用户名: 密码: 验证码:
黄土高原子午岭植被恢复下土壤有机碳—结构—水分环境演变特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植被恢复是黄土高原地区生态环境建设的根本措施,土壤环境的演变是评价其生态效应的重要内容之一。为探明黄土高原植被恢复过程与土壤理化特征演变的互动机理,本研究以黄土高原较为完整的次生植被演替序列中主要植被群落阶段的典型样地为研究对象,通过野外定点监测和室内分析相结合的研究手段,分析了不同演替阶段土壤剖面的全土和团聚体有机碳及其组分的含量与分布特征,初步阐明了植被演替过程中土壤有机碳积累及其分布规律和土壤固碳潜力;通过定量分析土壤结构的变化特征,揭示了土壤结构的形成、稳定及有机碳转移过程和机理;进一步结合多年土壤水分特征测定及水分环境动态过程的监测,明确了黄土高原次生植被恢复下土壤有机碳、结构特征及土壤水分环境特征三者的相互关系,取得以下主要结果:
     1、植被恢复明显提高了土壤总有机碳及其组分含量和土壤固碳能力。
     植被恢复提高了0-100cm土层土壤总有机碳、活性有机碳、惰性有机碳含量,并随群落演替显著增加至草本群落阶段后趋于相对稳定,在顶级群落阶段分别达到5.92g kg~(-1)、1.48g kg~(-1)和4.44g kg~(-1)。植被恢复对土壤总有机碳、活性有机碳、惰性有机碳含量提高的作用深度分别为70cm、70cm和40cm,对0-5cm土层的调控作用最为明显,顶级群落阶段土壤总有机碳、活性有机碳、惰性有机碳含量达到最高,分别为26.76g kg~(-1)、8.92g kg~(-1)和17.83g kg~(-1)。
     随植被群落演替,土壤有机碳密度均同步明显增加,在顶级群落阶段达到最大,分别为6.43kg m~(-2)、1.57kg m~(-2)和4.86kg m~(-2)。植被演替提高有机碳密度的作用主要表现在0-40cm土层。以植被恢复到顶级群落阶段估算,则坡耕地、弃耕地阶段、草本群落阶段、灌丛群落阶段和先锋乔木群落的现实固碳潜力分别为2.44kg m~(-2)、1.55kg m~(-2)、0.03kg m~(-2)、0.18kg m~(-2)和0.19kg m~(-2)。
     2、植被恢复促进了土壤团聚作用和结构稳定性的提高。
     随着植被群落演替,各土层的<0.25mm水稳性含量均表现出降低的规律,>1mm粒径团聚体含量显著增加,表明植被演替促进了土壤团聚作用。在空间上,土壤由底层至表层,随植被群落演替,土壤团聚作用表现为一个时空交互的团粒传递动态过程,即微团聚体(<0.25mm粒径)逐渐减少,经中间粒径团聚体(0.25-2mm)阶段,>2mm粒径团聚体含量逐步显著提高,最终促进大团聚体(>5mm粒径)的形成。
     植被群落演替极显著的提高了土壤团聚体稳定性,土壤总有机碳含量与>0.25mm水稳性团聚体含量、团聚体平均重量直径和团聚体分形维数均呈极显著的对数函数关系。弃耕地及其后群落阶段的0-5cm土层、草本群落及其后的群落阶段的0-10cm土层STOC含量达到15g kg~(-1),其土壤结构趋于稳定。
     3、植被恢复改变了团聚体有机碳及组分含量的分布,增强了团聚体对有机碳及组分的物理保护作用。
     植被演替对团聚体总有机碳、活性有机碳和惰性有机碳在植被群落间、土层间和团聚体粒径间的分布有着极显著的影响。各粒径的团聚体总有机碳、活性有机碳和惰性有机碳主要分布在表层0-20cm,分别占0-100cm土层的75.2%-81.8%、84.6%-90.0%和72.2%-80.6%,其中0-5cm土层最高,40cm以下土层差异不大。各演替阶段的土壤剖面中,团聚体总有机碳及其组分的含量最低值均在<0.25mm粒径,0-10cm土层中最大值在0.5-0.25mm粒径;10cm以下土层,团聚体总有机碳和惰性有机碳含量最大值主要在>2mm粒径,而活性有机碳则主要在>5mm粒径。
     各粒级的团聚体总有机碳、团聚体活性有机碳及团聚体惰性有机碳的贡献率在时间上(群落演替)和空间上(土壤底层至表层)均表现出相似的变化规律:小粒径(<0.25mm粒径)的贡献率逐渐降低,大粒径(>2mm粒径)逐渐增加,植被演替至草本群落阶段,其贡献率增加幅度较大,到顶级群落阶段进一步提高。这表明了团聚体有机碳的物理保护作用表现为:从小粒径(<0.25mm粒径)有机碳贡献减少,经中间粒径(2-0.25mm),最终促进大粒径贡献率(>5mm粒径)逐渐增加的动态传递,这表明植被演替使团聚体总有机碳、团聚体活性有机碳和团聚体惰性有机碳由小粒径团聚体已转移至大粒径团聚中,顶级群落演替的这一作用更加明显,促使更多的有机碳通过土壤团聚作用而得到保护。
     4、植被恢复明显优化土壤孔隙特征、改善土壤水分特征因子。
     随植被群落演替,土壤剖面整体容重逐步降低,至顶级群落阶段最低,仅为1.16g cm-3,表层0-5cm降低更为明显。随植被群落演替,土壤剖面总孔隙度逐步增大,到顶级群落达到最大,其作用深度可达40cm。在20cm以上土层,土壤总孔隙度、土层土壤通气孔隙度和毛管孔隙度作用明显,土壤总孔隙度在0-5cm土层的先锋乔木群落和顶级群落最高,分别为79.67%和73.86%,土壤毛管孔隙度在顶级群落阶段最高达20%,土壤通气孔隙度在先锋乔木群落最高为43.57%。
     土壤持水性能随着植被演替逐渐增强,这一作用主要表现在0-40cm土层,其中在0-5cm土层更为明显,顶级群落阶段土壤持水性能最强。土壤剖面整体供水能力随植被演替逐步增强,土壤供水性能在0-20cm土层有明显提高。植被恢复提高了剖面整体土壤饱和导水率,这一作用随植被群落演替逐步加深至灌丛群落及其后阶段可达40cm,在0-10cm更为明显,顶级群落阶段的土壤饱和导水率最高,平均达138.0mm h~(-1)。
     应用CT(X-ray scanning coumputed-tomography)技术定量研究结果表明,植被恢复可显著地提高0-5cm土壤各大孔隙参数特征,并随植被群落演替而逐渐增强至顶级群落阶段达到最优;土壤有机质含量与各孔隙参数、土壤容重之间均有极显著的线性关系。因此,土壤有机质的积累可能是植被自然恢复过程中表层土壤孔隙特征改善和入渗性能提高的主要驱动力。
     5、植被恢复强化了土壤储水恢复功能、从而有效地改善了其土壤水分环境。
     对连续三年(丰水年-平水年-欠水年)的群落耗水量和降雨量平均值进行分析表明,草本群落耗水量(641.5mm)>灌丛群落(554.2mm)>先锋乔木群落(512.7mm)>顶级群落(502.7mm),除草本群落耗水量高于平均降雨量(612.2mm)外,随植被的进一步演替,群落耗水量降低并低于降雨量,到先锋乔木群落和顶级群落对降雨环境适应能力明显增强。
     连续三个生长季后,各植被群落的土壤储水恢复量表现为:顶级群落(244.9mm)>先锋乔木群落(201.6mm)>灌丛群落(97.7mm),而弃耕地群落和草本群落土壤储水量恢复为负值,表明植被群落演替过程中土壤储水量逐步恢复,到顶级群落阶段土壤水分环境明显改善。
     通过对土壤理化特性与土壤储水量变化的综合分析,认为土壤水分环境恢复与改善的主导因素为土壤有机质积累增加,土壤结构因子、水分特征因子的改善,尤其是>0.25mm水稳性团聚体含量和土壤持水性能对0-500cm土壤储水量的提高有明显的促进作用。
Vegetation restoration is the fundamental management to construct ecologicalenvironment in the Loess Plateau, while soil environmental evolution is one of the dominantcontent for ecological effective assessment. To clarify interaction mechanism betweenvegetation restoration process and soil properties, this thesis focuses on typical samples inmain communities of secondary vegetation succession in Loess Plateau. Based on fieldmonitoring and analysis in laboratory, the content and distribution characteristics of organiccarbon in soil profile and aggregate were studied at different stage of vegetation succession. Itprimary showed accumulation and distribution features of soil organic carbon, as well as itssequestration potential, in the process of vegetation succession. By quantitative analysis ofsoil structure, it revealed the soil structure formation, stability and organic carbon transferringprocess and mechanism. Furthermore, combined with monitoring soil moisture characteristicsand dynamic process of water environment, it clearly showed the relationship among soilorganic carbon, structure and moisture characteristics of secondary vegetation restoration inthe Loess Plateau. The main results are shown as following:
     1. Vegetation restoration promotes soil total organic carbon, components and itssequestration capacity
     The results showed that with vegetation succession soil total organic carbon, activeorganic carbon, and passive organic carbon content increased significant in0-100cm soillayer. This increasing trend didn’t disappear until herbaceous stage and in climax stage ofsuccession total organic carbon, active organic carbon, and passive organic carbon contentwere5.92kg~(-1)、1.48kg~(-1)and4.44kg~(-1), respectively. Vegetation restoration enhancing organiccarbon was quite different among its difference composition and we found that total organiccarbon and active organic carbon content promoted significant within70cm soil layer whilepassive organic carbon content increased only within40cm soil layer. However, organiccarbon content changed dramatically in0-5cm soil layer and total organic carbon, activeorganic carbon, passive organic carbon content reached the peak point in climax stage of succession,26.76g kg~(-1),8.92g kg~(-1)and17.83g kg~(-1), respectively.
     With the vegetation succession, carbon density raised obviously. At climax successionstage total organic carbon density was up to6.43kg m~(-2); active organic carbon density was1.57kg m~(-2)and passive organic carbon density was4.86kg m~(-2). And we calculated thatvegetation succession play an important role improving organic carbon density within0-40cm soil layer. It is estimated that from the beginning of vegetation restoration to climax stageof succession estimation, practical potential of carbon sequestration in slope farmland,abandoned arable land, herbaceous, shrub and pioneer tree community were2.44kg m~(-2),1.55kg m~(-2),0.03kg m~(-2),0.18kg m~(-2)and0.19kg m~(-2), respectively.
     2. Vegetation restoration improve soil aggregation effects and structural stability
     With vegetation community succession,<0.25mm water stable aggregate contentdecreased among different soil layer while>1mm soil aggregate content increased obviously.This represents that it is of beneficial to soil aggregation by vegetation succession. In spatialscale, from the subsoil to topsoil dynamic interaction transferring was represented among soilaggregate with community succession. The property was that micro-aggregate (<0.25mm size)descended gradually while more than2mm aggregate content ascended steadily. All of theseprocesses are good for formation of macro-aggregate.
     What’s more, vegetation succession improved the stability of soil aggregates. We foundthat there was great significant difference of logarithmic function between soil total organiccarbon content and water stable aggregate content(>0.25mm), mean weight diameter ofaggregates and fractal dimension of aggregates. Total organic carbon content was up to15gkg~(-1)in0-5cm soil layer after slope cropland and0-10cm soil layer of herbaceous community.And the soil structure tended to stable.
     3. Vegetation restoration changed the content and distribution of aggregates andorganic carbon, and promoted physical protection for soil organic carbon
     Vegetation succession has significant effect on distribution of soil total organic carbon,active organic carbon and passive organic carbon within vegetation communities, soil layersand aggregates. Most of total organic carbon, active organic carbon and passive organiccarbon distributed in0-20cm of topsoil and each of them accounted for75.2%-81.8%,84.6%-90.0%and72.2%-80.6%of0-100cm soil layer. Within different soil layer, especiallyin0-5cm soil layer, organic carbon content was higher than other layer and below40cmdepth of soil there was no obvious difference. Soil profile in different stages of succession, theminimum value of total organic carbon and its composition content existed in aggregateswhich diameter was <0.25mm. The maximum of organic carbon presented in0.5-0.25mmaggregates of0-10cm soil layer. Below10cm depth, however, the maximum value of soil total and passive organic carbon content was in aggregates which diameter are>2mm whileactive organic carbon almost was in>5mm aggregates.
     Contribution of total organic carbon, active organic carbon and passive organic carbonpresented similar features in temporal (community succession) and spatial (from subsoil totopsoil) scale. It revealed that diameter less than0.25mm aggregates contributed less andless but over than2mm diameter aggregates contributed more and more with the process ofsuccession. To be more specific, lager aggregates contributed most in herbaceous community.This indicates that physical protection of organic carbon in aggregates increased from smallparticle size (<0.25mm size), via intermediate size (2-0.25mm), and ultimately to largeparticle (>5mm). Therefore, this dynamic transferring process was good for protectionorganic carbon by soil aggregation.
     4. Vegetation restoration improved soil pore characteristics and soil moisture
     With the succession of vegetation communities, the whole bulk density of soil profilegradually decreased until the climax succession stage, which was only1.16g cm-3. And itwas clear that bulk density reduced rapidly in0-5cm depth of soil. By contrast, total porosityof soil profile increased steadily and was up to max value at the climax community, whichdepth was available to40cm. For the soil layer of0-20cm, soil total porosity, aerationporosity and capillary porosity ascended significantly, soil total porosity reached maximumvalue in the stages of the pioneer arbor forest and the climax community within0-5cm soillayer,79.67%and73.86%, respectively. To be more specific, soil capillary porosity was up to20%at the climate community stage, and soil aeration porosity in the pioneer arbor forestreached up to43.57%.
     The soil water retention enhanced gradually during the succession of vegetationcommunities, which was mainly at0-40cm soil layer. This trend was more obviously in0-5cm soil layer and the strongest performance of water retention appeared in climax communitystage. The whole water supply capacity of soil profile also improved gradually withvegetation succession, and this was vividly shown at0-20cm soil layer.
     Vegetation restoration improved saturated hydraulic conductivity of soil profile, and thisfeature expanded to shrub community even to40cm depth of soil. It can be observed in0-10cm and in climax community stage soil saturated hydraulic conductivity was at thehighest point, up to138.0mm h-1.
     Using CT (X-ray scanning computed-tomography) method, we noticed that vegetationrestoration could significantly improve parameters characteristics of soil macrospore in0-5cm soil layer. This interaction enhanced gradually during the succession of vegetationcommunities. There was linear relationship between soil organic matter and each pore parameter and bulk density. Therefore, the main driving force for improvement of surface soilpore and infiltration characteristics is the accumulation of soil organic matter during theprocess of vegetation restoration.
     5. Vegetation restoration improved the soil water storage function and soil watermicroenvironment
     Based on continuous monitoring mean value of water consumption and precipitation forthree years(wet year-normal year-dry year), the results showed that water consumption wasas following: herb community (641.5mm)> thickets community (554.2mm)> pioneer arborcommunity (512.7mm)> climax community (502.7mm). Furthermore, we calculated that theaverage precipitation was612.2mm during the growth period and found that waterconsumption was lower than rainfall except for but herb community. In pioneer arborcommunity and the climax community, vegetation ability to adapt environment promotedobviously.
     After three continuous growing seasons, the volume of soil water recovery in allvegetation communities showed that: climax community (244.9mm)> pioneer arborcommunity (201.6mm)> thickets community (97.7mm). In abandoned land and herbcommunity, however, soil water recovery volume was negative. This means which soil waterenvironment obviously improved in the climax community stage.
     After comprehensive analysis of the relationship between soil properties and soil waterrecovery, we considered that soil organic matter accumulation,soil structure and watercharacteristics indexes improved were dominant factors for restoration and enhancing soilwater environment.>0.25mm of soil water stable aggregate content and soil water retentionhad significant promotion for improvement of soil water storage in0-500cm soil layer.
引文
安韶山,黄懿梅,李壁成,杨建国.2006.黄土丘陵区植被恢复中土壤团聚体演变及其与土壤性质的关系.土壤通报,37(1):45~50
    安韶山,张玄,张扬,郑粉莉.2007.黄土丘陵区植被恢复中不同粒级土壤团聚体有机碳分布特征.水土保持学报,21(6):109~113
    安韶山,张扬,郑粉莉.2008.黄土丘陵区土壤团聚体分形特征及其对植被恢复的响应.中国水土保持科学,6(2):66~70
    曾宪竞,蔡朵珍.1997.栽培沙打旺对沙荒地水肥状况影响的研究.中国农业大学学报,2(3):59~67
    常庆瑞,安韶山.1999.黄土高原恢复植被防止土地退化效益研究.土壤侵蚀与水土保持学报,5(4):6~9
    陈洪松,邵明安,王克林.2005.黄土区荒草地和裸地土壤水分的循环特征.应用生态学报,16(10):1853~1857
    陈庆强,沈承德,彭少麟,易惟熙,孙彦敏,李志安,姜漫涛.2002.华南亚热带山地土壤有机质更新特征及其影响因子.生态学报,22(9):1446~1454
    陈瑶,张科利,罗利芳,彭文英.2005.黄土坡耕地弃耕后土壤入渗变化规律及影响因素.泥沙研究,5:45~501
    陈志雄,汪仁真.1979.中国几种主要土壤的持水性质.土壤学报,16(3):277~281
    程积民,程杰,杨晓梅.2011.黄土高原草地植被与土壤固碳量研究.自然资源学报,26(3):401~411
    程积民,杜峰.2000.黄土高原半干旱区集流灌草立体配置与水分调控.草地学报,8(3):210~219
    程积民,万惠娥.2002.中国黄土高原植被建设与水土保持.北京:中国林业出版社
    戴全厚,刘国彬,薛萐,余娜,张超,兰雪.2008.不同植被恢复模式对黄土丘陵区土壤碳库及其管理指数的影响.水土保持研究,15(3):61~64
    单秀枝,魏由庆.1998.土壤有机质含量对土壤水动力学参数的影响.土壤学报,35(1):1~9
    丁文峰,丁登山.2002.黄土高原植被破坏前后土壤团粒结构分形特征.地理研究,21(6):1~7
    段文霞,朱波,卢静惠,刘锐,陈放.2007.人工柳杉林碳蓄积量及土壤性质的动态变化.应用与环境生物学报,13(6):777~781
    冯杰,郝振纯.2002. CT扫描确定土壤大孔隙分布.水科学进展,13(5):611~617
    巩杰,陈利顶,傅伯杰,李延梅,黄志霖,黄奕龙,彭鸿嘉.2004.黄土丘陵区小流域土地利用和植被恢复对土壤质量的影响.应用生态学报,15(12):2292~2296
    郭飞,徐绍辉,刘建立.2005.土壤图像孔隙轮廓线分形特征及其应用.农业工程学报,21(7):6~10
    郭曼,郑粉莉,安韶山,刘雨,安娟.2010.植被自然恢复过程中土壤有机碳密度与微生物量碳动态变化.水土保持学报,24(1):229~232
    韩仕峰,黄旭.1993.黄土高原的土壤水分利用与生态环境的关系.生态学杂志,12(1):25~28
    韩仕峰,李玉山.1990.黄土高原土壤水分资源特征.水土保持通报,10(1):36~43
    韩兴国,黄建辉,娄治平.1995.关键种概念在生物多样性保护中的意义与存在的问题.植物学通报,12(179):6~12
    侯庆春,韩蕊莲.2000.黄土高原植被建设中的有关问题.水土保持通报,20(2):53~56
    侯庆春,韩蕊莲,韩仕锋.1999.黄土高原人工林草地“土壤干层”问题初探.中国水土保持,(5):13~16
    侯庆春,韩蕊莲,李宏平.2000.关于黄土丘陵典型地区植被建设中有关问题的研究Ⅰ、土壤水分状况及植被建设区划.水土保持研究,20(2):102~110
    侯庆春,黄旭,韩仕峰,张孝忠.1991.黄土高原地区小老树成因及其改造途径的研究——Ⅱ土壤水分和养分状况及其与小老树生长的关系.水土保持学报,5(2):75~83
    侯喜禄,白岗栓.1996.黄土丘陵区湾塌地乔灌林土壤水分动态监测.水土保持研究,3(2):57~65
    胡克林,李保国,陈研.2006.表层土壤饱和导水率的空间变异对农田水分渗漏的影响.水利学报,37(10):1217~1223
    胡良军,邵明安.2002.黄土高原植被恢复的水分生态环境研究.应用生态学报,13(8):1045~1048
    华娟,赵世伟,张扬,马帅.2009a.云雾山不同草地群落土壤活性有机碳分布特征.草地学报,17(3):315~320
    华娟,赵世伟,张扬,马帅.2009b.云雾山草原区不同植被恢复阶段土壤团聚体活性有机碳分布特征.生态学报,29(9):4613~4619
    黄昌勇.2000.土壤学.中国农业出版社
    黄冠华,詹卫华.2002.土壤水分特性曲线的分形模拟.水科学进展,13(1):55~60
    贾松伟,贺秀斌,陈云明.2004.黄土丘陵区退耕撂荒对土壤有机碳的积累及其活性的影响.水土保持学报,18(3):78~80
    姜培坤.2005.不同林分下土壤活性有机碳库研究.林业科学,41(1):10~13
    姜培坤,周国模,钱新标.2004.侵蚀型红壤植被恢复后土壤养分含量与物理性质的变化.水土保持学报,18(1):12~14
    焦菊英,焦峰,温仲明.2006.黄土丘陵沟壑区不同恢复方式下植物群落的土壤水分和养分特征.植物营养与肥料学报,12(5):667~674
    雷志栋.1988.土壤水动力学.清华大学出版社
    李保国,胡克林.2002.农田土壤表层饱和导水率的条件模拟.水利学报,(2):36~40
    李开元,韩仕峰,李玉山,邵明安.1991.黄土丘陵区农田水分循环特征及土壤水分生态环境.中国科学院水利部西北水土保持研究所集刊(SPAC中水分运行与模拟研究专集),13:83~93
    李阳兵,杨霞,宋晓利,徐花,汪杨梅,王春致.2006.岩溶生态系统土壤非保护性有机碳含量研究.农业环境科学学报,25(2):402~406
    李映强,曾觉廷.1990.关于土壤通气孔隙概念及其测定方法的商榷.土壤通报,22(2):87~88
    李玉山.2001.黄土高原森林植被对陆地水循环影响的研究.自然资源学报,16(5):427~432
    李玉山.1983.土壤水库的功能和作用.水土保持通报,(5):27~30
    李裕元,邵明安,上官周平,樊军,王丽梅.2006.黄土高原北部紫花苜蓿草地退化过程与植被演替研究.草业学报,15(2):85~92
    李裕元,邵明安,郑纪勇,李秋芳.2007.黄土高原北部草地的恢复与重建对土壤有机碳的影响.生态学报,27(6):2279~2287
    梁向锋,赵世伟,华娟,张扬.2008a.子午岭林区典型植被下土壤结构及稳定性指标分析.水土保持通报,28(3):12~16
    梁向锋,赵世伟,张亚莉,赵勇钢,华娟,张扬.2008b.子午岭次生林区土壤持水力及其与土壤有机碳的关系.水土保持研究,15(3):15~19
    梁向锋,赵世伟,张扬,华娟.2009.子午岭植被恢复对土壤饱和导水率的影响.生态学报,29(2):636~642
    刘满强,胡锋,陈小云.2007.土壤有机碳稳定机制研究进展.生态学报,27(6):2642~2650
    刘梦云,常庆瑞,齐雁冰,孙宁.2010.黄土台塬不同土地利用土壤有机碳与颗粒有机碳.自然资源学报,25(2):218~226
    刘娜娜,赵世伟,王恒俊.2006.黄土丘陵沟壑区人工柠条林土壤水分物理性质变化研究.水土保持通报,26(3):15~17
    刘娜娜,赵世伟,杨永辉,王恒俊,赵永刚,姬秀云,曹丽花.2007.云雾山封育草原对表土持水性的影响.草地学报,14(4):338~342
    刘霞,王丽,张光灿,刘信儒,梁华.2005.鲁中石质山地不同林分类型土壤结构特征.水土保持学报,19(6):49~52
    刘毅,李世清,李生秀.2008.黄土高原不同生境土壤结构体分形维数研究.西北农林科技大学学报(自然科学版),36(1):86~92
    刘振花,陈立新,王琳琳.2009.红松阔叶混交林不同演替阶段土壤活性有机碳的研究.土壤通报,40(5):1098~1103
    骆东奇,侯春霞,魏朝富,谢德体,朱波.2003.旱地紫色土团聚体特征的指标比较.山地学报,21(3):348~353
    吕春花.2009.黄土高原子午岭地区土壤质量对植被恢复过程的响应.[博士学位论文].西北农林科技大学
    马履一,翟明普,王勇.1999.京西山地棕壤和淋溶褐土饱和导水率的分析.林业科学,35(3):109~112
    马帅,赵世伟,李婷,李晓晓,曾宪芳.2011a.子午岭林区植被自然恢复下土壤剖面团聚体特征研究.水土保持学报,25(2):157~161
    马帅,赵世伟,李婷,李晓晓,曾宪芳.2011b.子午岭林区不同植被恢复阶段土壤有机碳变化研究.水土保持通报,31(3):94~98
    马祥华,焦菊英,白文娟.2005.黄土丘陵沟壑区退耕植被恢复地土壤水稳性团聚体的变化特征.干旱地区农业研究,23(3):69~74
    马祥华,焦菊英,温仲明,白文娟,焦峰.2005.黄土丘陵沟壑区退耕地植被恢复中土壤物理特性变化研究.水土保持研究,12(1):17~21
    毛艳玲.2008.土地利用变化对土壤团聚体碳组分的影响.[博士学位论文].福建师范大学
    穆兴民,徐学选.2003.黄土高原人工林对区域深层土壤水环境的影响.土壤学报,40(2):210~217
    潘根兴,李恋卿,张旭辉.2002.土壤有机碳库与全球变化研究的若干前沿问题——兼开展中国水稻土有机碳固定研究的建议.南京农业大学学报,25(3):100~109
    潘根兴,周萍,李恋卿,张旭辉.2007.固碳土壤学的核心科学问题与研究进展.土壤学报,44(2):327~337
    庞学勇,刘世全,刘庆,吴彦,林波,何海,张宗锦.2003.川西亚高山针叶林植物群落演替对土壤性质的影响.水土保持学报,17(4):42~45
    彭舜磊,由文辉,沈会涛.2010.植被群落演替对土壤饱和导水率的影响.农业工程学报,26(11):78~84
    彭文英,张科利,陈瑶,杨勤科.2005.黄土坡耕地退耕还林后土壤性质变化研究.自然资源学报,20(2):272~278
    彭新华,张斌,赵其国.2003.红壤侵蚀裸地植被恢复及土壤有机碳对团聚体稳定性的影响.生态学报,23(10):2176~2183
    彭新华,张斌,赵其国.2004.土壤有机碳库与土壤结构稳定性关系的研究进展.土壤学报,41(4):618~623
    邱扬,傅伯杰,王勇.2002.土壤侵蚀时空变异及其与环境因子的时空关系.水土保持学报,16(1):108~111
    沈思渊,席承藩.1990.淮北主要土壤持水性能及其与颗粒组成的关系.土壤学报,27(1):34~42
    盛才余,刘伦辉,刘文耀.2000.云南南涧干热退化山地人工植被恢复初期生物量及土壤环境动态.植物生态学报,24(5):575~580
    宋日,刘利,马丽艳,吴春胜.2009.作物根系分泌物对土壤团聚体大小及其稳定性的影响.南京农业大学学报,32(3):93~97
    苏静,赵世伟.2005.植被恢复对土壤团聚体分布及有机碳、全氮含量的影响.水土保持研究,12(3):44~46
    孙阁.1988.森林植被对河流泥沙和水质影响综述.水土保持学报,2(3):83~89
    孙丽芳,李勇,张晴雯,何福红,李嵘.2007.植被恢复对侵蚀坡地表层土壤性质的影响.水土保持通报,27(3):13~17
    孙文义,郭胜利.2011.黄土丘陵沟壑区小流域土壤有机碳空间分布及其影响因素.生态学报,31(6):1604~1616
    孙长忠,黄宝龙.1998.黄土高原人工植被与其水分环境相互作用关系研究.北京林业大学学报,20(3):7~14
    王国梁,刘国彬.2002.黄土丘陵沟壑区植被恢复的土壤水稳性团聚体效应.水土保持学报,16(1):48~50
    王国梁,刘国彬,党小虎.2009.黄土丘陵区不同土地利用方式对土壤含水率的影响.农业工程学报,25(2):31~35
    王红梅,谢应忠,王堃,李生宝,蒋齐,陈来祥.2007.宁夏南部半干旱黄土丘陵区草地土壤水分物理特性研究.农业科学研究,28(3):5~9
    王俊明,张兴昌.2010.退耕草地演替过程中植被根系的动态变化及其垂直分布.中国水土保持科学,8(4):67~72
    王凯博,陈美玲,秦娟,刘勇,安慧,上官周平.2007.子午岭植被自然演替中植物多样性变化及其与土壤理化性质的关系.西北植物学报,27(10):2089~2096
    王力,邵明安.2000.土壤干层量化指标初探.水土保持学报,14(4):87~90
    王利民,寸玉康,陈奇伯.2006.滇西北高原水土保持生态修复措施的土壤理化效应.西北林学院学报,21(1):7~11
    王炜,刘钟龄,郝敦元,梁存柱.1997.内蒙古退化草原植被对禁牧的动态响应.气候与环境研究,2(3):236~240
    王玉杰,王云琦,夏一平,何正明,蒋成,张生涛.2006.重庆缙云山典型林分土壤结构分形特征.中国水土保持科学,4(4):39~46
    王征,刘国彬,许明祥.2010.黄土丘陵区植被恢复对深层土壤有机碳的影响.生态学报,30(14):3947~3952
    韦兰英,上官周平.2006.黄土高原不同演替阶段草地植被细根垂直分布特征与土壤环境的关系.生态学报,26(11):3740~3748
    温仲明,焦峰,赫晓慧,焦菊英.2007.黄土高原森林边缘区退耕地植被自然恢复及其对土壤养分变化的影响.草业学报,16(1):16~23
    吴华山,陈效民,陈粲.2007.利用CT扫描技术对太湖地区主要水稻土中大孔隙的研究.水土保持学报,21(2):175~178
    吴建国,张小全,王彦辉,徐德应.2002.土地利用变化对土壤物理组分中有机碳分配的影响.林业科学,38(4):19~29
    夏江宝,曲志远,朱玮,张光灿,王贵霞,杨吉华.2005.鲁中山区不同人工林土壤水分特征.中国水土保持科学,3(3):45~50
    向成华,栾军伟,骆宗诗,宫渊波.2010.川西沿海拔梯度典型植被类型土壤活性有机碳分布.生态学报,30(4):1025~1034
    谢锦升,杨玉盛,陈光水,朱锦懋,曾宏达,杨智杰.2008.植被恢复对退化红壤团聚体稳定性及碳分布的影响.生态学报,28(2):702~709
    徐敬华,陈云明,邓岚.2010.黄土丘陵半干旱区典型人工林土壤水分特征.水土保持通报,30(3):48~52
    薛萐,刘国彬,潘彦平,戴全厚,张超,余娜.2009.黄土丘陵区人工刺槐林土壤活性有机碳与碳库管理指数演变.中国农业科学,42(4):1458~1464
    杨建国,安韶山,郑粉莉.2006.宁南山区植被自然恢复中土壤团聚体特征及其与土壤性质关系.水土保持学报,20(1):72~75
    杨培岭,罗远培,石元春.1993.用粒径的重量分布表征的土壤分形特征.科学通报,38(20):1896~1899
    杨文治,邵明安.2000.黄土高原土壤水分研究.北京:科学出版社
    杨永辉,赵世伟,刘娜娜,吴金水,苏静,徐洁.2006.宁南黄土丘陵区不同植被措施的土壤水分特征.中国水土保持科学,4(2):24~28
    岳庆玲.2007.黄土丘陵沟壑区植被恢复重建过程土壤效应研究.[博士学位论文].西北农林科技大学
    展争艳,李小刚,张德罡,王哲锋.2005.利用方式对高寒牧区土壤有机碳含量及土壤结构性质的影响.土壤学报,42(5):777~782
    张鼎华,翟明普,贾黎明,林平.2003.沙地土壤有机质与土壤水动力学参数的关系.中国生态农业学报,11(1):74~77
    张金发,郑重,金义兴.1990.植物群落演替与土壤发展之间的关系.武汉植物学研究,8(4):325~334
    张景群,苏印泉,康永祥,徐喜明,秦乐.2009.黄土高原刺槐人工林幼林生态系统碳吸存.应用生态学报,20(12):2911~2916
    张庆费,由文辉,宋永昌.1997.浙江天童森林公园植物群落演替对土壤物理性质的影响.植物资源与环境,6(2):37~41
    张全发,郑重,金义兴.1990.植物群落演替与土壤发展之间的关系.武汉植物学研究,8(4):325~334
    张社奇,王国栋,刘建军,郭满才.2004.黄土高原刺槐林地土壤水分物理性质研究.西北林学院学报,19(3):11~14
    张伟华,关世英.2000.不同恢复措施对退化草地土壤水分和养分的影响.内蒙古农业大学学报:自然科学版,21(4):31~35
    张扬,赵世伟,侯庆春,华娟.2009.云雾山草地植被恢复过程土壤水库特性及影响因素.水土保持学报,23(3):200~203,231
    赵广琦,杜增平.2002.陕北西阳湾植被恢复的特点初探.西北林学院学报,17(2):10~13
    赵世伟,卢璐,刘娜娜,吴金水,苏静,杨永辉.2006a.子午岭林区生态系统转换对土壤有机碳特征的影响.西北植物学报,26(5):1030~1035
    赵世伟,苏静,吴金水,杨永辉,刘娜娜.2006b.子午岭植被恢复过程中土壤团聚体有机碳含量的变化.水土保持学报,20(3):114~117
    赵世伟,苏静,杨永辉,刘娜娜.2005.宁南黄土丘陵区植被恢复对土壤团聚体稳定性的影响.水土保持研究,12(3):27~28
    赵世伟,赵勇钢,吴金水.2010.黄土高原植被演替下土壤孔隙的定量分析.中国科学: D辑,40(2):223~231
    赵世伟,周印东,吴金水.2003.子午岭次生植被下土壤蓄水性能及有效性研究.西北植物学报,23(8):1389~1392
    赵世伟,周印东,吴金水.2002.子午岭北部不同植被类型土壤水分特征研究.水土保持学报,16(4):119~122
    赵勇钢,赵世伟,曹丽花,梁向锋.2008.半干旱典型草原区退耕地土壤结构特征及其对入渗的影响.农业工程学报,24(6):14~20
    赵勇钢,赵世伟,华娟,张扬.2009.半干旱典型草原区封育草地土壤结构特征研究.草地学报,17(1):106~112
    郑粉莉.1996.子午岭林区植被破坏与恢复对土壤演变的影响.水土保持通报,16(5):41~44
    郑纪勇,邵明安,张兴昌.2004.黄土区坡面表层土壤容重和饱和导水率空间变异特征.水土保持学报,18(3):53~56
    中国科学院南京土壤研究所.1981.土壤理化分析.上海:上海科学技术出版社
    周程爱,张于光,肖烨,张小全,李迪强.2009.土地利用变化对川西米亚罗林土壤活性碳库的影响.生态学报,29(8):4542~4547
    周虎,吕贻忠,李保国.2009.土壤结构定量化研究进展.土壤学报,46(3):501~506
    周金星,漆良华,张旭东,周小玲,许忠坤,李锡泉,刘秋芳.2006.不同植被恢复模式土壤结构特征与健康评价.中南林学院学报,26(6):32~37
    周莉,李保国,周广胜.2005.土壤有机碳的主导影响因子及其研究进展.地球科学进展,20(1):99~105
    周萍,刘国彬,候喜禄.2008.黄土丘陵区不同土地利用方式土壤团粒结构分形特征.中国水土保持科学,6(2):75~82
    周印东,吴金水,赵世伟,郭胜利,路鹏.2003.子午岭植被演替过程中土壤剖面有机质与持水性能变化.西北植物学报,23(6):895~900
    朱显谟.2006.重建土壤水库是黄土高原治本之道.中国科学院院刊,21(4):320~324
    朱显谟.1998.黄土高原国土整治“28字方略”的理论与实践.中国科学院院刊,13(3):232~236
    邹厚远,刘国彬,王晗生.2002.子午岭林区北部近50年植被的变化发展.西北植物学报,22(1):1~8
    Abramoff M D, Magelhaes P J, Ram S J.2004. Image Processing with ImageJ. BiophotonicsInternational,11(7):36~42
    Amelung W, Zech W.1996. Organic species in ped surface and core fractions along a climosequencein the prairie, North America. Geoderma,74(3):193~206
    An S, Mentler A, Mayer H, Blum W E H.2010. Soil aggregation, aggregate stability, organic carbonand nitrogen in different soil aggregate fractions under forest and shrub vegetation on the Loess Plateau,China. Catena,81(3):226~233
    Angers D A, Vézina L P, Chantigny M H, Prévost D, Chalifour F P.1997. Soil aggregation and fungaland bacterial biomass under annual and perennial cropping systems. Soil Science Society of AmericaJournal,61(1):262~267
    Asare S N, Rudra R P, Dickinson W T, Fenster A.2001. Soil macroporosity distribution and trends ina no-till plot using a volume computer tomography scanner. Journal of Agricultural Engineering Research,78(4):437~447
    Batjes N H.1996. Total carbon and nitrogen in the soils of the world. European journal of soilscience,47(2):151~163
    Blanco-Canqui H, Lal R, Lemus R.2005. Soil aggregate properties and organic carbon for switchgrassand traditional agricultural systems in the southeastern United States. Soil Science,170(12):998~1012
    Boyer J N, Groffman P M.1996. Bioavailability of water extractable organic carbon fractions in forestand agricultural soil profiles. Soil Biology&Biochemistry,28(6):783~790
    Boyle M, Frankenberger W T, Stolzy L H.1989. The influence of organic matter on soil aggregationand water infiltration. Journal of Production Agriculture,2(4):290~299
    Bronick C J, Lal R.2005. Soil structure and management: a review. Geoderma,124(1):3~22
    Bruun S, Six J, Jensen L S, Paustian K.2005. Estimating turnover of soil organic carbon fractionsbased on radiocarbon measurements. Radiocarbon,47(1):99~113
    Cambardella C A, Elliott E T.1994. Carbon and nitrogen dynamics of soil organic matter fractionsfrom cultivated grassland soils. Soil Science Society of America Journal,58(1):123~130
    Carter M R.2002. Soil Quality for Sustainable Land Management. Agronomy Journal,94(1):38~47
    Carter M R, Sanderson J B, Holmstrorna D A, Ivany J A, Dehaan K R.2007. Influence ofconservation tillage and glyphosate on soil structure and organic carbon fractions through the cycle of a3-year potato rotation in Atlantic Canada. Soil&Tillage Research,93(1):206~221
    Causarano H J, Franzluebbers A J, Shaw J N, Reeves D W, Raper R L, Wood C W.2008. Soil organiccarbon fractions and aggregation in the Southern Piedmont and Coastal Plain. Soil Science Society ofAmerica Journal,72(1):221~230
    Christensen B T.2001. Physical fractionation of soil and structural and functional complexity inorganic matter turnover. European Journal of Soil Science,52(3):345~353
    Conant R T, Paustian K, Elliott E T.2001. Grassland management and conversion into grassland:Effects on soil carbon. Ecological Applications,11(2):343~355
    Conteh A, Blair G J.1998. The distribution and relative losses of soil organic carbon fractions inaggregate size fractions from cracking clay soils (Vertisols) under cotton production. Australian Journal ofSoil Research,36(2):257~271
    Cosentino D, Costantini A, Segat A, Fertig M.1998. Relationships between organic carbon fractionsand physical properties of an Argentine soil under three tillage systems. Pesquisa Agropecuaria Brasileira,33(6):981~986
    Dalal R C, Chan K Y.2001. Soil organic matter in rainfed cropping systems of the Australian cerealbelt. Soil Research,39(3):435~464
    Degryze S, Morris S J, Merckx R.2004. Soil organic carbon poll changes following land-useconversions.. Global change biology,10:1120~1132
    Denef K, Zotarelli L, Boddey R M, Six J.2007. Microaggregate-associated carbon as a diagnosticfraction for management-induced changes in soil organic carbon in two Oxisols. Soil Biology&Biochemistry,39(5):1165~1172
    Edwards A P, Bremner J M.1967. Microaggregates in soil. Journal of Soil Science,18(1):64~73
    Ekschmitt K, Liu M, Vetter S, Fox O, Wolters V.2005a. Strategies used by soil biota to overcome soilorganic matter stability—why is dead organic matter left over in the soil?. Geoderma,128(1):167~176
    Elliott E T.1986. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivatedsoils. Soil Science Society of America Journal,50(3):627~633
    Elliott E T, Palm C A, Reuss D E, Monz C A.1991. Organic matter contained in soil aggregates froma tropical chronosequence: correction for sand and light fraction. Agriculture, Ecosystems&Environment,34(1):443~451
    Emerson W W.1959. The structure of soil crumbs. Journal of Soil Science,10(2):235~244
    Emerson W W, Mcgarry D.2003. Organic carbon and soil porosity. Soil Research,41(1):107~118
    Evrendilek F, Celik I, Kilic S.2004. Changes in soil organic carbon and other physical soil propertiesalong ajacent Mediterranean forest, grassland, and cropland ecosystems. Journal of Arid Environments,59(4):743~752
    Ferreira F P, de Azevedo A C, Diniz Dalmolin R S, Girelli D.2007. Organic carbon, iron oxides andaggregate distribution in two basaltic soils from Rio Grande do Sul State-Brasil. Ciencia Rural,37(2):381~388
    Franzluebbers A J.2005. Soil organic carbon sequestration and agricultural greenhouse gas emissionsin the southeastern USA. Soil&Tillage Research,83(1):120~147
    Gantzer C J, Anderson S H.2002. Computed tomographic measurement of macroporosity inchisel-disk and no-tillage seedbeds. Soil and tillage research,64(1):101~111
    Garten C T, Post W M, Hanson P J, Cooper L W.1999. Forest soil carbon inventories and dynamicsalong an elevation gradient in the southern Appalachian Mountains. Biogeochemistry,45(2):115~145
    Gaunt J L, Mahieu N, Madari B, Powlson D S, Sohi S P, Arah J R M.2001. A procedure for isolatingsoil organic matter fractions suitable for modeling. Soil Science Society of America Journal,65(4):1121~1128
    Golchin A, Oades J M, Skjemstad J O, Clarke P.1994. Study of free and occluded particulate organicmatter in soils by solid state13C CP/MAS NMR spectroscopy and scanning electron microscopy. SoilResearch,32(2):285~309
    Grandy A S, Robertson G P.2007. Land-use intensity effects on soil organic carbon accumulationrates and mechanisms. Ecosystems,10(1):58~73
    Guo L B, Gifford R M.2002. Soil carbon stocks and land use change: a meta analysis. GlobalChange Biology,8(4):345~360
    Hendrix P F, Beare M H, Cabrera M L, Coleman D C.1994. Aggregate-protected and unprotectedorganic matter pools in conventional-and no-tillage soils. Soil Science Society of America Journal,58(3):787~795
    Hillel D.2004. Introduction to environmental soil physics. Academic press
    Hillel D.1980. Fundamentals of soil physics.. Academic Press, Inc.(London) Ltd.
    Jastrow J D.1996. Soil aggregate formation and the accrual of particulate and mineral-associatedorganic matter. Soil Biology and Biochemistry,28(4-5):665~676
    John B, Yamashita T, Ludwig B, Flessa H.2005. Storage of organic carbon in aggregate and densityfractions of silty soils under different types of land use. Geoderma,128(1-2):63~79
    Johnston M H, Homann P S, Engstrom J K, Grigal D F.1996. Changes in ecosystem carbon storageover40years on an old-field/forest landscape in east-central Minnesota. Forest Ecology and Management,83(1-2):17~26
    Kukal S S, Rehana R, Benbi D K.2009. Soil organic carbon sequestration in relation to organic andinorganic fertilization in rice-wheat and maize-wheat systems. Soil&Tillage Research,102(1):87~92
    Lal R.2004a. Soil carbon sequestration to mitigate climate change. Geoderma,123(1-2):1~22
    Lal R.2004b. Soil carbon sequestration impacts on global climate change and food security. Science,304(5677):1623~1627
    Lal R.2008. Soils and sustainable agriculture. A review. Agronomy for Sustainable Development,28(1):57~64
    Lal R, Kimble J, Follett R.1998. Land use and soil C pools in terrestrial ecosystems. Management ofCarbon Sequestration in Soil:1~10
    Lehmann J, Kinyangi J, Solomon D.2007. Organic matter stabilization in soil microaggregates:implications from spatial heterogeneity of organic carbon contents and carbon forms. Biogeochemistry,85(1):45~57
    Letey J.1991. The study of soil structure: Science or art. Soil Research,29(6):699~707
    Li Y Y, Shao M A.2006. Change of soil physical properties under long-term natural vegetationrestoration in the Loess Plateau of China. Journal of Arid Environments,64(1):77~96
    Liang A, Yang X, Zhang X, Mclaughlin N, Shen Y, Li W.2009. Soil organic carbon changes inparticle-size fractions following cultivation of Black soils in China. Soil&Tillage Research,105(1):21~26
    Lopez-Ulloa M, Veldkamp E, de Koning G H J.2005. Soil carbon stabilization in converted tropicalpastures and forests depends on soil type. Soil Science Society of America Journal,69(4):1110~1117
    Lorenz K, Lal R, Jimenez J J.2009. Soil organic carbon stabilization in dry tropical forests of CostaRica. Geoderma,152(1-2):95~103
    Mccarthy J F, Ilavsky J, Jastrow J D, Mayer L M, Perfect E, Zhuang J.2008. Protection of organiccarbon in soil microaggregates via restructuring of aggregate porosity and filling of pores withaccumulating organic matter. Geochimica Et Cosmochimica Acta,72(19):4725~4744
    Mooney S J.2002. Three-dimensional visualization and quantification of soil macroporosity and waterflow patterns using computed tomography. Soil Use and Management,18(2):142~151
    Motavalli P P, Discekici H, Kuhn J.2000. The impact of land clearing and agricultural practices onsoil organic C fractions and CO2efflux in the Northern Guam aquifer. Agriculture, Ecosystems&Environment,79(1):17~27
    Nelson J D J, Schoenau J J, Malhi S S.2008. Soil organic carbon changes and distribution incultivated and restored grassland soils in Saskatchewan. Nutrient Cycling in Agroecosystems,82(2):137~148
    Oades J M.1993. The role of biology in the formation, stabilization and degradation of soil structure.Geoderma,56(1-4):377~400
    Oades J M.1984. Soil organic matter and structural stability: mechanisms and implications formanagement. Plant and soil,76(1):319~337
    Oades J M, Waters A G.1991. Aggregate hierarchy in soils. Soil Research,29(6):815~828
    Paris J F, Arya L M.1981. A physicoempirical model to predict the soil moisture characteristic fromparticle-size distribution and bulk density data. Soil Science Society of America Journal,45(6):1023~1030
    Perret J, Prasher S O, Kantzas A, Langford C.1999. Three-dimensional quantification of macroporenetworks in undisturbed soil cores. Soil Science Society of America Journal,63(6):1530~1543
    Peyton R L, Gantzer C J, Anderson S H, Haeffner B A, Pfeifer P.1994. Fractal dimension to describesoil macropore structure using x-ray computed-tomography. Water Resources Research,30(3):691~700
    Post W M, Kwon K C.2000. Soil carbon sequestration and land‐use change: processes and potential.Global change biology,6(3):317~327
    Puget P, Chenu C, Balesdent J.2000. Dynamics of soil organic matter associated with particle‐sizefractions of water‐stable aggregates. European Journal of Soil Science,51(4):595~605
    Puget P, Chenu C, Balesdent J.1995. Total and young organic matter distributions in aggregates ofsilty cultivated soils. European Journal of Soil Science,46(3):449~459
    Puget P, Lal R.2005. Soil organic carbon and nitrogen in a Mollisol in central Ohio as affected bytillage and land use. Soil&Tillage Research,80(1-2):201~213
    Rachman A, Anderson S H, Gantzer C J.2005. Computed-tomographic measurement of soilmacroporosity parameters as affected by stiff-stemmed grass hedges. Soil Science Society of AmericaJournal,69(5):1609~1616
    Rasiah V, Alymore L A G.1998. The topology of pore structure in cracking clay soil: Ⅰ. Theestimation of numerical density. Journal of Soil Science,39:303~314
    Rasiah V, Aylmore L A G.1998. Characterizing the changes in soil porosity by computed tomographyand fractal dimension. Soil Science,163(3):203~211
    Sander T, Gerke H H, Rogasik H.2008. Assessment of Chinese paddy-soil structure using X-raycomputed tomography. Geoderma,145(3):303~314
    Sartori F, Lal R, Ebinger M H, Eaton J A.2007. Changes in soil carbon and nutrient pools along achronosequence of poplar plantations in the Columbia Plateau, Oregon, USA. Agriculture Ecosystems&Environment,122(3):325~339
    Schwendenmann L, Pendall E.2006. Effects of forest conversion into grassland on soil aggregatestructure and carbon storage in Panama: evidence from soil carbon fractionation and stable isotopes. Plantand Soil,288(1-2):217~232
    Shrestha B M, Singh B R, Sitaula B K, Lal R, Bajracharya R M.2007. Soil aggregate-andparticle-associated organic carbon under different land uses in Nepal. Soil Science Society of AmericaJournal,71(4):1194~1203
    Shrestha B M, Sitaula B K, Singh B R, Bajracharya R M.2004. Soil organic carbon stocks in soilaggregates under different land use systems in Nepal. Nutrient Cycling in Agroecosystems,70(2):201~213
    Singh J S, Milchunas D G, Lauenroth W K.1998. Soil water dynamics and vegetation patterns in asemiarid grassland. Plant Ecology,134(1):77~89
    Six J, Bossuyt H, Degryze S, Denef K.2004. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil and Tillage Research,79(1):7~31
    Six J, Conant R T, Paul E A, Paustian K.2002. Stabilization mechanisms of soil organic matter:Implications for C-saturation of soils. Plant and Soil,241(2):155~176
    Six J, Elliott E T, Paustian K.1999. Aggregate and soil organic matter dynamics under conventionaland no-tillage systems. Soil Science Society of America Journal,63(5):1350~1358
    Six J, Elliott E T, Paustian K.2000. Soil macroaggregate turnover and microaggregate formation: amechanism for C sequestration under no-tillage agriculture. Soil Biology&Biochemistry,32(14):2099~2103
    Six J, Elliott E T, Paustian K, Doran J W.1998. Aggregation and soil organic matter accumulation incultivated and native grassland soils. Soil Science Society of America Journal,62(5):1367~1377
    Six J, Paustian K, Elliott E T, Combrink C.2000. Soil structure and organic matter: I. Distribution ofaggregate-size classes and aggregate-associated carbon. Soil Science Society of America Journal,64(2):681~689
    Smith P.2008. Land use change and soil organic carbon dynamics. Nutrient Cycling inAgroecosystems,81(2):169~178
    Sollins P, Homann P, Caldwell B A.1996. Stabilization and destabilization of soil organic matter:mechanisms and controls. Geoderma,74(1):65~105
    Solomon D, Lehmann J, Zech W.2000. Land use effects on soil organic matter properties of chromicluvisols in semi-arid northern Tanzania: carbon, nitrogen, lignin and carbohydrates. AgricultureEcosystems&Environment,78(3):203~213
    Stewart C E, Paustian K, Conant R T, Plante A F, Six J.2007. Soil carbon saturation: concept,evidence and evaluation. Biogeochemistry,86(1):19~31
    Stewart C E, Paustian K, Conant R T, Plante A F, Six J.2008. Soil carbon saturation: Evaluation andcorroboration by long-term incubations. Soil Biology&Biochemistry,40(7):1741~1750
    Stewart C E, Plante A F, Paustian K, Conant R T, Six J.2008. Soil carbon saturation: Linking conceptand measurable carbon pools. Soil Science Society of America Journal,72(2):379~392
    Tisdall J M.1994. Possible role of soil microorganisms in aggregation in soils. Plant and soil,159(1):115~121
    Tisdall J M, Oades J M.1982. Organic matter and water‐stable aggregates in soils. Journal of soilscience,33(2):141~163
    Udawatta R P, Anderson S H.2008. CT-measured pore characteristics of surface and subsurface soilsinfluenced by agroforestry and grass buffers. Geoderma,145(3-4):381~389
    Udawatta R P, Anderson S H, Gantzer C J, Garrett H E.2006. Agroforestry and grass buffer influenceon macropore characteristics: A computed tomography analysis. Soil Science Society of America Journal,70(5):1763~1773
    Udawatta R R, Anderson S H, Gantzer C J, Garrett H E.2008. Influence of prairie restoration onCT-measured soil pore characteristics. Journal of Environmental Quality,37:219~228
    van Bavel C. Mean weight diameter of soil aggregates as a statistical index of aggregation.1949.20~23.
    Wairiu M, Lal R.2003. Soil organic carbon in relation to cultivation and topsoil removal on slopinglands of Kolombangara, Solomon Islands. Soil&Tillage Research,70(1):19~27
    Walker L R, Wardle D A, Bardgett R D, Clarkson B D.2010. The use of chronosequences in studiesof ecological succession and soil development. Journal of Ecology,98(4):725~736
    Wander M M, Traina S J.1996. Organic matter fractions from organically and conventionallymanaged soils.1. Carbon and nitrogen distribution. Soil Science Society of America Journal,60(4):1081~1087
    Wang Y, Shao M, Shao H.2010. A preliminary investigation of the dynamic characteristics of driedsoil layers on the Loess Plateau of China. Journal of Hydrology,381(1-2):9~17
    Watson K W, Luxmoore R J.1986. Estimating macroporosity in a forest watershed by use of a tensioninfiltrometer. Soil Sci. Soc. Am. J,50(3):578~582
    West T O, Post W M.2002. Soil organic carbon sequestration rates by tillage and crop rotation: Aglobal data analysis. Soil Science Society of America Journal,66(6):1930~1946
    Wheatcraft S W, Tyler S W.1992. Fractal scaling of soil particle-size distributions: analysis andlimitations. Soil Science Society of America Journal,56(2):362~369
    Wu Q, Wang X, Ouyang Z.2009. Soil Organic Carbon and Its Fractions Across Vegetation Types:Effects of Soil Mineral Surface Area and Microaggregates. Pedosphere,19(2):258~264
    Yang Z H, Singh B R, Sitaula B K.2004. Soil organic carbon fractions under different land uses inmardi watershed of Nepal. Communications in Soil Science and Plant Analysis,35(5-6):615~629
    Young I M, Crawford J W, Rappoldt C.2001. New methods and models for characterising structuralheterogeneity of soil. Soil and Tillage Research,61(1):33~45
    Zeng Y, Gantzer C J, Payton R L, Anderson S H.1996. Fractal dimension and lacunarity of bulkdensity determined with x-ray computed tomography. Soil Science Society of America Journal,60(6):1718~1724
    Zhang J B, Song C C, Yang W Y.2006. Land use effects on the distribution of labile organic carbonfractions through soil profiles. Soil Science Society of America Journal,70(2):660~667

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700