用户名: 密码: 验证码:
超声造影评价大鼠肾脏冷缺血—再灌注损伤及肾移植急性排斥反应血流灌注的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实验一超声造影评价大鼠肾脏冷缺血-再灌注损伤血流灌注的实验研究
     目的研究应用超声造影(contrast-enhanced ultrasound, CEUS)技术定量测定大鼠肾脏冷缺血-再灌注损伤(cold ischemia-reperfusion injury, CIRI)肾脏不同解剖区域的血流灌注,分析并判断肾内血流动力学指标与血清肾功能、急性肾小管坏死(acute tubular necrosis, ATN)病理损伤程度的相关性,探讨CEUS在ATN诊断上的应用价值。
     研究方法封闭群SD雄性大鼠假手术组(sham-surgery group, SSG)、肾冷缺血-再灌注损伤组(cold ischemia-reperfusion injury, CIRI)各5只于术后第1、3、7天进入实验(每组共15只)。在充分麻醉状态下行左颈静脉插管,造影剂选用声诺维TM(SonoVueTM),输注方式为经颈静脉连续注射,输液速度为0.8 ml. kg-1. min-1。采用Philips IU22型彩色超声诊断仪,选用脉冲反相谐波成像(pulse inversion harmonic imaging)技术,经左侧腹壁行左肾超声造影并存储动态图像,脱机后用QLAB分析软件进行分析。皮质感兴趣( region of interest, ROI)放置于与声束垂直的正对肾门处肾脏包膜下皮质区,髓质部分ROI放置在与肾门处对侧肾实质区中段髓质的外髓层和内髓层,经One Minus Exp曲线拟合,软件以指数方程Y =A (1 - e-βt )自动生成造影剂微泡声学强度随时间变化的曲线,获得肾脏皮质血流(renal cortical blood flow, RCBF)、外髓层血流(renal outer medullary blood flow, ROMBF)、内髓层血流(renal inner medullary blood flow, RIMBF)的参数:峰值声学强度( peak signal intensity, A);造影剂灌注速率(signal velocity,β);根据公式计算出感兴趣区局部肾组织血流量(regional renal blood flow): A×β。CEUS检查完毕,开腹,经后腔静脉抽取血液行血清肾功能检测,摘取肾脏,放血处死大鼠。肾组织经固定后行HE染色,光镜下行肾小管坏死病理评分。统计分析CIRI大鼠肾内血流动力学的变化及其与血清肾功能、病理肾小管坏死程度的相关性。
     结果SSG组与CIRI组实验大鼠同组之间不同时间点、两组之间对应时间点之间比较血流参数A值均无显著差异(P﹥0.05);SSG组术后第1天肾皮质、外髓层血流量偏低,但与第3、7天比较均无显著差异(P﹥0.05),β值与第3、7天血流量比较有显著差异(P﹤0.05),第1、3、7天血清肾功能指标、病理肾小管坏死积分比较均无显著差异(P﹥0.05)。CIRI组术后第1天肾皮质、外髓层、内髓层血流量均明显减低,血流量的减少主要是速度指标β值的减低所致,其中肾皮质血流量与SSG组比较有显著差异(P﹤0.01)。CIRI组术后第3天肾皮质血流开始恢复,外髓层与内髓层血流量未见明显改善,肾皮质、外髓层、内髓层血流量仍显著低于SSG组(P﹤0.01);术后第7天CIRI组肾皮质、外髓层、内髓层血流全面恢复正常,与SSG组比较无显著差异(P﹥0.05)。与之相对应,CIRI组术后第1天与第3、7天比较血清肾功能指标SCr、BUN以及病理肾小管坏死积分(tubular necrosis score, TNS)均显著高,与SSG组第1天比较差异非常显著(P﹤0.01);第3天肾功能指标SCr、BUN以及病理肾小管坏死积分逐渐降低,但与SSG组比较差异仍非常显著(P﹤0.01);第7天降低至正常,与SSG组比较无显著差异(P﹥0.05)。经统计相关分析CIRI大鼠血清SCr、BUN及病理肾小管坏死积分与皮质、外髓层、内髓层血流参数A值均无显著相关关系(P﹥0.05);血清肾功能指标SCr、BUN及病理肾小管坏死积分与超声造影肾皮质、外髓层、内髓层血流参数均成负相关,其中以与皮质血流参数β、A×β相关性最好。
     结论肾脏冷缺血-再灌注损伤肾皮质、髓质血流均明显减少,在随后肾组织损伤修复过程中肾皮质血流早于髓质率先恢复;肾冷缺血-再灌注损伤肾血流量的变化主要是由于血流灌注速度β值的变化所致;超声造影血流灌注参数β、A×β均为评价肾冷缺血-再灌注损伤血流灌注的敏感指标。
     实验二超声造影评价大鼠肾移植急性排斥反应血流灌注的实验研究
     目的研究应用超声造影技术定量检测肾移植术后急性排斥反应(acute rejection, AR)肾内不同解剖区域血流灌注的变化,动态、全面了解AR早期病理演变过程,探讨肾移植术后AR肾血流动力学变化特点及CEUS的诊断价值。
     研究方法同基因(Isograft)组与异基因(Allograft)组肾移植大鼠各3只于术后第1、3、7天进入实验(每组共9只)。超声检查方法、血清肾功能指标测定同实验一。离体肾组织经固定后行常规HE染色、特殊染色(马松三色染色、过碘酸雪夫染色、六胺银染色)及透射电镜下超微结构的观察,依据Banff 2007诊断标准进行肾移植术后AR的诊断,统计分析Isograft组与Allograft组、急性排斥反应与非急性排斥反应大鼠肾内血流动力学的变化及其与血清肾功能、急性排斥反应Banff病理诊断分级的相关性。
     结果Allograft组与Isograft组术后第1天大鼠肾皮质、外髓层、内髓层血流均明显减少,两组比较超声造影血流参数A、β、A×β值均未见显著差异(P﹥0.05)。术后第3天Isograft组皮质血流开始改善,至术后第7天肾皮质、外髓层、内髓层血流均改善明显,β、A×β值与第1、3天比较有非常显著差异(P﹤0.01),但A值1、3、7天三个时间点之间比较均未见显著差异;而Allograft组术后第3天肾皮质、外髓层、内髓层血流均逐渐降低,表现为A、β、A×β值均减少,第7天显著减少,与第1、3天比较有差异非常显著(P﹤0.01)。与Isograft组比较,Allograft组术后第3天肾皮质、外髓层血流参数A、β、A×β值及内髓层血流参数A×β值均显著降低(P﹤0.05);第7天肾皮质、外髓层、内髓层血流参数A、β、A×β值均降低非常显著(P﹤0.01)。血清肾功能指标SCr、BUN术后第1天Allograft组与Isograft组比较无显著差异(P﹥0.05),术后第3、7天Isograft组大鼠血清SCr、BUN逐渐降低,Allograft组显著增高,两组比较均差异非常显著(P﹤0.01)。HE及特殊染色Isograft组在1、3天可见不同程度的肾小管坏死,第7天基本恢复正常,未见明显的淋巴细胞浸润和血管炎症;Allograft组肾移植术后3天肾小管间质和肾小球旁、小动脉周围淋巴细胞灶性浸润,Banff诊断分级为急性细胞性排斥反应IA- IB级;移植后7天间质炎性细胞浸润明显增多,肾小球Bowman囊囊壁增厚,肾小管、小动脉淋巴细胞浸润,肾小动脉外膜结缔组织增生,管壁增厚,Banff诊断分级为急性细胞性排斥反应Ⅱ-Ⅲ级,未见明显体液性排斥反应。电镜下Isograft组肾组织超微结构未见明显异常,Allograft组术后第3天肾小管上皮细胞间隙明显增大,毛细血管内皮细胞轻度增生,间质淋巴细胞浸润,血管平滑肌细胞增厚。术后7天肾小球Bowman囊囊壁明显增厚,间质、肾小管及血管壁均见大量淋巴细胞浸润,小动脉血管壁明显增厚。经统计相关分析AR大鼠超声造影肾皮质、外髓层、内髓层血流参数A、β、A×β值与血清肾功能指标及病理Banff诊断分级均成负相关,其中以与A值的相关性最好。
     结论大鼠肾移植术后急性排斥反应肾皮、髓质血流显著降低,超声造影血流灌注参数A、β、A×β值均为检测肾移植术后急性排斥反应肾脏血流灌注的敏感指标,连续、动态监测肾血流变化可早期诊断大鼠肾移植术后急性排斥反应的发生。
     实验三大鼠急性肾小管坏死与肾移植术后急性排斥反应血流灌注的对比研究
     目的研究应用CEUS探讨肾移植术后缺血-再灌注损伤所致ATN和肾移植术后早期AR肾组织不同的血流动力学变化,以期为两者的鉴别诊断提供依据。
     研究方法SSG组、CIRI组各5只分别于术后第1、3、7天进入实验(每组共15只),Isograft组与Allograft组肾移植大鼠各3只分别于术后第1、3、7天进入实验(每组共9只)。实验方法同实验一、实验二相关部分。组间统计方法采用方差分析。
     结果术后第1天CIRI组、Isograft组、Allograft组大鼠肾皮质血流与SSG组比较均明显减少,表现为β、A×β值的降低(P﹤0.05),A值各组间未见显著差异;CIRI组、Isograft组、Allograft组三组间比较大鼠肾皮质血流各参数未见显著差异(P﹥0.05)。Isograft组、Allograft组大鼠肾外髓层血流量与CIRI组、SSG组比较均明显减少,表现为A×β值的降低(P﹤0.05);术后第3天,CIRI组、Isograft组肾皮质血流渐趋改善,至第7天各参数与SSG组比较无显著差异(P﹥0.05);Allograft组则渐趋恶化,术后第3天皮质、外髓层、内髓层血流与其余三组比较参数A、A×β有显著降低(P﹤0.05),第7天A、β、A×β值与其余三组比较均差异非常显著(P﹤0.01)。与之相对应,术后第1天CIRI组、Isograft组、Allograft组大鼠血清肾功能指标SCr、BUN与SSG组比较均明显增高(P﹤0.01);CIRI组、Isograft组、Allograft组大鼠三组之间比较未见明显差异(P﹥0.05)。术后第3天,CIRI组、Isograft组SCr、BUN渐趋降低,至术后第7天CIRI组、Isograft组SCr、BUN恢复正常,与SSG组比较未见统计学差异(P﹥0.05);Allograft组则渐趋恶化,增高显著,第3,7天与SSG组、CIRI组、Isograft组比较有非常显著差异(P﹤0.001)
     结论急性肾小管坏死发生在术后早期,肾内皮质、髓质血流均明显减少,血流量的变化主要是由于血流灌注速度的变化所致;肾移植术后急性排斥反应的发生晚于急性肾小管坏死,肾皮、髓质血流减少更加显著,血流量的减少与血流速度、血管容积均密切相关;超声造影肾血流定量测定可为二者的临床早期鉴别诊断提供依据。
Part one Evaluation of renal haemodynamics in rat models of cold ischemia-reperfusion injury with CEUS
     Objective: We quantified the regional renal blood flow by real-time contrast-enhanced ultrasound (CEUS) and analyzed the correlations of the parameters between renal haemodynamics and serum renal function or the degree of acute tubular necrosis. The aim of this study was to investigate the value of CEUS in the diagnosis of acute tubular necrosis (ATN) after cold ischemia-reperfusion injury.
     Methods: There were total 15 male Sprague-Dawley rats recruited into CEUS examinations in each group, namely sham-surgery group(SSG) , which were just removed their right kidneys, and renal cold ischemia - reperfusion injury group (CIRI). Every five rats were performed CEUS examinations on days one, three and seven, respectively, after surgery in each group. After adequate anesthesia by intraperitoneal injection of 40 mg.kg-1 sodium pentobarbital, contrast agent SonoVue was infused continuously via jugular vein at a rate of 0.8ml.kg-1.min-1 and the left kidney CEUS was performed with the commercial ultrasound system IU22 (Philips Medical Systems, Amsterdam,Netherlands) with pulse inversion harmonic imaging technology in this study. All data were digitally recorded and analyzed off-line with QLAB advanced quantification software (Philips Medical Systems, Amsterdam,Netherlands) by two independent radiologists. ROI (region of interest) was positioned on the renal cortex, out medulla and inner medulla opposite to the renal hilum, respectively. The plot of renal signal intensity versus time after FLASH was fitted to an one minus exponential function: y=A (1-e-βt) automaticly, where A is the peak signal intensity,βindicating signal velocity, and the product of A andβrepresenting as the regional renal blood flow of the ROI. After CEUS examination, blood samples were obtained from the inferior vena cava for renal function examination before removing the left kidney. Rats were sacrificed by abdominal aorta dissection. Renal tissue fixed by formalin and sectioned for HE staining later. Tubular necrosis score (TNS) was calculated according to the pathological findings under light microscope. Correlations between renal hemodynamics parameters and serum renal function parameters or TNS of CIRI rats were analyzed statistically.
     Results: The value of parameters A was no significant difference compared at different time points within the same group of SSG or CIRI and compared between SSG and CIRI groups at the same time points after the surgeries (P>0.05). Renal blood flow in all regions were lower in SSG group on day one compared with those on days three and seven after the surgeries, but there was no significant difference (P>0.05) except the value ofβwith significant difference (P<0.05). Just as the same, no significant differences were found while comparing the serum parameters of renal function and tubular necrosis score of pathological evaluation on days one, three and seven after the surgeries (P>0.05). The renal blood flow in the cortex, the outer medulla and the inner medulla were significant lower on day one compared with those on days three and seven after the surgeries in CIRI group and renal cortical blood flow was significant lower compared with those of SSG group on day one after surgeries (P<0.01). The reduction of renal blood flow was mainly due to the decreaced value ofβ. The regional blood flow in cortex, outer medulla and inner medulla of CIRI group were still significant lower compared with those of SSG group(P<0.01) on days three after the surgeries, but the renal cortical blood flow rose progressively while renal outer and inner medullary blood flow remained relatively unchanged. The regional blood flow in cortex, outer medulla and inner medulla of CIRI group further increased and returned to normal compared with those of SSG group on days seven after the surgeries (no significant difference, P>0.05). Accordingly, the values of the parameters of serum renal function and pathological score of tubular necrosis were significantly higher than those of SSG group on day one (P<0.01), and was gradually decreased on days three but still significantly higher than those of SSG group on day one (P<0.01) and returned to normal on days seven with no significant difference between SSG group and CIRI group (P>0.05). The values of parameters of serum renal function and tubular necrosis score were no significant correlation with the parameters of A in all renal regions (P>0.05), while they have negative correlation with the values of parametersβand A×βin all renal regions, especially those in cortical region. Conclusion: CEUS can display the different perfusion pattern and quantify the blood flow in renal cortex, outer medulla and inner medulla in a real-time status, and confirmed that renal blood flow in cortex and medulla were significantly decreased in rats after cold ischemia - reperfusion injury. At the same time, renal cortical blood flow was preferentially increased than those in renal medullary regions during the recovery phase and renal blood flow varied with the values of signal velocity (β) after renal cold ischemia-reperfusion injury. Bothβand A×βwere sensitive parameters in detecting the microcirculation disturbances after renal cold ischemia-reperfusion injury.
     Part two Evaluation of renal haemodynamics of acute renal allograft rejection in rat models with CEUS
     Objective: We investigated the changes of regional renal haemodynamics of acute renal allograft rejection (AR) consecutively and comprehensively in rat models in the early stages by CEUS with the pathological evaluation. The aim of this study was to investigate the regularities of intrarenal hemodynamics in different renal regions during AR occurence and the value of CEUS in the diagnosis of AR in the early stages. Methods: Eighteen male rats of orthotopic kidney transplantation were collected in both isograft group (Lewis→Lewis, n=9) and allogrft group (F344→Lewis, n=9) into CEUS examinations. Every three rats were performed CEUS examinations on days one, three and seven, respectively. The methods of CEUS examination and quantitative test of serum renal function were just as the same as those mentioned in part one. Renal tissue fixed by formalin and sectioned later for conventional HE staining, special staining (masson trichrome, periodic acid Schiff and methenamine silver staining) and ultrastructural observation under transmission electron microscope. The diagnoses of acute renal allograft rejection were made according to Banff 2007 criteria. Correlations between renal hemodynamics parameters and serum renal function parameters or Banff classification of acute rejection were analyzed statistically. Results: Prominent reduction of renal blood flow in cortex, outer medulla and inner medulla were seen on day one after transplantation in both isograft and allograft groups. Comparisons of parameter A、βas well as A×βshowed no significant differences between isograft and allograft groups (P>0.05). Renal cortical blood flow began to improve on days three and increased significantly on days seven after transplantation in isograft group. Significant differences were found while comparing the value of parametersβand A×βin days seven with those in days one and three (P<0.01), but no significant differences while comparing the value of parameter A among days one, three and seven in isograft group (P>0.05). Renal blood flow in cortex, outer medulla and inner medulla further decreased from days three by presenting as the reduction of the value of parameters A、βand A×βand showed significant difference comparing the values on days seven with those on days one and three (P<0.01) in allograft group. Comparison with those in isograft group, significant reduction was found with the value of parameters A,βas well as A×βin cortical and outer medulla and parameter A×βin inner medulla on days three (P<0.05) which exacerbated on days seven (P<0.01) in allograft group. No significant differences were seen of the values of SCr、BUN in both isograft and allograft groups on day one after transplantations (P>0.05). Statistical significant differences were seen of data SCr and BUN from days three to seven with the gradually decreased in isograft group but obvious increased in allograft group (P<0.01). Histological evaluation with HE and special staining showed different degree of tubular necrosis on days one and three in isograft group and the renal tissue returned to normal on days seven with no obvious inflammatory cell infiltration and vascularities. But inflammatory cell infiltrations were found in renal interstitial and were graded as acute cellular rejectionⅠA -ⅠB according to Banff 2007 criteria on days seven in allograft group. On days seven, more lymphocytic infiltrations were seen in renal interstitial, renal tubules and small arteries with the hypertrophy of Bowman capsule and vascular wall. Their pathological diagnoses were acute cellular rejection ofⅡ-Ⅲclassification with no evidence of humoral rejection in allograft group. The ultrastructure of renal tissue under the electron microscope showed no obvious abnormalities in isograft group. But the ultrastructure of renal tissue in allograft group showed larger clearance among tubular epithelial cells, mild hyperplasia of the capillary endothelial cells, inflammatory cell infiltration in renal interstitial and the hypertrophy of vascular smooth muscle on days three and exacerbated on days seven with markedly thickening of Bowman capsules and arterial wall after transplantations. All the values of parameters A、β、A×βin cortex, outer medulla and inner medulla showed negative correlations with those of the parameters of serum renal function and Banff classification (P<0.05), especially the value of parameter A. Conclusion: Renal blood flow in cortex and medulla regions decreased significantly in acute renal allograft rejection in rat models after transplantations. Parameters A,βand A×βwere sensitive in detecting hemodynamic abnormalities in acute renal rejection. Consecutive and dynamic monitoring the changes of renal hemodynamics can provide early diagnosis of acute rejection after transplantation.
     Part three Comparative study of renal haemodynamic abnormalities of acute tubular necrosis and acute renal allograft rejection in rat models
     Objective: The aim of this study was to investigate the different renal haemodynamic abnormalities of acute tubular necrosis after ischemia-reperfusion injuries and acute renal allograft rejection in the early stages and provide possible basic theory for differential diagnosis of ATN and AR after renal transplantion.
     Methods: Every five rats in both SSG and CIRI groups with every three rats in both isograft and allograft groups were performed CEUS examinations on days one, three and seven, respectively. The methods of CEUS examination and quantitative test of serum renal function were just as the same as those used in experimental one and two. Analysis of variance was used in comparison among each groups.
     Results: Renal cortical blood flow decreased in CIRI, Isograft and Allograft groups compared with that in SSG group on day one after sugeries, which presented as the reduction of the value of parametersβ、A×β(P<0.05) with no significant difference of parameter A (P>0.05). All the value of every parameters of renal haemodynamics in cortex showed no significant difference among CIRI, Isograft and Allograft groups on days one after the surgery (P>0.05). Renal outer medullary blood flow also decreased in Isograft and Allograft groups compared with those in CIRI and SSG group on day one after sugeries by presenting as the reduction of the value of parameters A×β(P<0.05). Renal cortical blood flow began to improve in CIRI and Isograft group on days three and increased significantly on days seven with no significant difference compared with those in SSG group (P>0.05). Renal blood flow in cortex, outer medulla and inner medulla were exacerbated and further decreased by presenting as the reduction of the value of parameters A、βand A×βand showed significant difference compared with those in the other three groups on days three (P<0.05) and on days seven (P<0.01). Accordingly, the values of the parameters of serum renal function in CIRI, Isograft and Allograft groups were significantly higher than those of SSG group on day one (P<0.01) with no significant difference among CIRI, Isograft and Allograft groups (P>0.05). The values of of the parameters of serum renal function in CIRI and Isograft groups decreased from days three and returned to normal on days seven with no signifiacant difference compared to those in SSG group (P>0.05). But The values of of the parameters of serum renal function in allogrfat group exacerbated and further increased significantly compared to those in the other three groups on days three and seven (P<0.01).
     Conclusion: ATN occurred in the early phase after the surgeries and renal blood flow in cortex and medulla were significantly reduced which were due to the changes of blood flow velocity. AR occurred later than that of ATN after renal transplantation with more severe reduction of renal blood flow in cortex and medulla which was due to both reduction of blood flow velocity and vascular volume. Our studies identified that CEUS examination may be the useful methods in differential diagnosis between AR and ATN in the early stage.
引文
1. Navar LG. Regulation of Renal Hemodynamics. Am J Physiol 1998; 275(Advan Physiol Educ 20): S221- S235.
    2. Mattson DL. Importance of the renal medullary circulation in the control of sodium excretion and blood pressure. Am J Physiol Regul Integr Comp Physiol 2003; 284(1): R13- R27.
    3.朱妙章主编.心血管生理与临床第一版,北京:高等教育出版社,2004,366- 378.
    4. Navar LG, Inscho EW, Majid SA, Imig JD, Harrison-Bernard LM, Mitchell KD.Paracrine regulation of the renal microcirculation. Physiol Rev 1996; 76(2): 425- 536.
    5. Hayashi K, Nagahama T, Oka K, Epstein M, Saruta T. Disparate effects of calcium antagonists on renal microcirculation. Hypertens Res 1996; 19(1): 31- 36.
    6. Aki Y, Tomohiro A, Nishiyama A, Kiyomoto K, Kimura S, Abe Y. The role of basally synthesized nitric oxide in modulating the renal vasoconstrictor action of angiotensin II. Hypertens Res 1997; 20(4): 251- 256.
    7. Gross V, Schneider W, Schunck WH, Mervaala E, Luft FC. Chronic effects of lovastatin and bezafibrate on cortical and medullary hemodynamics in deoxycorticosterone acetatesalt hypertensive mice. J Am Soc Nephrol 1999; 10(7): 1430- 1439.
    8. Nishiyama A, Fujisawa Y, Fukui T, Rahman M, Kondo N, Ogawa Y, Fanzhu L, Guoxing Z, Kimura S, Abe Y. Role of nitric oxide in regional blood flow in angiotensin II-induced hypertensive rats. Hypertens Res 2001; 24(4): 421- 427.
    9. Hosotani Y, Takahashin N, Kiyomoto H, Ohmori K, Hitomi H, Fujioka H,-Aki Y, Fukunaga M, Yuasa S, Mizushige K, Kohno M. A New Method for Evaluation of Split Renal Cortical Blood Flow with Contrast Echography. Hypertens Res 2002; 25(1): 77– 83.
    10. McNay JL, Abe Y. Pressure dependent heterogeneity of renal cortical blood flow in dogs. Circ Res , 1970; 27(4): 571- 587.
    11.张金山,梁波,陈次渝,李舜. 99mTc-EC与99mTc-DTPA肾显像特征的比较.影像诊断与介入放射学2002;11(1):46- 48.
    12. Inoue Y,Yoshikawa K, Suzuki T, Katayama N, Yokoyama I, Kohsaka T, Tsukune Y, Ohtomo K. Attenuation correction in evaluating renal function in children and adults by a camera-based method. J Nucl Med, 2000,41(5):823- 829
    13.周翔,张青萍,朱蔚,赵明,乐桂蓉.核医学肾显像与造影增强肾能量图显像的对比研究.中华超声影像学杂志2000; 9 (12): 745- 747.
    14. De Santo NG, Anastasio P, Cirillo M, Santoro D, Spitali L, Mansi L, Celentano L, Capodicasa D, Cirillo E, Del Vecchio E, Pascale C, Capasso G. Measurement of glomerular filtration rate by the 99mTc-DTPA renogram is less precise than measured and predicted creatinine clearance. Nephron; 1999, 81(2):136- 140.
    15. Miles KA, Griffiths MR. Perfusion CT: a worthwhile enhancement? Br J Radiol, 2003; 76(904): 220- 231.
    16. Cenic A, Nabavi DG, Craen RA, Gelb AW, Lee TY. Dynamic CT measurement of cerebral blood flow: a validation study. AJNR, 1999; 20(1): 63- 73.
    17. Miles KA. Measurement of tissue perfusion by dynamic computed tomography. Br J Radiol; 1991; 64(761): 409- 412.
    18. Michaely HJ, Herrmann KA, Nael K, Oesingmann N, Reiser MF, Schoenberg SO. Functional renal imaging: nonvascula renal disease. Abdom Imaging 2007; 32(1): 1-16.
    19. Grenier N, Basseau F, Ries M, Tyndal B, Jones R, Moonen C. FunctionalMRI of the kidney. Abdom Imaging 2003; 28(2): 164- 175.
    20. HuangAJ, LeeVS, Rusinek H. Functional renal MR imaging. Magn Reson Imaging Clin N Am 2004, 12(3): 469- 486.
    21. Lencioni R, Pinto S, Napoli V, et al.Detection of renal artery stenosis by time-intensity analysis of renal enhancement curve at harmonic power Doppler imaging: a pilot clinical study. Radiology 1999; 213: 363- 364.
    22. Lencioni R, Pinto S, Napoli V, Bartolozzi C. Noninvasive assessment of renal artery stenosis: current imaging protocols and future directions in ultrasonography.J Comput Assist Tomogr 1999;23(Suppl 1):S95- S100.
    23. Gramiak R, Shah PM. Echocardiography of the aortic root. Invest Radiol, 1968; 3(5): 356-366.
    24. Lang RM, Feinstein SB, Powsner SM, McCoy CE, Frederickson ED, Neumann A, Goldberg LI, Borow KM. Contrast ultrasonography of the kidney: a new method for evaluation of renal perfusion in vivo. Circulation 1987; 75(1): 229- 234.
    25. Correas JM, Bridal L, Lesavre A, Méjean A, Claudon M, Hélénon O. Ultrasound contrast agents: properties, principles of action, tolerance,and artifacts. Eur Radiol 2001; 11(8): 1316- 1328.
    26. Quaia E. Microbubble ultrasound contrast agents: an update. Eur Radiol, 2007; 17(8): 1995- 2008.
    27. Wei K, Jayaweera AR, Firoozan S, Linka A, Skyba DM, Kaul S. Quantification of myocardial blood ?ow with ultrasound-induced destruction of microbubbles administered as a constant venous infusion. Circulation 1998; 97(5): 473- 483.
    28. Wei K, Le E, Bin JP, Coggins M, Thorpe J, Kaul S. Quantification of renal blood flow with contrast-enhanced ultrasound. J Am Coll Cardiol 2001; 37(4): 1135- 1140.
    29. Schlosser T, Pohl C, Veltmann C, Lohmaier S, Goenechea J, Ehlgen A, K?ster J, Bimmel D, Kuntz-Hehner S, Becher H, Tiemann K. Feasibility ofthe flash-replenishment concept in renal tissue: which parameters affect the assessment of the contrast replenishment? Ultrasound Med Biol, 2001, 27(7): 937- 944.
    30. Taylor GA, Barnewolt CE, Adler BH, Dunning PS. Renal cortical ischemia in rabbits revealed by contrast-enhanced power Doppler sonography. AJR Am J Roentgenol. 1998; 170(2): 417- 422.
    31. Claudon M, Barnewolt CE, Taylor GA, Dunning PS, Gobet R, Badawy AB. Renal blood flow in pigs: changes depicted with contrast-enhanced harmonic US imaging during acute urinary obstruction. Radiology. 1999; 212(3): 725- 731.
    32.李卓,龚渭冰,刘红梅,崔忠林,黄红波,孙煦勇.经静脉声学造影法与彩色多普勒法对移植肾急性排异反应诊断的对比研究第一军医大学学报2003; 23(5): 439- 441.
    33. Fishbane S, Durham JH, Marzo K, Rudnick M. N-acetylcysteine in the prevention of radiocontrast-induced nephropathy. J Am Soc Nephrol 2004; 15(2): 251-260.
    34. Waybill MM, Waybill PN. Contrast media-induced nephrotoxicity: identification of patients at risk and algorithms for prevention. J Vasc Interv Radiol 2001; 12(1): 3-9.
    35. Asif A, Preston RA, Roth D. Radiocontrast-induced nephropathy. Am J Ther 2003; 10(2): 137- 147.
    36. Hizoh I , Haller C. Radiocontrast-induced renal tubular cell apoptosis: hypertonic versus oxidative stress. Invest Radiol 2002; 37(8): 428- 434.
    37. Wang A, Holcslaw T, Bashore TM, Freed MI, Miller D, Rudnick MR, Szerlip H, Thames MD, Davidson CJ, Shusterman N, Schwab SJ. Exacerbation of radiocontrast nephrotoxicity by endothelin receptor antagonism. Kidney Int 2000;57(4): 1675- 1680.
    38. Torzilli G. Adverse effects associated with SonoVue use. Expert Opin Drug Saf 2005;4(3):399-401.
    39. Blomley M. Which US microbubble contrast agent is best for gene therapy? Radiology 2003;229(2):297-298.
    40. Jiménez C, Gracia R d, Aguilera A, Alonso S, Cirugeda A, Benito J, Regojo RM, Aguilar R, Warlters A, Gómez R, Largo C, Selgas R. In situ kidney insonation with microbubble contrast agents does not cause renal tissue damage in a porcine model. J Ultrasound Med 2008;27(11):1607-1615.
    41. Burns PN, Wilson SR, Muradali D, Powers JE, Fritzsch TT. Microbubble destruction is the origin of harmonic signals from FS 069. Radiology 1996; 201 (suppl):158–159.
    42. Mulvagh SL, Foley DA, Aeschbacher BC, Klarich KK, Seward JB. Second harmonic imaging of an intravenously administered echocardiographic contrast agent: Visualisation of coronary arteries and measurement of coronary blood flow. J Am Coll Cardiol 1996;27(6):1519-1525.
    43. Forsberg F, Liu JB, Chiou HJ, Rawool NM, Parker L, Goldberg BB. Comparison of fundamental and wideband harmonic contrast imaging of liver tumors. J Ultrasonics 2000;38(1-8):110-113.
    44. Verbeek XA, Ledoux LA, Willigers JM, Brands PJ, Hoeks AP. Experimental investigation of the pulse inversion technique for imaging ultrasound contrast agents. J Acoust Soc A m 2000,107(4):2281-2290.
    45. Kim AY, Choi BI, Kim TK, Kim KW, Lee JY, Han JK. Comparison of contrast-enhanced fundamental imaging, second harmonic imaging, and pulse-inversion harmonic imaging. Invest Radiol 2001,36(10):582-588.
    46. Lefèvre F, Correas JM, Brian?on S, Hélénon O, Kessler M, Claudon M. Contrast-enhanced sonography of the renal transplant using triggered pulse-inversion imaging: preliminary results. Ultrasound Med Biol. 2002; 28(3):303-314.
    47. Hancock J, Dittrich H, Jewitt DE, Monaghan MJ. Evaluation of myocardial, hepatic, and renal perfusion in a variety of clinical conditions using an intravenous ultrasound contrast agent (Optison) and second harmonicimaging. Heart 1999;81(6):636-641.
    48. Huber S, Steinbach R, Sommer O, Zuna I, Czembirek H, Delorme S. Contrast-enhanced power Doppler harmonic imaging-influence on visualization of renal vasculature. Ultrasound Med Biol 2000; 26(7):1109-1115.
    49. Lucidarme O, Kono Y, Corbeil J, Choi SH, Mattrey RF. Validation of ultrasound contrast destruction imaging for flow quantification. Ultrasound Med Biol 2003;29(12):1697-1704.
    50.蒋洁,王金锐,江凌,张晓丽,秦达,刘汀,崔立刚,葛辉玉.超声造影评价肾皮质血流灌注中华超声影像学杂志2006;15(7): 528-531.
    51. Greene ER, VentersMD, Avasthi PS, Conn RL, Jahnke RW. Noninvasive characterization of renal artery blood flow. Kidney Int 1981; 20:523-529.
    52. Krumme B, Hollenbeck M. Doppler sonography in renal artery stenosis--does the Resistive Index predict the success of intervention? Nephrol Dial Transplant. 2007;22(3):692-696.
    53. Krumme B, Blum U, Schwertfeger E, Flügel P, H?llstin F, Schollmeyer P, Rump LC. Diagnosis of renovascular disease by intra- and extrarenal Doppler scanning. Kidney Int 1996;50(4):1288-1292.
    54. Radermacher J, Chavan A, Bleck J, Vitzthum A, Stoess B, Gebel MJ, Galanski M, Koch KM, Haller H. Use of Doppler ultrasonography to predict the outcome of therapy for the renal artery stenosis. N Engl J Med 2001;344(6): 410-417.
    55. Gottlieb RH, Snitzer EL, Hartley DF, Fultz PJ, Rubens DJ. Interobserver and intraobserver variation in determining intrarenal parameters by Doppler sonography. AJR 1997;168(3): 627-631.
    56. Demirpolat G, Ozbek SS, Parildar M, Oran I, Memis A. Reliability of intrarenal Doppler sonographic parameters of renal artery stenosis. J Clin Ultrasound 2003;31(7):346-351.
    57. Handa N, Fukunaga R, Etani H, Yoneda S, Kimura K, Kamada T. Efficacy of Doppler-echo examination for evaluation of renovascular disease. Ultrasound Med Biol 1988;14(1):1-5.
    58. Kliewer MA, Tupler RH, Carroll BA, Paine SS, Kriegshauser JS, Hertzberg BS, Svetkey LP. Renal artery stenosis: analysis of Dopp ler waveform parameters and tardus - parvus pattern. Radiology 1993,189(3):779-787.
    59. Sitzer M, Furst G, Siebler M, Steinmetz H. Usefulness of an intravenous contrast medium in the characterization of high-grade internal carotid stenosis with color Doppler-assisted duplex imaging. Stroke 1994;25(2):385-389.
    60. Melany ML, Grant EG, Duerinckx AJ. Ability of a phase shift US contrast agent to improve imaging of the main renal arteries. Radiology 1997;205(1):147-152.
    61. Claudon M, Rohban T. Levovist (SH U 508 A) in the diagnosis of renal artery stenosis: results of controlled multicentre study. Radiology 1997;205:242.
    62. Claudon M, Plouin PF, Baxter GM, Rohban T, Devos DM. Renal arteries in patients at risk of renal arterial stenosis: multicenter evaluation of the echo-enhancer SH U 508 A at Color and spectral Doppler US. Radiology 2000;214(3):739-746.
    63. Lencioni R, Pinto S, Cioni D, Bartolozzi C. Contrast-enhanced doppler ultrasound of renal artery stenosis: prologue to a promising future. Echocardiagraphy 1999;16 (7, Pt 2):767-773.
    64. Calliada F, Bottinelli O, Campani R, et al. Optimization of color and spectral scanning of the renal arteries using a US contrast agent and second harmonic imaging (abstract). Radiology 1997;205:241.
    65. Argalia G, Cacciamani L, Fazi R, Salera D, Giuseppetti GM. Contrast-enhanced sonography in the diagnosis of renal artery stenosis: comparison with MR-angiography. Radiol Med. 2004;107(3):208-217.
    66.郭文彬,张楠,张蕾,朱梅,梁皓,李文强,徐景涛.经静脉超声造影量化评价肾动脉狭窄的实验研究.中华超声影像学杂志2005;14 ( 8 ):621- 624.
    67. Teixeira OU, Bortolotto LA, Silva HB. The contrast-enhanced Doppler ultrasound with perfluorocarbon exposed sonicated albumin does not improve the diagnosis of renal artery stenosis compared with angiography. J Negat Results Biomed 2004;20:3:3.
    68. Nilsson A. Contrast-enhanced ultrasound of the kidneys. Eur Radiol 2004; 14(Suppl 8):P104–P109.
    69. Correas JM, Claudon M, Tranquart F, Hélénon AO. The kidney: imaging with microbubble contrast agents. Ultrasound Q 2006;22(1):53–66.
    70. Girard MS, Mattrey RF, Baker KG, Peterson T, Deiranieh LH, Steinbach GC. Comparison of standard and second harmonic B-mode sonography in the detection of segmental renal infarction with sonographic contrast in a rabbit model. J Ultrasound Med 2000;19(3):185-192.
    71. Bertolotto M, Martegani A, Aiani L, Zappetti R, Cernic S, Cova MA. Value of contrast-enhanced ultrasonography for detecting renal infarcts proven by contrast enhanced CT. A feasibility study. Eur Radiol. 2008;18(2):376-383.
    72. Fischer T, Filimonow S, Mutze S, Morgera S, Thomas A. Renal transplant: color duplex ultrasound and contrast-enhanced ultrasound in the evaluation of the early postoperative phase and surgical complications. Rofo. 2006; 178(12):1202-1211.
    73. Catalano O, Lobianco R, Mattace Raso M, Siani A. Blunt hepatic trauma: evaluation with contrast-enhanced sonography: sonographic findings and clinical application. J Ultrasound Med 2005;24(3):299-310.
    74. Valentino M, Serra C, Zironi G, De Luca C, Pavlica P, Barozzi L. Blunt abdominal trauma: emergency contrast-enhanced sonography for detection of solid organ injuries. AJR 2006;186(5):1361-1367.
    75. Thorelius L. Contrast-enhanced ultrasound in trauma. Eur Radiol 2004;
    14(Suppl 8):P43-P52.
    76. Kim JH, Eun HW, Lee HK, Park SJ, Shin JH, Hwang JH, Goo DE, Choi DL. Renal perfusion abnormality. Coded harmonic angio US with contrast agent. Acta Radiol 2003;44(2):166-171.
    77. Molitoris BA. Transitioning to therapy in ischemic acute renal failure (Comment). J Am Soc Nephrol 2003,14(1):265-267.
    78.张文,陈楠,陈晓农,任红,潘晓霞,俞海瑾,郝翠兰.急性肾功能衰竭临床与病理类型分析.中华肾脏病杂志2004;18 (20): 16-19.
    79.苗立英,秦达,王金锐,张晓丽,赵博.超声造影对弥漫性肾病肾血流灌注的评价.中华医学超声杂志(电子版) 2007;4(2):98-101.
    80.马云飞,杜联芳.超声造影定量分析诊断慢性肾功能衰竭的优势.中国临床医学影像杂志2008;19 (11):787-789.
    81.董怡,王文平,丁红,林希元,范培丽,曹佳颖,徐本华.超声造影定量技术评价兔急性肾功能衰竭早期灌注改变.中国医学科学院学2008,30 (1):4–48.
    82.江凌,王金锐,蒋洁,崔立刚,秦达,张晓丽,刘汀,侯毅.灰阶超声造影对兔急性肾衰竭肾皮质血流灌注的评价.中华超声影像学杂2007;16(3):265-268.
    83. Quaia E, Siracusano S, Bertolotto M, Monduzzi M, Mucelli RP. Characterization of renal tumours with pulse inversion harmonic imaging by intermittent high mechanical index technique: initial results. Eur Radiol 2003;13(6):1402-1412.
    84. Tamai H, Takiguchi Y, Oka M, Shingaki N, Enomoto S, Shiraki T, Furuta M, Inoue I, Iguchi M, Yanaoka K, Arii K, Shimizu Y, Nakata H, Shinka T, Sanke T, Ichinose M. Contrast-enhanced ultrasonography in the diagnosis of solid renal tumors. J Ultrasound Med 2005;24(12):1635-1640.
    85. Park BK, Kim SH, Choi HJ. Characterization of renal cell carcinoma using agent detection imaging comparison with gray-scale US. Korean J Radiol2005;6(3):173-178.
    86. Wink M, de la Rosette JJ, Laguna P, Lagerveld BW, Wijkstra H. Ultrasonography of renal masses using contrast pulse sequence imaging: a pilot study. J Endourol. 2007;21(5):466-472.
    87. Ascenti G, Zimbaro G, Mazziotti S, Gaeta M, Settineri N, Scribano E. Usefulness of power Doppler and contrast-enhanced sonography in the differentiation of hyperechoic renal masses. Abdom Imaging 2001;26(6):654-660.
    88.曾功君,高云华,谭开彬,刘卫金,刘平,卞爱娜.超声造影与增强CT对兔肾VX2肿瘤时间强度曲线的对比研究.中国超声医学杂志2005;21 (9): 652 - 655.
    89. Correas JM, Claudon M, Tranquart F, Helenon O. Contrast-enhanced utrasonography: renal applicaions. J Radiol 2003; 84 (12 Pt 2):2041-2054.
    90. Krause J, Nilsson A. Targeted tumor biopsy under contrast-enhanced ultrasound guidance. Eur Radiol 2003;13(Suppl 4):L239-L240.
    91. Akbar SA, Jafri SZ, Amendola MA, Madrazo BL, Salem R, Bis KG. Complications of renal transplantation. Radiographics 2005;25(5):1335- 1356.
    92. Kmetec A, Bren AF, Kandus A, Fettich J, Buturovic-Ponikvar J. Contrast-enhanced ultrasound voiding cystography as a screening examination for vesicoureteral reflux in the follow-up of renal transplant recipients: a new approach. Nephrol dial transplant 2001;16(1):120-123.
    93. Rush D. Protocol transplant biopsies: an underutilized tool in kidney transplantation. Clin J Am Soc Nephrol 2006;1(1):138-143.
    94. Kim JH, Eun HW, Lee HJ, Goo DE, Choi DL. Clinical use of renal perfusion imaging by means of harmonic sonography with a microbubble contrast agent in patients after renal transplantation: preliminary study. J Ultrasound Med 2005;24(6):755-762.
    95. Fischer T, Mühler M, Kr?ncke TJ, Lembcke A, Rudolph J, Diekmann F,Ebeling V, Thomas A, Greis C, Hamm B, Filimonow S. Early postoperative ultrasound of kidney transplants: evaluation of contrast medium dynamics using time-intensity curves. Rofo. 2004;176(4):472-477.
    96. Fischer T, Dieckh?fer J, Mühler M, Lembcke A, Morgera S, Budde K, Neumayer HH, Ebeling V, Thomas A, Filimonow S. The use of contrast-enhanced US in renal transplant: first results and potential clinical benefit. Eur Radiol. 2005;15 (Suppl 5):E109-E116.
    97. Fischer T, Filimonow SJ, Dieckhǒfer J, Slowinski T, Mühler M, Lembcke A, Budde K, Neumayer HH, Ebeling V, Giessing M, Thomas A, Morgera S. Improved diagnosis of early kidney allograft dysfunction by ultrasound with echo enhancer-a new method for the diagnosis of renal perfusion. Nephrol Dial Transplant 2006;21(10): 2921-2929.
    98.龚渭冰,罗国新,王莎莎.超声造影在移植肾急性排斥反应的初步临床研究临床超声医学杂志2008;10(1):7-9.
    99.龚渭冰,马艳,侯连兵,贺京军.超谐波声学造影对移植肾急性排斥血流灌注的实验研究中华超声影像学杂志2005;14(8):625-628
    100.马艳,龚渭冰,侯连兵,马俊杰.移植肾急性排斥血流灌注与生化指标变化关系的实验研究中国超声医学杂志2005;21(7):490-493.
    101.Seron D, Moreso F, Bover J, Condom E, Gil-Vernet S, Ca?as C, Fulladosa X, Torras J, Carrera M, GrinyóJM, Alsina J. Early protocol renal allograft biopsies and graft outcome. Kidney Int 1997;51(1):310–316.
    102.Fujisawa M, Ono H, Isotani S, Higuchi A, Iijima K, Yoshiya K, Arakawa S, Matsumoto O, Nakamura H, Kamidono S, Yoshikawa N.Significance of chronic transplant nephropathy on early protocol biopsies for graft outcome in pediatric renal transplantation. Transplant Proc 1999;31(3):1687-1690.
    103.Morath C, Ritz E, Zei M. Protocol biopsy: what is the rationale and what is the evidence? Nephrol Dial Transplant 2003; 18(4): 644-647.
    104.Schwenger V, Zeier M. Contrast-enhanced sonography as early diagnostic tool of chronic allograft nephropathy. Nephrol Dial Transplant 2006;21(10):2694-2696.
    105.Schwenger V, Korosoglou G, Hinkel UP, Morath C, Hansen A, Sommerer C, Dikow R, Hardt S, Schmidt J, Kücherer H, Katus HA, Zeier M. Real-time contrast-enhanced sonography of renal transplant recipients predicts chronic allograft nephropathy. Am J Transplant 2006;6(3):609-615.
    106.Scholbach T, Girelli E, Scholbach J. Dynamic tissue perfusion measurement: a novel tool in follow-up of renal transplants. Transplantation 2005;79(12): 1711-1716.
    107.Jakobsen JA, Oyen R, Thomsen HS, Morcos SK. Safety of ultrasound contrast agents. Eur Radiol 2005;15(5):941-945.
    108.Mor-Avi V, David D, Akselrod S, Bitton Y, Choshniak I. Myocardial regional blood flow: quantitative measurement by computer analysis of contrast enhanced echocardiographic images. Ultrasound Med Biol 1993;19(8):619-633.
    109.Skyba DM, Jayaweera AR, Goodman NC, Ismail S, Camarano G, Kaul S. Quantification of myocardial perfusion with myocardial contrast echocardiography during left atrial injection of contrast: implications for venous injection. Circulation 1994;90(3):1513-1521.
    110.Wei K, Skyba DM, Firschke C, Jayaweera AR, Lindner JR, Kaul S. Interactions between microbubbles and ultrasound: in vitro and in vivo observations. J Am Coll Cardiol 1997;29(5):1081-1088.
    111.Kuntz-Hehner S, Goenechea J, Pohl C, Schlosser T, Veltmann C, Lentz C, Lohmaier S, Ehlgen A, Omran H, Becher H, Tiemann K. Continuous-infusion contrast-enhanced US: in vitro studies of infusion techniques with different contrast agents. Radiology 2001;220(3):647-654.
    112.Albrecht T, Urbank A, Mahler M, Bauer A, DoréCJ, Blomley MJ, Cosgrove DO, Schlief R. Prolongation and optimization of Doppler enhancement with a microbubble US contrast agent by using continuous infusion: preliminary experience. Radiology 1998;207(2):339-347.
    113.Miller JJ, Tiemann K, Podell S, Doerr Stevens JK, Kuvelas T, Greener Y, Killam AL, Goenechea J, Dittrich HC, Becher H. In vitro, animal, and human characterization of OPTISON infusions for myocardial contrast echocardiography. J Am Soc Echocardiogr 1999;12(12):1027-1034.
    114.Okada M, Hoffmann CW, Karl J. Wolf, Albrecht T. Bolus versus continuous infusion of microbubble contrast agent for liver US: initial experience. Radiology 2005;237(3):1063-1067.
    115.Kishimoto N, Mori Y, Nishiue T, Nose A, Kijima Y, Tokoro T, Yamahara H, Okigaki M, Kosaki A, Iwasaka T. Ultrasound evaluation of valsartan therapy for renal cortical perfusion. Hypertens Res. 2004;27(5):345-349.
    116.谢文杰,肖文星,宾建平,谢晋国,查道刚,刘伊丽.对比超声定量评价肾髓质血流灌注.第一军医大学学报2005;25(7):778-781.
    117.肖文星,宾建平,谢晋国,刘俭,查道刚;许顶立.对比超声定量评价肾血流量的实验研究.第一军医大学学报2005;25(4):411-415.
    118.Eisenbrey JR, Burstein OM, Wheatle MA. Effect of molecular weight and end capping on poly(lactic-co-glycolic acid) ultrasound contrast agents. Polym Eng Sci 2008;48:1785-1792.
    119.Troppmann C, Gillingh KJ, Bendetti E, Almond PS, Gruessner RW, Najarian JS, Matas AJ. Delayed graft function, acute rejection, and outcome after cadaver renal transplantation. Transplant 1995;59(7):962-968.
    120.Land W, Messmer K. The impact of ischemia/reperfusion injury on specific and non-specific early and late chronic events after organ transplantation. Transplant Rev 1996;10:108-127.
    121..Zager RA, Gmur DJ, Bredl CR, Eng MJ. Degree and time sequence of hypothermic protection against experimental ischemic acute renal failure.Circ Res. 1989;65(5):1263-1269.
    122.张世林,闵志廉,朱有华,韩命龙.原位灌注大鼠冷缺血-再灌注损伤模型的建立.第二军医大学学报. 2000;21(11):S3-S4.
    123.陈恕求,陈明,孙则禹,张古田,李俊龙,彭涛.大鼠肾脏缺血再灌注损伤模型的建立及稳定性观察中国比较医学杂志2006;16(2):100-103
    124.Paul LC. Chronic allograft nephropathy: an update. Kidney Int 1999; 56(3):783-793
    125.Azuma H, Nadeau K, Takada M, Tilney NL. Initial ischemia/reperfusion injury influences late functional and structural changes in the kidney. Transplantation proceedings 1997;29(1-2):1528-1529
    126.126. Yilmaz S, Paavonen T, H?yry P. Chronic rejection of rat renal allografts.II. The impact of prolonged ischemia time on transplant histology. Transplantation 1992;53(4):823-827
    127.Lu CY, Penfield JG, Kielar ML, Vazquez MA, Jeyarajah DR. Hypothesis: is renal allograft rejection initiated by the response to injury sustained during the transplant process? Kidney Int 1999;55(6):2157-2168
    128.128. Paller M S. Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Invest 1984;74(4):1156-1164.
    129.Bankir L, Kriz W, Goligorsky M, Nambi P, Thomson S, Blantz RC. Vascular contributions to pathogenesis of acute renal failure. Ren Fail. 1998; 20(5):663-677
    130.Arai H, Hori S, Aramori I, Ohkubo H, Nakanishi S. Cloning and expression of cDNA endothelin receptor. Nature 1990;348(6303):730-732.
    131.Firth JD, Ratcliffe PJ. Organ distribution of the three rat endothelin messendger RNAs and the effects of ischemia on renal gene expression. J Clin Invest 1992;90(3):1023-1031.
    132.Siegel NJ, Gunstream SK, Handler RI, Kashgarian M. Renal function and cortical blood flow during the recovery phase of acute renal failure. Kidney International 1977;12(3):199-204.
    133.Weight SC, Furness PN, Nicholson ML. Nitric oxide generation is increased in experimental renal warm ischaemia-reperfusion injury. Br J Surg 1998;
    85(12):1663-1668.
    134.Schumacher M, Van Vliet BN, Ferrari P. Kidney transplantation in rats: anappraisal of surgical techniques and outcome. Microsurgery. 2003;23(4): 387-94.
    135.Fisher B, Lee S. Microvascular surgical techniques in research, with special references to renal transplantation in the rat. Surgery 1965;58:904-914.
    136.Daniller A, Buchholz R, Chase RA. Renal transplantation in rats with the use of microsurgical techniques: a new method.Surgery 1968;63(6):956- 961.
    137.Choi HK, Stowe N, Novick A. Comparison of end-to-end and telescoped arterial anastomoses in renal transplantation in rats. J Microsurg 1981;3(2):85-88.
    138.Savas CP, Nolan MS, Lindsey NJ, Boyle PF, Slater DN, Fox M. Renal transplantation in the rat-a new simple, non-suturing technique. Urol Res 1985;13(2):91-93.
    139. Fabre J, Lin SH, Morris P. Renal transplantation in the rat.Detail of the techniques. Aust N Z J Surg 1971;41(1):69-75.
    140.Bramis JP, Sloane CE, Schanzer H, Burrows L, Taub R. Microsurgical renal transplantation techniques in small animals. Invest Urol 1977;15(2):143- 146.
    141.刘小友,于立新,徐达传,孙煦勇,袁谦.大鼠肾脏移植的应用解剖.中国临床解剖学杂志2004;22(3):307-309.
    142.黄赤兵,吴军,方玉华,罗高兴,易绍萱.一种用于大鼠肾移植模型的肾血管体外结扎方法.上海实验动物科学2001;21(2):82-84.
    143.Coffman TM, Sanfilippo FP, Brazy PC, Yarger WE, Klotman PE. Bilateral native nephrectomy improves renal isograft function in rats. Kidney Int. 1986;30(1):20-26.
    144.Sijpkens YW, Doxiadis II, Mallat MJ, de Fijter JW, Bruijn JA, Claas FH, Paul LC. Early versus late acute rejection episodes in renal transplantation. Transplantation 2003;75(2):204-208.
    145.Tublin ME, Bude RO, Platt JF. The resistive index in renal Dopplersonography: where do we stand? AJR 2003;180(4):885-892.
    146.Chapman JR, O’Connell PJ, Nankivell BJ. Chronic renal allograft dysfunction. J Am Soc Nephrol 2005; 16(10):3015-3026.
    147.Perrella R, Duerincky A, Tessler F, Danovitch GM, Wilkinson A, Gonzalez S, Cohen AH, Grant EG. Evaluation of renal transplant dysfunction by duplex Doppler sonography: a prospective study and review of the literature. Am J Kidney Dis 1990;15(6):544-550.
    148.Krumme B, Grotz W, Kirste G, Schollmeyer P, Rump LC. Determinants of intrarenal Doppler indices in stable renal allografts. J Am Soc Nephrol 1997; 8(5):813-816.
    149.Morath C, Ritz E, Zeier M. Protocol biopsy: what is the rationale and what is the evidence? Nephrol Dial Transplant 2003;18(4):644-647.
    150.王巍,毕旭东.肾移植急性排斥反应免疫生物学诊断指标的研究进展.国际移植和血液净化杂志2007;5(1):26-29.
    151.王继纳,朱同玉.尿蛋白质组学在移植肾急性排斥中的研究进展.中国临床医学2007;14 (1):94-96.
    152.Nicholson ML, Wheatley TJ, Doughman TM, White SA, Morgan JD, Veitch PS, Furness PN. A prospective randomized trial of three different sizes of core-cutting needle for renal transplant biopsy. Kidney Int 2000; 58(1):390-395.
    153.Solez K, Colvin RB, Racusen LC, Haas M, Sis B, Mengel M, Halloran PF, Baldwin W, Banfi G, Collins AB, Cosio F, David DS, Drachenberg C, Einecke G, Fogo AB, Gibson IW, Glotz D, Iskandar SS, Kraus E, Lerut E, Mannon RB, Mihatsch M, Nankivell BJ, Nickeleit V, Papadimitriou JC, Randhawa P, Regele H, Renaudin K, Roberts I, Seron D, Smith RN, Valente M. Banff 07 Classification of Renal Allograft Pathology: Updates and Future Directions. Am J Transplant. 2008;8(4):753-760.
    154.Dragun D, Hoff U, Park JK, Qun Y, Schneider W, Luft FC, Haller H. Ischemia-reperfusion injury in renal transplantation is independent of theimmunologic background. Kidney Int. 2000;58(5):2166-2177.
    155.Sun K, Kiss E, Bedke J, Stojanovic T, Li Y, Gwinner W, Gr?ne HJ. Role of xanthine oxidoreductase in experimental acute renal-allograft rejection. Transplantation. 2004;77(11):1683-1692.
    156.Gr?ne HJ, Weber C, Weber KS, Gr?ne EF, Rabelink T, Klier CM, Wells TN, Proudfood AE, Schl?ndorff D, Nelson PJ. Met-RANTES reduces vascular and tubular damage during acute renal transplant rejection: blocking monocyte arrest and recruitment. FASEB J. 1999;13(11):1371-1383.
    157.Yang D, Ye Q, Williams DS, Hitchens TK, Ho C. Normal and transplanted rat kidneys: diffusion MR imaging at 7 T. Radiology. 2004;231(3):702-709.
    158.Wang JJ, Hendrich KS, Jackson EK, Ildstad ST, Williams DS, Ho C. Perfusion quantitation in transplanted rat kidney by MRI with arterial spin labeling. Kidney Int. 1998;53(6):1783-1791.
    159.Deng DX, Jiang J, Garcia B, Zhong R, Chakrabarti S. Endothelin-1, endothelin-3 and their receptors (endothelin(A) and endothelin(B)) in chronic renal transplant rejection in rats.Transpl Int. 2000;13(3):175-182.
    160.Munger KA, Coffman TM, Griffiths RC, Fogo A, Badr KF. The effects of surgery and acute rejection on glomerular hemodynamics in the transplanted rat kidney. Transplantation. 1993;55(6):1219-1224.
    161.Lear JL, Raff U, Jan R, Horgan JG. Quantitative measurement of renal perfusion following transplant surgery. J Nuci Med 1988;29(10):1656-1661.
    162.Herrero-Fresneda I, Torras J, Cruzado JM, Condom E, Vidal A, Riera M, Lloberas N, Alsina J, Grinyo JM. Do alloreactivity and prolonged cold ischemia cause different elementary lesions in chronic allograft nephropathy? Am J Pathol. 2003;162(1):127-137.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700