用户名: 密码: 验证码:
风机叶片打磨机器人的控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风能作为一种清洁可再生能源,逐渐受到人们的青睐和重视。叶片是风力发电机的重要部件之一,常因受到砂害、盐雾侵蚀以及空气中昆虫和脏物的吸附而破坏其表面质量,从而影响风机的运行成本和安全。对叶片进行打磨再加工是恢复其表面质量的常用方法,而叶片尺寸巨大,且打磨过程中会产生大量的短纤维和有害粉尘,所以维修成本较高。随着风电装机容量的爆发式增长,相当一部分叶片已经进入了维修期,且陆续进入维修期的叶片将越来越多,如何及时有效地对风机叶片进行打磨维修,将成为该领域急需解决的一项关键技术。应用机器人进行风机叶片的修复打磨具有加工质量高、加工成本低、有效降低作业强度和粉尘危害的特点,是把作业人员从高污染、大劳动强度的作业环境中解放出来的有效方法。
     由于风机叶片尺寸巨大,风机叶片打磨机器人需采用移动机械手结构。移动机械手由移动平台和机械手组成,是集行走和操作功能于一体的复杂机器人系统,有较好的操作灵活性和工作空间的广阔性。本研究提出:在移动机械手的末端安装上打磨工具,构成用于风机叶片修复的移动式打磨机器人。移动机械手结构复杂,存在非完整约束,机械手和平台之间存在动力学耦合等,这些因素的存在给移动机械手的控制带来了挑战。此外,打磨机器人在作业过程中,与外界环境存在着力的交互,打磨操作力的有效控制也是机器人控制系统的核心问题之一。
     针对风机叶片修复打磨的特点和要求,提出了将装有打磨工具的移动机械手作为风机叶片修复的移动式打磨机器人,在以下方面开展了研究工作。
     分析和确定了移动式风机叶片打磨机器人的结构方案,建立了打磨机器人的分层递阶控制结构,确定机器人自由运动状态和末端接触作业状态下的控制策略。
     对移动平台、机械手和打磨机器人系统进行了运动学建模,并分析了打磨机器人系统的可控性和冗余特性。建立了机械手的SimMechanics机构模型,通过仿真分析,获得了机器人的工作空间。分析了典型叶片的截面尺寸数据,获得了叶片的尺寸范围,通过对比分析,验证了所设计的机器人机构的合理性。进行了打磨机器人末端执行器的轨迹规划。
     利用拉格朗日功能平衡法建立了打磨机器人的动力学方程,并将该方程分解为移动平台和机械手两个子系统的动力学方程,同时推导出了子系统间动力学耦合项的表达式;建立了机器人系统的SimMechanics模型,通过仿真分析,获得了动力学耦合对各子系统的影响规律,为控制系统的研究奠定了基础。
     研究了打磨机器人的控制策略。建立了基于反步控制的移动平台速度控制器,在此基础上设计了实现移动平台动力学稳定收敛的控制器。设计了机械手系统的比例微分加前馈补偿的控制器。针对移动平台和机械手之间存在的动力学耦合,各控制器中均对此进行了补偿,以提高控制效果。
     分析比较了主动柔顺控制中的力/位混合控制和阻抗控制两种策略,确定了阻抗控制作为打磨机器人操作力的控制策略。建立了打磨机器人的阻抗控制器,并进行了仿真分析,为叶片打磨过程中操作力的控制奠定了理论基础。
     建立了叶片打磨作业系统坐标系,推导了叶片相对机器人基坐标系的位姿描述和机械手关节速度描述;分析了磨削力大小的影响因素;建立了叶片打磨过程的控制模型。基于Solidworks、ADAMS和Matlab/Simulink,建立了打磨机器人作业过程的协同仿真平台,进行了打磨作业的仿真实验,结果验证了所设计的打磨机器人及其控制系统的可行性。
As clean reproducible energy, wind energy has winned more and more good graces. As one of the important parts of wind turbine, blade is always damaged by the sand disaster and the erosion of salt spray, besides, the adsorption of insects and dirt in the air always destroy the surface finish, and the operation cost and safety are affected. The common method of recover the surface finish is grinding and reprocessing. The blade is so huge that its maintenance cost is very high, much short fiber and harmful dust is produced during the grinding process. With the outbreak increase of wind energy installed capacity recent years, quite a few blades has entered maintenance period. As more and more blades require the maintenance, how to provide the timely and effective grinding maintenance has been a key technique. The application of robot in blade repairing has many advantages, such as high quality and low cost, reduce the harm of dust and the work intensity, so it is an effective method of liberating worker from the high pollution and intense work.
     As we know that the blade is always very huge, so mobile manipulator should be adopted as the grinding robot. The mobile manipulator composed of mobile platform and manipulator, is a complex robotic system with the function of movement and operation. It has the advantages of operation flexibility and space broadness. A mobile grinding robot is presented here, with a grinding tool fixed on the end of mobile manipulator. The complex structure and non-holonomic constrain of the mobile manipulator, and the existing dynamic coupling between the platform and manipulator, all these factors bring a great challenge to the control of the robotic system. Besides, there exists interactive force between the manipulator and external environment during the working process, so the effective control of operation force is one of the core problems.
     A mobile manipulator equipped with grinding tool is used for wind turbine blade maintain mobile robot, as recoording to the characteristic and requirement of blade grinding. The following research work has been carried out.
     The structure scheme of the mobile wind turbine blade grinding robot is analyzed and determined. The hierarchical control structure of grinding robot is built. And the control strategy of free movement and end-point contact manipulation is determined.
     Kinematics modeling of mobile platform, manipulator and grinding robot has been finished. The controllability of the robot system has been analyzed, and the motion constraint equation has been derived. The workspace has been gained by building the mechanism model of the manipulator with SimMechanics. The dimension data of typical section has been analyzed to learn the size range of the blade, the rationality of robot mechanism has been verified by comparative analysis.
     The kinetic equation of the grinding robot is built by Lagrange energy balance method, and the kinetic equations of platform and manipulator are derived from the robot's, based on which the dynamic coupling is derived. The rule of how the dynamic coupling affects the subsystems is derived by the simulation based on the built SimMechanics model. The finished work affords the base for control system research.
     The control strategy has been studied. A backstepping velocity controller has been built for the mobile platform, and a dynamic controller with stable convergence is built with considering the velocity controller. A proportion differential plus feedforward compensation controller is built for the manipulator. Compensation is considered for the dynamic coupling between the platform and manipulator, so as to improve the control effect.
     Force/position hybrid control and impedance control have been compared, and impedance control is accepted as the operation force control strategy. An impedance controller has been built, and simulation is carried out, the finished work establishs foundation for the operation force control of blade grinding process.
     Coordinate system of blade grinding system is built. Pose and joint velocity description relativing to base coordinate have been derived. The influencing factors of grinding force have been analysised. The control model of the the blade grinding process has been built. The simulation platform based on Solidworks, ADAMS and Matlab/Simulink has been established, and the simulation experiment has been carried out, the feasibility of the grinding robot and its control system has been verified by the experimental results.
引文
[1]Tony Burton, David Sharpe, Nick Jenkins, Ervin Bossanyi. Wind energy handbook. John wiley&Sons, LTD., England,2001:1-30P
    [2]盖晓玲,田德,王海宽.风力发电机叶片技术的发展概况与趋势.农村牧区机械化.2006,29(4):53-56页
    [3]张晓明.风力发电复合材料叶片的现状与未来.纤维复合材料.2006,60(2):60-63页
    [4]潘艺,周鹏展,王进.风力发电机叶片技术发展概述.湖南工业大学学报.2007,21(3):48-51页
    [5]M. Jureczko, M. Pawlak, A. Mezyk. Optimization of wind turbine blade. Journal of Materials Processing Technology,2005,167:463-471P
    [6]方江晓.短期风速和风电功率预测模型的研究.北京交通大学硕士论文,2011:1页
    [7]施跃文,高辉,陈钟.国外特大型风力发电机组技术综述.电网技术.2008,32(18):87-91页
    [8]蒋莉萍.2008年国内外风电发展情况综述.电力技术经济.2009,21(2):12-15页
    [9]周燕莉.风力发电的现状与发展趋势.甘肃科技.2008,24(3):9-11页
    [10]M. Jureczko, M. Pawlak, A. Mezyk. Optimization of wind turbine blade. Journal of Materials Processing Technology,2005,167:463-471P
    [11]罗益锋.世界风能及其叶片材料发展概况与趋势.高科技纤维与应用.2003,28(5):1-7页
    [12]杨春燕,翟欢,熊杰,等.复合材料叶片RTM成型缺陷研究.中国新技术新产品.2011,18:4页
    [13]钟方国,赵鸿汉.风力发电发展现状及复合材料在风力发电上的应用.纤维复合材料.2006(3):48-54页
    [14]刘立群,吴玉萍,刘军峰,等.复合材料在风力机叶片上的应用.能源技术.2011,31(6):331-337页
    [15]http://research.uoit.ca/assets/Default/documents/Research-Excellence-Award/Research%20Excellence%20Presentation%20-%20Nokleby.pdf
    [16]Yamamoto Y,Yun X P. Coordination Locomotion and Manipulation of a Mobile Manipulator. Proceedings of the31st conference on Decision and Control,1992:2643-2648P
    [17]http://science.nasa.gov/science-news/science-at-nasa/2001/astl8apr_1/
    [18]http://baike.baidu.com/view/472015.htm
    [19]http://baike.baidu.com/view/888271.htm
    [20]http://www.care-o-bot.de/english/Care-O-bot_2.php
    [21]http://www.unibw.de/fir/robots/hermes//
    [22]李佳宁,易建强,赵冬斌,等.一种全方位移动机械手的体系结构设计与分析.机器人.2004,26(3):272-276页
    [23]蒋林.全方位移动操作机器人及其运动规划与导航研究.哈尔滨工业大学博士学位论文.2008:20页
    [24]崔根群.用于危险品检测的移动机械手的运动性能分析及其控制.河北工业大学博士学位论文.2007:78页
    [25]曾建军.排爆机器人遥操作性能研究.上海交通大学博士学位论文.2010:13页
    [26]董文杰,徐文立.不确定非完整移动机械手的鲁棒控制.清华大学学报.2002,42(9):1261-1264页
    [27]吴玉香.滑模控制理论及在移动机械臂中的应用.华南理工大学博士学位论文.2006:1页
    [28]陈强,桂仲成.无轨道式水轮机叶片坑内修复机器人.东方电气评论.2007,21(4):1-4页
    [29]金晓强,季林红,王子羲,等.水轮机叶片坑内修复机器人修磨方式研究.机械设计与制造.2008(1):186-188页
    [30]谢哲东.研抛大型自由曲面的微小机器人开发与加工作业研究.吉林大学博士学位论文.2008:21页
    [31]Yamamoto Y, Yun X P. Coordinated Obstacle Avoidance of a Mobile Manipulator. Proceedings of IEEE International Conference on Robotics and Automation,1995:2255-2260P
    [32]Seraji H. Motion Control of mobile manipulators. Proc. of IEEE/RSJ Int. Conf on Intelligent Robots and Systems, Yokohama, Jpana.1993,3:2056-2063P
    [33]Tchon K, Jakubiak J, Muazynski R. Regular jacobian motion planning algorithms for mobile manipulators. IF AC.2002
    [34]Carriker W.F., KhoslaP.K., Krogh B.H. PhatPlanning for mboile manipulators for multiple task execution. IEEE Trans. On Robotics and Automation.1991,7(3):403-408P
    [35]Foul on G, Fourquet J Y, Renaud M. Planning point-to-point paths for nonhonolomic mobile manipulators. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. Victoria, Canada,1998:374-379P
    [36]Tnnae H.G., Kyriakopoulos K.J. Nonholonomic motion planning for mobile manipulators. Proc.of IEEE Int. Conf. on Robotics and Automation, San Francisco, CA, USA.2000,2:1233-1238P
    [37]张硕生,余达太.轮式移动机械手的点—点运动规划方法.北京科技大学学报.2001,23(1):81-84页
    [38]张硕生,余达太.轮式移动机械手的多点运动规划方法.北京科技大学学报.2001,23(2):177-180页
    [39]AkiraM., SeijiF., Ymamaoto M. Trajectory Planning of mboile manipulator with end-Eeffetor's specified Path. proc. Of IEEE/RSJ Int. Conf. on Inielligent Robots and Systems, Muai, Hwaaii, USA.2001,4:2264-2269P
    [40]Tanner H G, Kyriakopoulos K J. Nonholonomic motion planning for mobile manipulators. Proceedings of IEEE International Conference on Robotics and Automation. San Francisco,2000:1233-1238P
    [41]HunagQ., TnaieK., Sugnao S. Coordinated motion Planning for a mobile manipulator considering stabiliy and manipulation. International Jomual of Robotics Reseacrh.2000,19(8):732-742P
    [42]Tan J D, Xi N. Unified model approach for planning and control of mobile manipulators. Proceedings of IEEE International Conference on Robotics and Automation. Arlington,2001:1-8P
    [43]M.W Chen and A.M.S. Zalaza. Dynamic modeling and genetic based trajectoy generator for nonholonomic mobile manipulators. Control Engineering Paretice.1997,5(1):39-48P
    [44]Seiji F, Yamamoto M., Akira M.. Trajectory Planning of mobile manipulator with stability considerations. Proc.of IEEE Int.Conf. on Robotics and Automation, TaiPei, Taiwan.2003,3:3403-3408P
    [45]Yuxiang WU, YuemingHu. Kinematics, dynamics and motion Planning of wheeled mobile manipulators. Pro.of Int. Conf. on CSIMTA'04. Chebrourg, Fnarce.2004:221-226P
    [46]B. Bayle, J.-Y. Fourquet, F. Lamiraux, and M. Renaud,"Kinematic control of wheeled mobile manipulators," in Proc.2002IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,2002:1572-1577P
    [47]B. Bayle, J.-Y. Fourquet, and M. Renaud,"Manipulability of wheeled mobile manipulators:Application to motion generation," Int. Journal of Robotics Research,2003,22:565-581P
    [48]A. De Luca, G. Oriolo, and P. Robuffo Giordano,"Kinematic modeling and redundancy resolution for nonholonomic mobile manipulators," in Proc.2006IEEE Int. Conf. on Robotics and Automation,2006:1867-1873P
    [49]B. Bayle, J.-Y. Fourquet, and M. Renaud,"Kinematic modelling of wheeled mobile manipulators," in Proc.2003IEEE Int. Conf. on Robotics and Automation,2003:69-74P
    [50]P. Robuffo Giordano, M. Fuchs, A. Albu-Schaffer, and G. Hirzinger,"On the kinematic modeling and control of a mobile platform equipped with steering wheels and movable legs," in Proc.2009IEEE Int. Conf. on Robotics and Automation,2009:4080-4087P
    [51]C. Alfaro, M. I. Ribeiro, P. Lima."Smooth Local Path Planning for a Mobile Manipulator". Proceedings of Robotica2004,4th Portuguese Robotics Festival, Protugal,2004:127-134P
    [52]Yugang Liu and Guangjun Liu,"Kinematics and Interaction Analysis for Tracked Mobile Manipulators", Proceedings of the2007IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego,2007:267-272P
    [53]YU-XIANG WU, YING FENG, YUE-MING HU. DYNAMICAL ADAPTIVE SLIDING MODE OUTPUT TRACKING CONTROL OF MOBILE MANIPULATORS. Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou,2005:731-736P
    [54]史先鹏.模块化移动机械臂运动规划与控制.华东理工大学博士学位论文.2010:19页
    [55]Liu K, Lewis FL. Decentralized continuous robust controller for mobile robots. Proc. of IEEE Int. Conf. on Robotics and Automation, Cincinnati, OH.1990,3:1822-1827P
    [56]Wiens G J. Effects of dynamics coupling in mobile robotic systemA. Proceedings of World Conference on Robotic Systems.1989:43-57P
    [57]Sheng L, Goldenberg A A. Robust damping control of mobile manipulators. IEEE Trans. on Systems, Man and Cybernetics, PartB.2002,32(1):126-132P
    [58]ShengL, Goldenberg A A. Neural-network control of mobile manipulators. IEEE Trans. on Neural Networks.2001,12(5):1121-1133P
    [59]Chung Jae H., Velinsky Steven A., Hess R.A. Interaction control of a redundant mboile manipulator. International Journal of Robotics Research,1998,17(12):1302-1309P
    [60]Lee H K, Takubo T, Arai H, etal. Control of mobile manipulators for power assist systems. Journal of Robotic Systems,2000,17(9):469-477P
    [61]J. H. Chung, B. J. Yi, and W. K. Kim,"The dynamic modeling and analysis for an omnidirectional mobile robot with three castor wheels," in Proc. IEEE Int. Conf. Robot. Autom.,2003:521-527P
    [62]Jae Young Lew and Suk-Min Moon. A simple active damping control for compliant base manipulators, IEEE Trans. On Mechatronics.2001,6(3):305-310P
    [63]Tan J.D., Xi N. Unified model approach for Planning and control of mobile manipulators. Pore. of IEEE Int. Conf. on Robotics and Automation, Seoul, Koera.2001,3:3145-3152P
    [64]Yamamoto Y., Yun X.P. Effect of the dynamic interaction on coordinated control of mobile manipulators. IEEE Trans. On Robotics and Automation.1996,12(5):816-824P
    [65]Seraji H. Motion Control of mobile manipulators. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems.1993:2056-2063P
    [66]Tan J D, Xi N. Unified model approach for planning and control of mobile manipulators. Proceedings of IEEE International Conference on Robotics and Automation.2001:1-8P
    [67]Ogren P., Egerstedt M, HuX. Reactive mobile manipulation using dynamic trajectory Tracking. Proc. of IEEE Int. Conf. on Robotics and Automation, SanFrancisco, CA.2000,4:3473-3478P
    [68]Dong WJ, Xu Y S, Wang Q. On tracking control of mobile manipulators. Proceedings of IEEE International Conference on Robotics and Automation.2000:3455-3460P
    [69]Jagannathan S. Discrete-time fuzzy logic control of a mobile robot with an onboard manipulator. International Journal of Systems Science,1997,28(12):1195-1209P
    [70]K. Tchon and J. Jakubiak,"Extended Jacobian motion planning algorithm for mobile manipulators", Robot Control2003, ed. by I. Duleba and J. Z. Sasiadek. Oxford, UK Elsevier, Oxford UK,2004,1:147-152P
    [71]M. Janiak and K. Tchon,"Extended Jacobian inverse kinematics algorithm with control constraints for mobile manipulators", Proc.13th IEEE/IF AC Int. Conf. on Methods and Models in Automation and Robotics, Szczecin, PL,2007:1017-1022P
    [72]M. Janiak,"Inverse kinematics algorithm based on the Jacobian pseudoinverse for mobile manipulators", Progress in Robotics:Robot control, perception and communication, WKL Publishers, Warsaw,2006:193-202P
    [73]K. Tchon,"Optimal extended Jacobian inverse kinematics algorithms for robotic manipulators", IEEE Trans. Robotics,2008,28(6):1440-1445P
    [74]Yamamoto Y, Yun X P. Unified analysis on mobility and manipulability of mobile manipulators. Proceedings of IEEE International Conference on Robotics and Automation.1999:1200-1206P
    [75]R. Muszynski and J. Jakubiak,"On predictive approach to inverse kinematics of mobile manipulators", Proc.2007IEEE Int. Conf. Control Automat., Guangzhou, China,2007:2423-2428P
    [76]Kang S, Komoriya K, Yokoi K, etal. Reduced inertial effect in damping-based posture control of mobile manipulator. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems.2001:488-493P
    [77]Tan J D, Xi N. Unified model approach for planning and control of mobile manipulators. Proceedings of IEEE International Conference on Robotics and Automation.2001:1-8P
    [78]G. White and M. Bhatt,"Experimental Evaluation of Dynamic Redundancy Resolution in a Nonholonomic Wheeled Mobile Manipulator", IEEE/ASME Transactions on Mechatronics,2009:349-357P
    [79]Yoneda. K. Tumble stability criterion of integrated locomotion and manipulation. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems.1996:870-876P
    [80]Dubowsky S. Planning mobile manipulator motions considering vehicle dynamic stability constrains. Proceedings of IEEE International Conference on Robotics and Automation.1989:1271-1276P
    [81]M. Fruchard, P. Morin, and C. Samson,"A framework for the controlof nonholonomic mobile manipulators," Int. Journal of Robotics Research,2006,25(8):745-780P
    [82]Sugano S. Stability control for mobile manipulator using potential method. Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems.1994:839-846P
    [83]Chalongrath Pholsiri, Dinesh Rabindran, Mitch Pryor, etal. Extended Generalized Impedance Control for Redundant Manipulators. Proceedings of the42nd IEEE Conference on Decision and Control.2003:3331-3336P
    [84]Jingguo Wang, Yangmin Li. Analysis on the Interaction between the Nonholonomic Mobile Modular Robot and the Environment. Proceedings of the2009IEEE International Conference on Robotics and Biomimetics.2009:86-91P
    [85]YUmeda and D.Nakamura. Hybrid Position/force conrtol of a mobile manipulator based on cooperative task sharing. Proc. Of IEEE Int. Symposium on Industrial Elecrtonics. Bled, Slovenia,1999,1:139-144P
    [86]Z. J. Li, S. S. Ge, and A. G. Ming,"Adaptive robust motion/force control of holonomic-constrained nonholonomic mobile manipulators," IEEE Trans. Syst., Man, Cybern. B, Cybern.,2007,37(3):607-616P
    [87]J.H.Chung. Interactive force control of an opeartor-mboile manipulator coordination system J. of Robotic systems.2002,19(4):189-198P
    [88]B. J. Thibodeau, P. Deegan, and R. Grupen "Static analysis of contact forces with a mobile manipulator", Robotics and Automation,2006. ICRA2006. Proceedings2006IEEE International Conference, Orlando, Florida,2006,5:4007-4012P
    [89]Yamamoto Y., Yun X.P. Coordinated task execution of a human and a mobile manipulator. Proc. Of IEEE Int. Conf. on Robotics and Automation, Minneapolis, Minnesota.1996,2:1006-1011P
    [90]C. P. Tang, R. M. Bhatt, M. Abou-Samah, and V. N. Krovi,"Screwtheoretic analysis framework for payload transport by mobile manipulator collectives," IEEE/ASME Trans. Mechatronics,2006,11(2):169-178P
    [91]Y. Kume, Y. Hirata,&K. Kosuge,"Handing of an object by multiple mobile manipulators in coordination without using force/torque sensor," in Proc, JSME Conf. Robotics&Mechatronics, Akita, Japan,2007,5:10-12P
    [92]黄国权,杨显惠.采用逆向工程技术对叶轮建模的研究.机械设计与制造.2010,2(2):227-229页
    [93]董宁,平雪良,陶宇,等.逆向工程技术在叶片生产制造中的应用研究.机床与液压.2011,39(15):92-94页
    [94]http://article.cechina.cn/10/0706/10/20100706104056.htm
    [95]石璟.面向叶片加工的数控砂带抛磨系统的研究.江南大学硕士学位论文.2009,19页
    [96]周洁,何卫,胡旭晓,等.四轴联动变刀触点自由曲面磨削算法研究.机械科学与技术.2011,30(6):951-956页
    [97]王庆霞,李友清.水力发电机组转轮异形圆弧曲面铲磨工具.金属加工(冷加工)2011,12:38-39页
    [98]王建宏,周晟宇.穿行于加工领域的工业机器人.金属加工(热加工).2011,14:16-17页
    [99]宋慧欣.工业机器人的中国力量.自动化博览.2010,3:58-59页
    [100]王宪伦,王勇,薛云娜.机器人切除毛刺技术的进展.航空制造技术.2007,4:96-99页
    [101]李研彪,计时鸣,李秀娜,等.一种新型正交5-DOF并联气囊抛光机床的运动传递性能分析.机械传动.2010,34(2):14-16页
    [102]徐刚.吸盘式研抛机器人的研究.吉林大学硕士学位论文.2011,1-2页
    [103]张新予,匡以顺.多自由度墙体喷涂机器人机构设计.兵工自动化.2009,28(6):38-39页
    [104]周方明,周涛,郭勇,等.机架双机器人焊接工作站计算机仿真技术研究.电焊机.2008,38(12):11-15页
    [105]Xiang Zhang, Bernd Kuhelenkotter, Klaus Kneupner. An efficient method for solving the Signorini problem in the simulation of free-form surfaces produced by belt grindingJ. International Journal of Machine Tools&Manufacture2005,45:641-648P
    [106]胡跃明.非线性控制系统理论与应用.北京:国防工业出版社,2002:27-36页
    [107]Alberto Isidori著.王奔,庄圣贤译.非线性控制系统(第三版).北京:电子工业出版社,2005:4-54页
    [108]闫庆辉.障碍环境下非完整轮式移动操作机运动规划方法研究.哈尔滨工业大学工学博士学位论文.2007:21-22页
    [109]马海涛.非完整轮式移动机器人的运动控制.中国科学技术大学博士学位论文.2009:13-19页
    [110]徐慧娜,闫继宏,于振中,等.超冗余全方位移动操作臂的逆运动学求解.哈尔滨工业大学学报.2010,42(9):1408-1412页
    [111]王飞.小型风力发电机叶片设计与制造工艺研究.广西大学硕士学位论文.2007:8页
    [112]杨新彦.小型水平轴风力发电机叶片设计研究.广西大学硕士学位论文.2006:5页
    [113]董玉红.欠驱动力合作机器人的驱动及控制技术研究.哈尔滨工程大学博士学位论文.2006:26-31页
    [114]李韶华,杨绍普,李皓玉.汽车-路面-路基系统动态响应及参数分析.北京交通大学学报.2010,34(4):127-131页
    [115]朱孙科,任杰,马大为,等.非线性耦合油气悬架系统动力学建模与仿真研究.机械设计.2010,27(9):43-47页
    [116]孙洁.机器人毛刺修理作业的阻抗控制研究.山东大学硕士学位论文.2006:27页
    [117]王斌锐,金英连,许宏,等.机器人仿生膝关节的计算力矩加比例微分反馈控制.机械工程学报.2001,23(1):179-183页
    [118]T L Chug, T T Nguyen, S B Kim, M S Oh. Application of robust control to mobile manipulator. International Symposium on Electrical&Electronic Engineering. New York:IEEE Press,2005,16(2):221-230P
    [119]高庆吉.非完整移动机械手的鲁棒控制及仿真研究.系统仿真学报.2007,19(21):4976-4980页
    [120]Ching-Chih Tsai, Meng-Bi Cheng, Shui-Chun Lin. ROBUST TRACKING CONTROL FOR A WHEELED MOBILE MANIPULATOR WITH DUAL ARMS USING HYBRID SLIDING-MODE NEURAL NETWORK. Asian Journal of Control,2007,9(4):377-389P
    [121]YU-XIANG WU, YING FENG, YUE-MING HU DYNAMICAL ADAPTIVE SLIDING MODE OUTPUT TRACKING CONTROL OF MOBILE MANIPULATORS Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou,2005:7316P
    [122]胡跃明.变结构控制理论与应用.北京:科学出版社,2003:22-26页
    [123]王红旗,王庆林.移动机械手鲁棒自适应模糊控制.控制与决策.2010,25(3):461-465页
    [124]张庭,李慨,戴士杰,等.基于动力学系统移动焊接机器人焊缝跟踪控制.系统仿真学报.2009,21(21):6803-6806页
    [125]KANAYAMA Y, KIMURA Y, MIYAZAKI F, et al. A stable tracking control method for an autonomous mobile robot. Proceedings of1990IEEE International Conference on Robotics and Automation. Cincinnati, OH, USA:IEEE Press,1990,1:384-389P
    [126]叶涛,侯增广,谭民,等.移动机器人的滑模轨迹跟踪控制.高技术通讯.2004,(11):7174页
    [127]POURBOGHRAT F, KARLSSON M P. Adaptive control of dynamic mobile robots with nonholonomic constraints. Computers and Electrical Engineering,2002,28(4):241-253P
    [128]Koditsehek D E. Natural motion for robot arms. Proc IEEE Conf Decision Control.Las Vedas,1984:733-735P
    [129]吴丽燕.考虑摩擦外扰情况下不确定性机器人的力/位置自适应控制.燕山大学硕士论文.2002:19页
    [130]Hogan N. Impedance control:an approach to manipulation:Part Ⅰ-Ⅲ. ASME Journal of Dynamic System, Measurement, and Control,1985,107(1):1224P
    [131]王宪伦.不确定环境下机器人柔顺控制及可视化仿真的研究.山东大学博士学位论文.2006:4页
    [132]S. P. Chan and H. C. Liaw,"Generalized Impedance Control of Robot for Assembly Tasks Requiring Compliant Manipulation", IEEE Transactionson Industrial Electronics,1996,43(4):453-461P
    [133]Chalongrath Pholsiri, Dinesh Rabindran, Mitch Pry or, Extended Generalized Impedance Control for Redundant Manipulators Proceedings of the42nd IEEE Conference on Decision and Control Maui, Hawaii USA, December,2003:3331-3336P
    [134]Khatib, O.,"A Unified Approach for Motion and Force Control of Robot Manipulators: The operational Space Formulation," IEEE Journal of Robotics and Automation,1987,3:43-53P
    [135]熊有伦.机器人技术基础.武汉:华中科技大学出版社,1996:78-81页
    [136]杨威.加工自由曲面的机器人砂带研磨系统研究.吉林大学硕士学位论文.2007:28页
    [137]Li Lichun, Fu Jizai. A Study of Grinding Force Mathematical Model. Annals of the CIRP,1980,29(1):245-249P
    [138]倪小波,金德闻,张济川.粗糙表面的机器人磨削实验与分析.中国机械工程.2004,15(22):1986-1989页
    [139]詹建明.机器人研磨自由曲面时的作业环境与柔顺控制研究.吉林大学博士学位论文.2002:77页
    [140]SurdilovicD. Robust Robot Compliant Motion Control Using Intelligent Adaptive Impedance Approach. Proceedings of IEEE International Conference on Robotics and Automation.2001:2128-2133P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700