewable energy,2000,19(1):135-143.
    [15] Winter C-J, Sizmann R L, Vant-Hull L L. Solar power plants[M]. SpringerNew York,1991:37-43.
    [16] Sharma A, Sharma S, Buddhi D. Accelerated thermal cycle test of acetamide,stearic acid and paraffin wax for solar thermal latent heat storageapplications[J]. Energy Conversion and Management,2002,43(14):1923-1930.
    [17] Johnson F S. The Solar Constant[J]. Journal of Atmospheric Sciences,1954,11(6):432-439.
    [18]李立明.太阳能选择性吸收涂层的研究进展[J].粉末冶金材料科学与工程,2009,14(1):7-10.
    [19] Bird R E, Riordan C. Simple solar spectral model for direct and diffuseirradiance on horizontal and tilted planes at the earth's surface for cloudlessatmospheres[J]. Journal of Climate and Applied Meteorology,1986,25(1):87-97.
    [20] Thirugnanasambandam M, Iniyan S, Goic R. A review of solar thermaltechnologies[J]. Renewable and sustainable energy reviews,2010,14(1):312-322.
    [21] Ibos L, Marchetti M, Boudenne A, et al. Infrared emissivity measurementdevice: principle and applications[J]. Measurement science and technology,2006,17(11):2950.
    [22] Kaschnitz E, Pottlacher G, J ger H. A new microsecond pulse-heating systemto investigate thermophysical properties of solid and liquid metals[J].International journal of thermophysics,1992,13(4):699-710.
    [23] Pottlacher G, Kaschnitz E, J ger H. Investigations of thermophysicalproperties of liquid metals with a rapid resistive heating technique[J]. Journalof non-crystalline solids,1993,156(1):374-378.
    [24] Didoukh V, Seifter A, Pottlacher G, et al. Thermophysical Properties of W–ReAlloys Above the Melting Region[J]. International journal of thermophysics,1998,19(3):969-981.
    [25]王青伟,萧鹏,郭斌.脉冲加热方法铌热物性参数的动态测量[J].哈尔滨工业大学学报,2010,42(1):87-91.
    [26] Cezairliyan A. A dynamic technique for measurements of thermophysicalproperties at high temperatures[J]. International journal of thermophysics,1984,5(2):177-193.
    [27] Righini F, Roberts R B, Rosso A. Measurement of thermophysical propertiesby a pulse-heating method: Niobium in the range1000–2500K[J].International journal of thermophysics,1985,6(6):681-693.
    [28]范毅,李成伟,褚载祥.脉冲加热材料热物性多光谱动态测量装置的研制[J].红外与毫米波学报,2002,21(3):218-220.
    [29] Masuda H, Sasaki S, Kou H, et al. An improved transient calorimetrictechnique for measuring the total hemispherical emittance of nonconductingmaterials (emittance evaluation of glass sheets)[J]. International journal ofthermophysics,2003,24(1):259-276.
    [30] Hameury J, Hay B, Filtz J. Measurement of total hemispherical emissivityusing a calorimetric technique[J]. International journal of thermophysics,2007,28(5):1607-1620.
    [31] Griffiths P R, Hirsche B L, Manning C J. Ultra-rapid-scanning Fouriertransform infrared spectrometry[J]. Vibrational Spectroscopy,1999,19(1):165-176.
    [32] Oertel H, Bauer W. Facility for the measurement of spectral emissivities ofbright metals in the temperature range200-1200℃[J]. High TemperaturesHigh Pressures,1998,30(5):531-536.
    [33] Rozenbaum O, Meneses D, Auger Y, et al. A spectroscopic method to measurethe spectral emissivity of semi-transparent materials up to high temperature[J].Review of scientific instruments,1999,70(10):4020-4025.
    [34] Markham J R, Solomon P, Best P. An FT-IR based instrument for measuringspectral emittance of material at high temperature[J]. Review of scientificinstruments,1990,61(12):3700-3708.
    [35] Ishii J, Ono A. Uncertainty estimation for emissivity measurements near roomtemperature with a Fourier transform spectrometer[J]. Measurement scienceand technology,2001,12(12):2103-2112.
    [36] Hanssen L M, Mekhontsev S N, Khromchenko V B. Infrared spectralemissivity characterization facility at NIST; proceedings of the Defense andSecurity, F,2004[C]. Proc. SPIE5405,2004.
    [37] Monte C, Gutschwager B, Morozova S, et al. Radiation thermometry andemissivity measurements under vacuum at the PTB[J]. International journal ofthermophysics,2009,30(1):203-219.
    [38] Cao G, Weber S, Martin S, et al. Spectral emissivity measurements ofcandidate materials for very high temperature reactors[J]. Nuclear Engineeringand Design,2012,251(1):78-83.
    [39] vantner M, Vacíková P, Honner M. Non-contact charge temperaturemeasurement on industrial continuous furnaces and steel charge emissivityanalysis[J]. Infrared physics&technology,2013,61:20-26.
    [40]愈伦鹏,王文革.固体材料表面光谱发射率测量[J].导弹与航天运载技术,1997,3:58-62.
    [41]王新北,萧鹏,戴景民.基于傅里叶红外光谱仪的光谱发射率测量装置的研制[J].红外与毫米波学报,2007,26(2):149-152.
    [42]原遵东,张俊祺,赵军,等.材料光谱发射率精密测量装置[J].仪器仪表学报,2008,29(8):1659-1665.
    [43]宋扬,王宗伟,戴景民.前置反射式发射率在线测量装置的研制[J].哈尔滨理工大学学报,2009,14(3):126-130.
    [44]刘玉芳,胡壮丽,施德恒.一种测量发射率的实验装置[J].光学学报,2010,30(3):772-776.
    [45]王宗伟,戴景民,何小瓦,等.超高温FTIR光谱发射率测量系统的线性度分析[J].光谱学与光谱分析,2012,32(2):313-316.
    [46] Wang Z, Wang Y, Liu Y, et al. Microstructure and infrared emissivity propertyof coating containing TiO2formed on titanium alloy by microarc oxidation[J].Current Applied Physics,2011,11(6):1405-1409.
    [47]孙晓刚,王雪峰,戴景民,等.基于多光谱法的目标真温及光谱发射率自动识别算法研究[J].西安交通大学学报,2001,35(12):1275-1278.
    [48]戴景民,卢小东,褚载祥.具有同步数据采集系统的多点多波长高温计的研制[J].红外与毫米波学报,2000,19(1):62-66.
    [49]孙晓刚,李成伟,戴景民,等.多光谱辐射测温理论综述[J].计量学报,2002,23(4):248-250.
    [50]戴景民.辐射测温的发展现状与展望[J].自动化技术与应用,2004,23(3):1-7.
    [51]孙晓刚,原桂彬,戴景民.基于遗传神经网络的多光谱辐射测温法[J].光谱学与光谱分析,2007,27(2):213-216.
    [52] Wen C-D, Mudawar I. Emissivity characteristics of roughened aluminum alloysurfaces and assessment of multispectral radiation thermometry (MRT)emissivity models[J]. International Journal of Heat and Mass Transfer,2004,47(17):3591-3605.
    [53] Wen C-D, Mudawar I. Mathematical determination of emissivity and surfacetemperature of aluminum alloys using multispectral radiation thermometry[J].International communications in heat and mass transfer,2006,33(9):1063-1070.
    [54] Wen C-D, Mudawar I. Modeling the effects of surface roughness on theemissivity of aluminum alloys[J]. International Journal of Heat and MassTransfer,2006,49(23):4279-4289.
    [55] Wen C-D. Study of Steel Emissivity Characteristics and Application ofMultispectral Radiation Thermometry (MRT)[J]. Journal of materialsengineering and performance,2011,20(2):289-297.
    [56] Wen-ge W. Survey of Radiation Thermometry Technology[J]. Journal ofAstronautic Metrology and Measurement,2005,25(4):20-32.
    [57] Mazikowski A, Chrzanowski K. Non-contact multiband method for emissivitymeasurement[J]. Infrared physics&technology,2003,44(2):91-99.
    [58] Coates P. Multi-wavelength pyrometry[J]. Metrologia,1981,17(3):103-109.
    [59] Clausen S, Morgenstjerne A, Rathmann O. Measurement of surfacetemperature and emissivity by a multitemperature method forFourier-transform infrared spectrometers[J]. Applied Optics,1996,35(28):5683-5691.
    [60] Yang C, Yu Y, Zhao D, et al. Study on modeling of multispectral emissivityand optimization algorithm[J]. Neural Networks, IEEE Transactions on,2006,17(1):238-242.
    [61] Wen C-D. Investigation of steel emissivity behaviors: Examination ofMultispectral Radiation Thermometry (MRT) emissivity models[J].International Journal of Heat and Mass Transfer,2010,53(9):2035-2043.
    [62]戴景民.多光谱辐射测温技术研究[D].1995:66-69.
    [63]戴景民,石义国,康为民,等.烧蚀材料的多光谱真温测量法[J].宇航学报,1996,17(3):25-30.
    [64]孙晓刚,胡晓光,戴景民, et al.可同时测量真温及光谱发射率的8波长高温计[J].光学技术,2001,27(4):305-308.
    [65]萧鹏,孙晓刚,戴景民.金属防热瓦温度及发射率的测量[J].清华大学学报,2007,47(7):1249-1252.
    [66]辛成运,程晓舫,张忠政.基于有限立体角测量的多光谱测温[J].光谱学与光谱分析,2013,33(2):316-319.
    [67] Sabuga W, Todtenhaupt R. Effect of roughness on the emissivity of theprecious metals silver, gold, palladium, platinum, rhodium, and iridium[J].High Temperatures High Pressures(UK),2001,33(3):261-269.
    [68]戴景民,杨茂华,褚载祥.多波长辐射测温仪及其应用[J].红外与毫米波学报,1995,14(6):461-466.
    [69]许勤堂,顾宗义,金璐.温控涂层发射率的快速检测装[J].宇航学报,1982,3:100-106.
    [70] Pottlacher G, Seifter A. Microsecond Laser Polarimetry for EmissivityMeasurements on Liquid Metals at High Temperatures—Application toTantalum[J]. International journal of thermophysics,2002,23(5):1281-1291.
    [71] Heath D, Wei Z, Fowler W, et al. Comparison of spectral radiance calibrationsof SBUV-2satellite ozone monitoring instruments using integrating sphere andflat-plate diffuser techniques[J]. Metrologia,1993,30(4):259-264.
    [72] Gatebe C K, Butler J J, Cooper J W, et al. Characterization of errors in the useof integrating-sphere systems in the calibration of scanning radiometers[J].Applied Optics,2007,46(31):7640-7651.
    [73] Shaw P-S, Li Z. On the fluorescence from integrating spheres[J]. AppliedOptics,2008,47(21):3962-3967.
    [74] Gindele K, K hl M, Mast M. Spectral reflectance measurements using anintegrating sphere in the infrared[J]. Applied Optics,1985,24(12):1757-1760.
    [75] Sheffer D, Oppenheim U P, Clement D, et al. Absolute Reflectometer for the0.8-2.5-μm Region[J]. Applied Optics,1987,26(3):583-586.
    [76] Hanssen L M, Kaplan S. Infrared diffuse reflectance instrumentation andstandards at NIST[J]. Analytica Chimica Acta,1999,380(2):289-302.
    [77] Prokhorov A V, Mekhontsev S N, Hanssen L M. Radiative properties ofblackbody calibration sources: recent advances in computer modeling[J].International journal of thermophysics,2007,28(6):2128-2144.
    [78] Hanssen L. Integrating-sphere system and method for absolute measurement oftransmittance, reflectance, and absorptance of specular samples[J]. AppliedOptics,2001,40(19):3196-3204.
    [79] Seifter A, Boboridis K, Obst A. Emissivity measurements on metallic surfaceswith various degrees of roughness: A comparison of laser polarimetry andintegrating sphere reflectometry[J]. International journal of thermophysics,2004,25(2):547-560.
    [80] Makino T, Wakabayashi H. A New Spectrophotometer System for MeasuringHemispherical Reflectance and Normal Emittance of Real SurfacesSimultaneously[J]. International journal of thermophysics,2010,31(11-12):2283-2294.
    [81]谢品华,魏庆农,刘建国,等.用双向反射法测量漆层的红外发射率[J].激光与红外,1999,29(1):43-45.
    [82]丁黎梅,段利民.物质发射率的间接测量法[J].红外技术,21(5):33-35.
    [83] Craighead H, Howard R, Tennant D. Textured thin‐film Si solar selectiveabsorbers using reactive ion etching[J]. Applied Physics Letters,1980,37(7):653-655.
    [84] Eisenhammer T. Quasicrystal films: numerical optimization as a solar selectiveabsorber[J]. Thin Solid Films,1995,270(1):1-5.
    [85] McDonald G. A preliminary study of a solar selective coating system using ablack cobalt oxide for high temperature solar collectors[J].1980,72(1):83-88.
    [86] Gao T, Jelle B P, Gustavsen A. Core–shell-typed Ag-SiO2nanoparticles assolar selective coating materials[J]. Journal of Nanoparticle Research,2013,15(1):1-9.
    [87] Kokoropoulos P, Salam E, Daniels F. Selective radiation coatings. Preparationand high temperature stability[J]. Solar Energy,1959,3(4):19-23.
    [88] Brunotte A, Lazarov M P, Sizmann R. Calorimetric measurements of the totalhemispherical emittance of selective surfaces at high temperatures [C]. Proc.SPIE1727,1992:149-160.
    [89] Arancibia-Bulnes C, Estrada C, Ruiz-Suárez J. Solar absorptance and thermalemittance of cermets with large particles[J]. Journal of Physics D: AppliedPhysics,2000,33(19):2489.
    [90] Kalu A L, urca-Vuk A, Orel B, et al. Structural and IR spectroscopic analysisof sol-gel processed CuFeMnO4spinel and CuFeMnO4/silica films for solarabsorbers[J]. Journal of sol-gel science and technology,2001,20(1):61-83.
    [91]葛新石,彭云.测定太阳能吸收率的绝对法积分球[J].太阳能学报,1980,1(1):67-78.
    [92]何梓年.太阳吸收率与热发射率[J].太阳能,1981,4:11-17.
    [93]赵玉文,黄涵芬,张宝英.阳极氧化电解着色铝选择性吸收涂层的光学性能研究[J].太阳能学报,1985,6(2):135-142.
    [94]王建强,沈辉,汪保卫. O/N比率对磁控溅射制备TiNxOy薄膜光学性质的影响[J].纳米材料与技术应用进展——第四届全国纳米材料会议论文集,2005:404-409.
    [95] Garnett J M. Colours in metal glasses, in metallic films, and in metallicsolutions II[J]. Philosophical Transactions of the Royal Society of LondonSeries A, Containing Papers of a Mathematical or Physical Character,1906,205:237-288.
    [96] Aspnes D. Optical properties of thin films[J]. Thin Solid Films,1982,89(3):249-262.
    [97] Verly P G. Modified needle method with simultaneous thickness andrefractive-index refinement for the synthesis of inhomogeneous and multilayeroptical thin films[J]. Applied Optics,2001,40(31):5718-5725.
    [98] Yu-Dong F, Zhi-Min W, Ya-Li M, et al. Thin film design for advancedthermochromic smart radiator devices[J]. Chinese Physics,2007,16(6):1704-1709.
    [99] Dutta J, Promnimit S. Synthesis and Electrical Characterization of MultilayerThin Films Designed by Layer-by-Layer Self Assembly of Nanoparticles[J].Journal of Nano Research,2010,11:1-6.
    [100]文命清,隋贤栋,黄肖容,等.金属膜的研究进展[J].材料导报,2002,16(1):25-27.
    [101]薛建华,韩丹,杨秀文,等.薄金属膜光学常数的椭偏法测定[J].河北科技大学学报,2003,24(2):77-80.
    [102]李艳敏,李孟超,刘芳芳,等.基于SPR的类铬型金属膜厚在线纳米测量研究[J].光学技术,2012,38(1):9-13.
    [103]沈伟东,刘旭,叶辉,等.确定薄膜厚度和光学常数的一种新方法[J].光学学报,2004,24(7):885-889.
    [104]Chen W, Chen J. Use of surface plasma waves for determination of thethickness and optical constants of thin metallic films[J]. JOSA,1981,71(2):189-191.
    [105]Manifacier J, Gasiot J, Fillard J. A simple method for the determination of theoptical constants n, k and the thickness of a weakly absorbing thin film[J].Journal of Physics E: Scientific Instruments,1976,9(11):1002.
    [106]樊叔维,张兴志.全局优化算法自适应模拟退火遗传算法的研究[J].光学精密工程,1999,7(4):16-21.
    [107]彭勇刚,罗小平,韦巍.一种新的模糊自适应模拟退火遗传算法[J].控制与决策,2009,24(6):843-848.
    [108]刘鹏,刘玉玲,余飞鸿.基于自适应模拟退火算法的薄膜特性参数计算方法研究[J].光学仪器,2005,27(4):73-77.
    [109]孙善高,孙百生,谷玉海.自动光栅单色仪嵌入式控制系统的研制[J].中国仪器仪表,2005,11(1):58-62.
    [110]Jacquez J A, Kuppenheim H F. Theory of the integrating sphere[J]. JOSA,1955,45(6):460-466.
    [111]张建奇,方小平.红外物理[M].西安电子科技大学出版社,2004:219-222.
    [112]Skogestad S. Simple analytic rules for model reduction and PID controllertuning[J]. Journal of process control,2003,13(4):291-309.
    [113]张彤.基于PID的温度控制器研究[J].通信电源技术,2012,29(4):42-43.
    [114]薛阳,汪莎,陈磊.过热蒸汽温度控制中RBF神经网络整定PID控制的应用[J].上海电力学院学报,2012,28(5):466-468.
    [115]吕俊亚.一种基于单片机的温度控制系统设计与实现[J].计算机仿真,2012,29(7):230-233.
    [116]Ang K H, Chong G, Li Y. PID control system analysis, design, andtechnology[J]. Control Systems Technology, IEEE Transactions on,2005,13(4):559-576.
    [117]Ganugula R. Self-tuning of PID controller for dc motor using MRAC[J].International Journal of Engineering Research and Applications (IJERA),2012,1(special):1-4.
    [118]Drobny V, Pulfrey L. Properties of reactively-sputtered copper oxide thinfilms[J]. Thin Solid Films,1979,61(1):89-98.
    [119]Teodorescu G. Radiative emissivity of metals and oxidized metals at hightemperature[D]. Alabama:Auburn University,2007:50-54.
    [120]Burkholder F, Kutscher C F. Heat loss testing of schott's2008PTR70parabolic trough receiver[M]. National Renewable Energy Laboratory,2009:16-20.
    [121]丁振良.误差理论与数据处理[M].哈尔滨工业大学出版社,1992:93-99

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700