用户名: 密码: 验证码:
甜瓜APX和Mlo基因的克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甜瓜是重要的瓜类作物,在世界范围内广泛栽培。近年来,甜瓜白粉病逐渐成为栽培中的主要病害,在露地以及保护地生产条件下,发病后均可导致严重减产,品质下降。常见病原菌主要为瓜单丝壳属白粉菌和二孢白粉菌,瓜单丝壳白粉菌的危害性要大于二孢白粉菌。生产上主要通过常规杂交选育的方法,培育甜瓜抗白粉病品种,但是由于白粉病原菌生理小种的演替速度很快,所以抗病育种往往落后于小种更替。施用化学杀菌剂是目前防控白粉病的主要手段,但又往往损伤了叶片和带来了污染。因此,通过基因工程,创造广谱抗白粉病的甜瓜种质具有非常重要的意义。
     本研究从甜瓜中克隆到APX和Mlo家族基因,研究了各基因在白粉病胁迫条件的表达,发现APX和CmMlo家族基因在白粉病发病过程中具有一定的相关性,其中CmMlo2在白粉病发病过程中具有重要作用,可能参与了白粉病抗性机制的负调控过程,缺失Mlo会降低白粉病入侵的门槛。将CmMlo2构建了RNA干扰载体,转化甜瓜,获得了抗白粉病的To代转基因植株,实验取得的主要结果如下:
     1.利用同源序列设计兼并引物,通过RT-PCR方法从甜瓜叶片中克隆到抗坏血酸过氧化物酶APX基因的中间片段,再通过5′RACE和3′RACE分别克隆得到5′端片段和3′端片段,拼接后设计特异引物扩增到全长1012bp cDNA,ORF为750bp,编码249个氨基酸的多肽,分子量大约为27.3kDa。同源序列比对表明,甜瓜APX基因和黄瓜、番茄、玉米、小麦、大麦、拟南芥等APX基因高度同源,将该基因命名为CmAPX,GenBank登录号:EF693949。根据获得的cDNA序列,设计引物,从基因组扩增得到甜瓜APX的gDNA序列,与cDNA序列比对发现CmAPX包含10个外显子,9个内含子,所有内含子均符合GT-AG剪切规则。
     2.构建了pET24-CmAPX原核表达载体,诱导1、2、3、4、5h后蛋白表达量分别占总融合蛋白的40%、47.5%、50.6%、51.7%、51.6%。表明CmAPX基因在pET24a(+)载体中获得高效表达。表达产物具有APX酶活性,说明CmAPX编码抗坏血酸过氧化物酶基因。
     3.通过RT-PCR半定量,甜瓜APX基因在不同器官中呈非特异性表达,在叶片中的mRNA含量明显高于根、茎,花及果实。经白粉病诱导0、1、3、5、7d后,表达量在5d时达到最高值,和叶片中酶活性变化一致,表明CmAPX可能参与了白粉病生物胁迫过程。
     4.根据大麦、拟南芥等Mlo基因的保守序列,设计兼并引物,扩增得到了3个甜瓜Mlo类似中间片段,进一步通过Race技术,获得了3个cDNA全长,分别命名为CmMlo1,CmMlo2和CmMlo3。其中CmMlo1全长1551bp,编码516个氨基酸;CmMlo2全长1713bp,编码570个氨基酸;CmMlo3全长1464bp,编码487个氨基酸序列比对结果表明,CmMlo属于基因家族,和拟南芥的Mlo基因同源性在70%左右。定量和半定量分析结果表明,CmMlo在甜瓜组织中呈特异性表达,在受到白粉病胁迫条件下,CmMlo2表达量上调,CmMlo2可能参与了白粉病发病的负调控过程。
     5.跨膜蛋白预测表明,CmMlo2为跨膜蛋白。具有7个跨膜螺旋结构。构建pROK-CmMlo2-GFP融合蛋白并转化洋葱表皮细胞,结果表明,CmMlo2蛋白定位于细胞膜。将pROK-CmMlo2-GFP融合蛋白转化烟草,野生型烟草出现了荧光,构建发夹结构pFGC1008-CmMlo2干扰载体,转入荧光烟草可以导致荧光消失,表明干扰载体对靶序列是有效的。
     6.建立了稳定高效的甜瓜再生体系,优化了甜瓜遗传转化体系,通过农杆菌介导法转化感白粉病甜瓜材料,获得了转化植株。PCR结果及荧光定量分析表明,pFGC1008-CmMlo2已经整合到甜瓜基因组,接种白粉病鉴定表明,转化植株具有白粉病抗性,叶片表面未见白粉病菌丝生长。转化植株出现卷须早,长势较对照(野生型植株)弱,叶片大小、色泽没有明显区别,RNAi植株没有出现明显的生理缺陷。
Melon (Cucumis melon L.) is a valuable cash crop grown throughout the word. It is a member of the genus Cucumis, in the family Cucurbitaceae. Powdery mildew is one of the most important limiting factors for cucurbits production. Powdery mildew is a severe disease which causes the reduction of melon production in worldwide. As the most characteristic visual symptom the disease induces development of a whitish, talcum-like powdery growth on stems, petioles and leaf surfaces. Infected leaves usually wither and die, and plants senesce prematurely. It frequently causes significant yield losses and reduction of fruit quality in agricultural settings, including field farming and greenhouse. It has been suggested that recombination may play an important role in the virulence variation of P. xanthii in cucurbits. So it is difficulty to develop a normal breeding method to obtain melon cultivars resistance to different fungal races. Therefore, through genetic engineering to obtain the durable, broad-spectrum resistance variant of melon is very important.
     We successfully cloned the APX and Mlo family genes form muskmelon. The analysis showed that these genes maybe related with occurrence of the powdery mildew. The result of RT -PCR and Real-time PCR indicate that the CmMlo2 functions as a negative regulator that suppressed plant defenses in uninfected tissues. Loss of MLO reduces the threshold at which cells respond defensively to powdery mildew infections. We obtained the translated melon plant after constructed RNAi vector.
     1. The RT PCR and RACE methods were used to obtain the cDNA sequence of an ascorbate peroxidase (APX) gene after the leaf was induced with powdery mildew. A pair of primers was designed for obtaining the cDNA and genomic DNA sequence. The cDNA length of APX gene is 1047bp with a 750bp ORF encoded a 249 amino acid and the molecular weight of APX protein is 27.3 kDa. The analysis showed that the CmAPX genomic DNA contained 10 extrons and 9 introns .The identity of the amino acid sequence deduced from the cDNA with the APX family of other homologous members was about 74-97%.
     2. A Full-length of ORF was sub-cloned into prokaryotic expression vector pET24a. The recombinant proteins had high expression level in E.coli. This is the first report on cloning and sequencing the APX gene from melon.
     3. For determining the function of CmAPX we inoculated the leaves with powdery mildew, moderate accumulation of CmAPX mRNA was observed in initial leaves, and then increased during infection process. In the melon leaves the mRNA level sharply increased after 3d,and remained high to 5d, after 7d the mRNA level reached to normal level. We also detected the APX activity of the melon leaves. The results showed that the APX activity was increased during the leaves was induced with powdery mildew .The activity reached a maximum level after the leaves induced within 5d. These results suggested that CmAPX involved in the infection process of powdery mildew.
     4. The RT-PCR and RACE methods were used to obtain the cDNA sequence of three Mlo genes of muskmelon after the leaves were induced with powdery mildew. The three Mlo genes of melon were designated CmMlo1 (GeneBank Acc: FJ713541), CmMlo2 (GeneBank Acc: FJ713542) and CmMlo3 (GeneBank Acc: FJ713543). CmMlo1 was 1551 bp in length and contained a putative ORF encoding 516 amino acid residues, while CmMlo2 cDNA was 1713 bp in length and contained a putative ORF encoding 570 amino acid residues. CmMlo3 was 1464 bp in length and contained a putative ORF encoding 487 amino acid residues. To detect similarities and differences in individual amino acid sequence positions, we aligned the deduced amino acid sequence of CmMlo with the sequence of other plant Mlo in the database of NCBI Blast search. The comparison of identities among the homologues isolated in this study indicated that CmMlo1, CmMlo2 and CmMlo3 encode polypeptides that are highly sequence related to barley Mlo, Arabidopsis AtMLO2, AtMLO6, and AtMLO12. Semi-quantitative RT-PCR and Real-time PCR indicated Cmmlo2 may play a important role in occurrence of powdery mildew.
     5. Predicted topology of Cmmlo2 and assays of pROK-Cmmlo2-GFP fusion protein in onion showed Cmmlo2 is an integral plasma membrane-localized protein.
     6. After The efficient of dsRNA constructs were examined via Cmmlo2-GFP fusion protein and pFGC1008-Cmmlo2 were Co-transformation in Nicotiana benthamiana the dsRNA constructs were introduced into Agrobacterium tumefaciens and transformed into melon wild type with the methods of Agrobacterium-mediated leaf disc transformation. The material of broad-spectrum powdery mildew resistance against P. xanthii in muskmelon was obtained by ihpRNAi-mediated knock-down of Cmmlo2.
引文
包海清,许勇,杜永臣,李劲松,杨晓峰.海南三亚地区葫芦科作物白粉病菌生理小种分化的鉴定.长江蔬菜2008(1):49-51
    陈利刚.大麦Mlo基因功能的细胞生物学研究.浙江大学硕士论文2006
    陈利锋,叶茂炳.抗坏血酸与小麦抗赤霉病性的关系.植物病理学报1997(27):113-118
    陈慰峰 膜蛋白结构研究方法新进展.生命科学2003(5):78-81
    陈锋.小麦Mlo基因原核表达、抗体制备及免疫金标记.浙江大学硕士论文2004
    程振家.甜瓜(Cucumis melo L.)白粉病抗性遗传机制及抗病基因AFLP分子标记研究.南京农业大学硕士论文2006
    程振家,王怀松,张志斌,郭世荣.甜瓜白粉病抗性遗传机制研究.江苏农业科学2006224-225
    蔡润,黄伟华.甜瓜子叶离体培养直接再生不定芽的形态学和解剖学观察.武汉植物学研究2002(20):338-342
    葛松,赵晓琴,李冠.新疆甜瓜组培体系的优化及抗病转基因研究.新疆大学学报2003(20):55-58
    何启伟,方智远.我国蔬菜科学技术发展与展望.中国科技出版社 北京 1998
    黄丹枫,李慧群.网纹甜瓜组织培养技术研究.上海蔬菜1991(4):31-32
    林德佩.甜瓜基因及其育种利用(上).长江蔬菜1999(1):32-34
    刘文革.甜瓜基因目录.中国西瓜甜瓜2004(4):44-45
    刘君璞.我国无公害西瓜甜瓜的生产现状与发展建议.中国西瓜甜瓜2003(4):1-3
    刘志文,沙爱华,王英.活性氧物质在植物抗病中的作用.安徽农业科学2005(33):1705-1707
    刘志学,张旭.用LBA4404/pcAMBIA系列转化水稻的最佳条件.复旦学报:自然科学版1999(38):439-443
    刘秀波,崔琦,崔崇士.瓜类白粉病抗性育种研究进展.东北农业大学学报2005(36):794-798
    刘曼西,于秀芝.有机酸对马铃薯多酚氧化酶活性的影响(简报).植物生理学通讯1991(27):350-353
    吕佩珂,李明远,吴钜文.中国蔬菜病虫原色图谱.农业出版社 北京 1992
    马国斌,王鸣.甜瓜组织培养再生体系的比较研究.中国西瓜甜瓜1999(2):2-6
    马国斌,王鸣.西瓜和甜瓜组织培养中外植体的极性现象和敏感部位.果树科学1999(16):232-234
    马跃.中国西瓜甜瓜业21世纪进入WTO后的发展探析.中国西瓜甜瓜2000(4):38-40
    屈振淙.长春地区黄瓜白粉病菌的鉴定.吉林农业大学学报1982(2):32-34
    沈文飚,黄丽琴.植物抗坏血酸过氧化物酶.生命的化学1997(17):24-26
    陶兴林,黄永红,陆璐,赵长增.2个甜瓜品种高效再生体系的建立.西北植物学报 2005(25):806-811
    王三根,汤学军.油菜素甾醇的抗坏血酸对水稻幼苗抗寒性的研究.西南农业大学学报1994(16):376-379
    王全华.葡萄糖氧化酶(GO)基因在番茄中的遗传转化及其抗病机理研究.山东农业大学博士论文2005
    王育花,赵森,陈芬,肖国樱.利用实时荧光定量PCR法检测转基因水稻外源基因拷贝数的研究.生命科学研究2007(11):301-305
    王建设,陈杭.甜瓜抗白粉病鉴定.华北农学报2000(15):125-128
    王娟,邓建新,宫国义,郭绍贵,王倩,许勇.甜瓜抗白粉病育种研究进展.中国瓜菜2006(1):33-36
    王娟,宫国义,郭绍贵,王倩,许勇.北京地区瓜类蔬菜白粉病菌生理小种分化的初步鉴定.中国蔬菜2006(8)
    王海华,曾富华.镍处理对水稻叶片H_2O_2积累和抗病的诱导效应.植物生理学报2001(27):61-65
    王萍,栾非时,陈克农,窦宝旗.4种染色方法对甜瓜白粉病菌染色效果的观察比较.菌物学报2008(27):673-678
    王关林,方宏筠.植物基因工程.科学出版社 北京 2002
    王鸣.甜瓜组织培养再生体系的比较研究.中国西瓜甜瓜1999(2):68-71
    吴明珠,伊鸿平.哈密瓜南移东进生态育种与有机生态型无土栽培技术研究.中国工程科学2000(2):83-88
    谢文杰.小麦Tamlo基因家族成员片段的克隆.西北农林科技大学博士论文2001
    徐志豪,寿伟林,黄凯美,周胜军.白粉病菌的生理小种及其对不同基因型甜瓜的致病性(英文).浙江农业学报1999(5):84-86
    叶陈亮,柯玉琴.抗坏血酸浓度对青花菜花蕾衰老的影响.福建省农科院学报1996(11):43-47
    于喜艳,何启伟.甜瓜子叶组织培养的研究.山东农业科学2002(002):22-23
    张永兵.甜瓜细胞遗传学、单倍体创制及抗蔓枯病分子标记.南京农业大学学位论文2007
    张立杰,王建设,唐晓伟.中国香瓜与菜瓜地方品种资源白粉病抗性评价.干旱地区农业研究2003(21):33-36
    张晓明,惠长敏,曲振环.甜瓜种质资源亲缘关系的聚类分析.中国蔬菜2006(B10):67-69
    张维静,陆海,杜希华抗坏血酸过氧化物酶在植物抵抗氧化胁迫中的作用.山东师范大学学报:自然科学版2008(23):113-115
    郑儒永,余永年.中国真菌志第一卷(白粉菌目).科学出版社北京1987
    Zhi-chen Z.新疆哈密瓜子叶不定芽诱导与植株再生.新疆农业大学学报2005(3):45-47
    朱书生,刘西莉,刘鹏飞,范洁茹,袁善奎.6种染色方法对黄瓜霜霉病菌不同发育阶段的染色效果比较.植物病理学报2006(36):86-90
    Allen R,Webb R,Schake S.Use of transgenie plants to study antioxidant defenses.Free Radical Biology and Medicine 1997(23):473-479
    Andersen L.Mlo aggressiveness in European barley powdery mildew.1991
    Apostol I,Heinstein P,Low P.Rapid Stimulation of an Oxidative Burst during Elicitation of Cultured Plant Cells 1 Role in Defense and Signal Transduction.Plant Physiology 1989(90):109-116
    Asada K.Ascorbate peroxidase-a hydrogen peroxide-scavenging enzyme in plants.Physiologia Plantarum 1992(85):235-241
    Baker C,Orlandi E.Active oxygen in plant pathogenesis.Annual Review of Phytopathology 1995(33):299-321
    Bardin M,Dogimont C,Nicot P,Pitrat M.Genetic analysis of resistance of melon line PI 124112 to Sphaerotheca fuliginea and Erysiphe cichoracearum studied in recombinant inbred lines.1997:163-168
    Bhat R,Miklis M,Schmelzer E,Schulze-Lefert P,Panstruga R.Recruitment and interaction dynamics of plant penetration resistance components in a plasma membrane microdomain.PNAS 2005(102):3135-3140
    Bohn G,Whitaker T.Genetics of resistance to powdery mildew race 2 in muskmelon.Phytopathology 1964(54):587-590
    Bueschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, Van Daelen R, Van der Lee T, Diergaarde P, Groenendijk J. The barley Mlo gene: A novel control element of plant pathogen resistance. Cell 1997 (88):695-705
    Celik A, Cullis P, Sangar R, Sutcliffe M. Engineering the active site of ascorbate peroxidase. Biochemical Society Transactions 2001 (29): 105-111
    Chen Z, Hartmann HA, Wu MJ, Friedman EJ, Chen JG, Pulley M, Schulze-Lefert P, Panstruga R, Jones AM. Expression analysis of the AtMLO gene family encoding plant- specific seven-transmembrane domain proteins. Plant Mol Biol 2006 (60):583-597
    Chen Z, Silva H, Klessig D. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 1993 (262): 1883-1886
    Cheng H, He QW, Huo YM, Hou LX, Lv JF. Molecular cloning, characterization and expression analysis of CmAPX. Mol Biol Rep 2009 (7): 1531-1537
    Choi S, Jeong S, Jeong W, Kwon S, Chow W, Park Y. Chloroplast Cu/Zn-superoxide dismutase is a highly sensitive site in cucumber leaves chilled in the light. Planta 2002(216):315-324
    Clough G H, Hamm P B. Coat protein transgenic resistance to watermelon mosaic and zucchini yellow mosaic virus in squash and cantaloupe. Plant disease. 1995.79(11):1107-1109
    Cohen Y, Eyal H. Reaction of muskmelon genotypes to races 1 and 2 of Sphaerotheca fuliginea in Israel. Report: Cucurbit genetics cooperative (USA) 1988
    Collins N, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu J, Hückelhoven R, Stein M, Freialdenhoven A, Somerville S. SNARE-protein-mediated disease resistance at the plant cell wall. Nature 2003 (425):973-977
    Consonni C, Humphry ME, Hartmann HA, Livaja M, Durner J, Westphal L, Vogel J, Lipka V, Kemmerling B, Schulze-Lefert P, Somerville SC, Panstruga R. Conserved requirement for a plant host cell protein in powdery mildew pathogenesis. Nat Genet 2006 (38):716- 720
    Crane F, Morre D. Oxidoreduction at the plasma membrane: relation to growth and transport. CRC Press 1990
    Devoto A, Piffanelli P, Nilsson I, Wallin E, Panstruga R, von Heijne G, Schulze-Le(?)ert P.Topology, subcellular localization, and sequence diversity of the Mlo family in plants. J Biol Chem 1999 (274):34993-35004
    Devoto A, Hartmann HA, Piffanelli P, Elliott C, Simmons C, Taramino G, Goh CS, Cohen FE, Emerson BC, Schulze-Lefert P, Panstruga R. Molecular phylogeny and evolution of the plant-specific seven-transmembrane MLO family. J Mol Evol 2003 (56):77-88
    Doke N. Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiological Plant Pathology 1983 (23):345-357
    Ebrahim-Nesbat F, Behnke S, Kleinhofs A, Apel K. Cultivar-related differences in the distribution of cell-wall-bound thionins in compatible and incompatible interactions between barley and powdery mildew. Planta 1989 (179):203-210
    Eichmann R, Schultheiss H, Kogel K, Huckelhoven R. The barley apoptosis suppressor homologue BAX inhibitor-1 compromises nonhost penetration resistance of barley to the inappropriate pathogen Blumeria graminis f. sp. tritici. Molecular Plant-Microbe Interactions 2004 (17):484-490
    Ellis J, Dodds P, Pryor T. Structure, function and evolution of plant disease resistance genes. Current Opinion in Plant Biology 2000 (3):278-284
    Foyer C, Halliwell B. Purification and properties of dehydroascorbate reductase from spinach leaves. Phytochemistry 1977 (16): 1347-1350
    Fucgs M ,Mcferson J R,Tticoli D M .Cantaloupe line CZW-30 containing coat protein gene sof cucumber mosaic virus ,and watermelon mosaic virus -2 is resistant to these virus in the field.Molecular Breeding ,1997(53):279-290
    Freialdenhoven A, Peterhansel C, Kurth J, Kreuzaler F, Schulze-Lefert P. Identification of Genes Required for the Function of Non-Race-Specific mlo Resistance to Powdery Mildew in Barley. Plant Cell 1996 (8):5-14
    Gaba V, Schlarman E, Elman C, Sagee O, Watad A, Gray D. In vitro studies on the anatomy and morphology of bud regeneration in melon cotyledons. In Vitro Cellular & Developmental Biology-Plant 1999 (35): 1-7
    Huckelhoven R. BAX Inhibitor-1, an ancient cell death suppressor in animals and plants with prokaryotic relatives. Apoptosis 2004 (9):299-307
    Harwood RR, Markarian D. A genetic survey of resistance to powdery mildew in muskmelon. Journal of Heredity 1968 (59):213
    Heitefuss R, Ebrahim-Nesbat F. Ultrastructural and histochemical studies on mildew of barley(Erysiphe graminis DC. f. sp. hordei Marchal). Ⅲ: Ultrastructure of different types of papillae in susceptible and adult plant resistant leaves. Journal of Phytopathology 1986(116):358-373
    Hinze K, Thompson R, Ritter E, Salamini F, Schulze-Lefert P. Restriction fragment length polymorphism-mediated targeting of the ml-o resistance locus in barley (Horceum vulgare). Proceedings of the National Academy of Sciences 1991 (88):3691-3695
    Hosoya K, Kuzuya M, Murakami T, Kato K, Narisawa K, Ezura H. Impact of resistant melon cultivars on Sphaerotheca fuliginea. Plant Breeding 2000 (119):286-288
    Hosoya K, Narisawa K, Pitrat M, Ezura H. Race identification in powdery mildew (Sphaerotheca fuliginea) on melon (Cucumis melo) in Japan. Plant Breeding : 999 (118):259-262
    Ingham D, Beer S, Money S, Hansen G. Quantitative real-time PCR assay for determiiing transgene copy number in transformed plants. Biotechniques 2001 (31): 132-140
    J0rgensen, IH. Discovery, characterization and exploitation of Mlo powdery mildew resistance in barley. Euphytica 1992 (63): 141-152
    J0rgensen J. Spectrum of resistance conferred by ml-o powdery mildew resistance genes in barley. Euphytica 1977 (26):55-62
    Jagger I, Whitaker T, Porter D. A new biotic form of powdery mildew on muskmelon in the Imperial Valley of California. Plant Dis Rep 1938 (22):275-276
    James D, Pitrat M, Thomas C. Powdery mildew resistance genes in muskmelon. Journal of the American Society for Horticultural Science 1987 (112): 156-160
    James D. Reactions of 20 melon cultigens to powdery mildew race 2U. 2002: 72-77
    
    Jespersen H, Kjaersgard I, Ostergaard L, Welinder K. From sequence analysis of three novel ascorbate peroxidases from Arabidopsis thaliana to structure, function and evolution of seven types of ascorbate peroxidase. Biochemical Journal 1997 (326):305-310
    Jishi Jin NS, Nan Maa, Jinhe Bai, Junping Gao. Regulation of ascorbate peroxidase at the transcript level is involved in tolerance to postharvest water deficit stress in the cut rose (Rosa hybrida L.) cv. Samantha. Postharvest Biology and Technology 2006 (40):236-243
    Kangasjarvi S, Lepist(o|¨) A, H(a|¨)nnik(a|¨)inen K, Piippo M, Luomala E, Aro E, Rintam(a|¨)ki E . Diverse roles for chloroplast stromal and thylakoid-bound ascorbate peroxidases in plant stress responses. The Biochemical journal 2008
    
    Kawakami S, Matsumoto Y, Matsunaga A, Mayama S, Mizuno M. Molecular cloning of ascorbate peroxidase in potato tubers and its response during storage at low temperature. Plant Science (Limerick) 2002 (163):829-836
    Kim M, Panstruga R, Elliott C, Müller J, Devoto A, Yoon H, Park H, Cho M, Schulze-Lefert P. Calmodulin interacts with MLO protein to regulate defence against mildew in barley. Nature a-z index 2002 (416):447-451
    Kim M, Lee S, Kim J, Chun H, Choi M, Chung W, Moon B, Kang C, Park C, Yoo J. Mlo, a Modulator of Plant Defense and Cell Death, Is a Novel Calmodulin-binding Protein. Journal of Biological Chemistry 2002 (277): 19304-19314
    Kobayashi Y, Kobayashi I, Funaki Y, Fujimoto S, Takemoto T, Kunoh H. Dynamic reorganization of microfilaments and microtubules is necessary for the expression of non-host resistance in barley coleoptile cells. The Plant Journal 1997 (11):525-537
    Kubo A, Saji H, Tanaka K, Kondo N. Cloning and sequencing of a cDNA encoding ascorbate peroxidase from Arabidopsis thaliana. Plant Molecular Biology 1992 (18):691-701
    Kunoh H. Primary germ tubes of Erysiphe graminis conidia. Plant Infection: The Physiological and Biochemical Basis Y Asada, WR Bushnell, S Ouchi, and CP Vance, eds Japan Scientific Society Press, Tokyo 1982:45-49
    Kuzuya M, Hosoya K, Yashiro K, Tomita K, Ezura H. Powdery mildew (Sphaerotheca fuliginea) resistance in melon is selectable at the haploid level. Journal of Experimental Botany 2003 (54): 1069-1074
    Kuzuya M, Yashiro K, Tomita K, Ezura H. Powdery mildew (Podosphaera xanthii) resistance in melon is categorized into two types based on inhibition of the infection processes. Journal of Experimental Botany 2006 (57):2093-2100
    Lad L, Mewies M, Basran J, Scrutton N, Raven E. Role of histidine 42 in ascorbate peroxidase: Kinetic analysis of the H42A and H42E variants. FEBS Journal 2002 (269):3182-3192
    Lamb C, Dixon R. The oxidative burst in plant disease resistance. Annual Review of Plant Biology 1997 (48):251-275
    Lin L, Wang X, Wang Y. cDNA Clone, fusion expression and purification of the novel gene related to ascorbate peroxidase from Chinese wild Vitis pseudoreticulata in E. coli.Molecular Biology Reports 2006 (33): 197-206
    Liu Q, Zhu H. Molecular evolution of the MLO gene family in Oryza sativa and their functional divergence. Gene 2008 (409): 1-10
    Mason G, Provero P, Vaira A, Accotto G. Estimating the number of integrations in transformed plants by quantitative real-time PCR. BMC biotechnology 2002 (2):20
    Mathews M, Summers C, Felton G. Ascorbate peroxidase: a novel antioxidant enzyme in insects. Archives of Insect Biochemistry and Physiology 1997 (34): 117-121
    Mehdy M. Active oxygen species in plant defense against pathogens. 1994: 467-472
    
    Miklis M, Consonni C, Bhat R, Lipka V, Schulze-Lefert P, Panstruga R. Barley MLO Modulates Actin-Dependent and Actin-Independent Antifungal Defense Pathways at the Cell Periphery. Plant Physiology 2007 (144): 1132
    Miller G, Suzuki N, Rizhsky L, Hegie A, Koussevitzky S, Mittler R. Double mutants deficient in cytosolic and thylakoid ascorbate peroxidase reveal a complex mode of interaction between reactive oxygen species, plant development, and response to abiotic stresses. Plant Physiology 2007 (144): 1777
    Mittler R, Zilinskas B. Molecular cloning and characterization of a gene encoding pea cytosolic ascorbate peroxidase. The Journal of biological chemistry (USA) 1992
    Murgia I, Tarantino D, Vannini C, Bracale M, Carravieri S, Soave C. Arabidopsis thaliana plants overexpressing thylakoidal ascorbate peroxidase show increased resistance to paraquat-induced photooxidative stress and to nitric oxide-induced cell death. The Plant Journal 2004 (38):940-953
    Nürnberger T, Lipka V. Non-host resistance in plants: new insights into an old phenomenon. Molecular Plant Pathology 2005 (6):335-345
    Nakano Y, Asada K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and cell physiology 1981 (22):867-880 Panstruga R, Schulze-Lefert P. Corruption of host seven-transmembrane proteins by pathogenic microbes: a common theme in animals and plants? Microbes and Infection 2003 (5):429-437
    Panstruga R. Discovery of novel conserved peptide domains by ortholog comparison within plant multi-protein families. Plant Mol Biol 2005 (59):485-500
    Panstruga R. Serpentine plant MLO proteins as entry portals for powdery mildew fungi. Biochem Soc Trans 2005 (33):389-392
    Peng M, Kuc J. Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology 1992 (82):696-699
    Peterhansel C, Freialdenhoven A, Kurth J, Kolsch R, Schulze-Lefert P. Interaction analyses: of genes required for resistance responses to powdery mildew in barley reveal distinct pathways leading to leaf cell death. The Plant Cell Online 1997 (9): 1397-1409
    Piffanelli P, Zhou F, Casais C, Orme J, Jarosch B, Schaffrath U, Collins N, Panstruga R, Schulze-Lefert P. The Barley MLO Modulator of Defense and Cell Death Is Responsive to Biotic and Abiotic Stress Stimuli. Plant Physiology 2002 (129): 1076-1085
    
    Pitrat M. 2002 Gene list for melon. Cucurbit Genet Coop Rep 2002 (25): 10-15
    Pryor D. The influence of vitamin B1 on the development of cantaloupe powdery mildew. Phytopath 1942(32):885-895
    Sarowar S, Kim Y, Kim E, Kim K, Hwang B, Islam R, Shin J. Overexpression of a pepper basic pathogenesis-related protein 1 gene in tobacco plants enhances resistance to heavy metal and pathogen stresses. Plant Cell Reports 2005 (24):216-224
    Schultheiss H, Dechert C, Kogel K, Huckelhoven R. Functional analysis of barley RAC/ROP G-protein family members in susceptibility to the powdery mildew fungus. The Plant Journal 2003 (36):589-601
    Schweizer P, Pokorny J, Schulze-Lefert P, Dudler R. Technical advance. Double-stranded RNA interferes with gene function at the single-cell level in cereals. Plant J 2000 (24): 895-903
    Shi W, Muramoto Y, Ueda A, Takabe T. Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana. Gene 2001 (273):23-27
    Shirasu K, Nielsen K, Piffanelli P, Oliver R, Schulze-Lefert P. Cell-autonomous complementation of mlo resistance using a biolistic transient expression system. The Plant Journal 1999 (17):293-299
    
    Sitterly W. Powdery mildews of cucurbits. The Powdery Mildews 1978: 359-379
    
    Skou J, Jorgensen J, Lilholt U. Comparative studies on callose formation in powdery mildew compatible and incompatible barley. Phytopathologische Zeitschrift 1984 (109): 147-168
    Smith N, Singh S, Wang M, Stoutjesdijk P, Green A, Waterhouse P. Gene expression: Total silencing by intron-spliced hairpin RNAs. Nature 2000 (407):319-320
    Song P, Cai C, Skokut M, Kosegi B, Petolino J. Quantitative real-time PCR as a screening tool for estimating transgene copy number in WHISKERS registered-derived transgenic maize. Plant Cell Reports 2002 (20):948-954
    Sowell Jr G. Population shift of Sphaerotheca fuliginea on muskmelon from race 2 to race 1 in the southeastern United States. Plant Disease 1982 (66): 130-131
    Stein M, Somerville S. MLO, a novel modulator of plant defenses and cell death, binds calmodulin. Trends in Plant Science 2002 (7):379-380
    
    Svalheim O, Robertsen B. Elicitation of H_2O_2 production in cucumber hypocotyl segments by oligo-1, 4-α -D-galacturonides and an oligo- £ -glucan preparation from cell walls of Phytophthora megasperma f. sp. glycinea. Physiologia Plant 1993 (88):675-681
    Takahashi H, Chen Z, Du H, Liu Y, Klessig D. Development of necrosis and activation of disease resistance in transgenic tobacco plants with severely reduced catalase levels. Plant Journal 1997 (11):993
    Takahiro Ishikawa KS, Toru Takeda, Shigeru Shigeoka. Cloning and expression of cDNA encoding a new type of ascorbate peroxidase from spinach. FEBS Letters 1995:28-32 Uwe Z, Uwe S, Patrick S. Transcriptome analysis of mlo-mediated resistance in the epidermis of barley. Molecular Plant Pathology 2005 (6):139-151
    Vakalounakis D, Klironomou E, Papadakis A. Species spectrum, host range and distribution of powdery mildews on Cucurbitaceae in Crete. Plant Pathology 1994 (43):813-818
    Wang J, Zhang H, Allen R. Overexpression of an Arabidopsis Peroxisomal Ascorbate Peroxidase Gene in Tobacco Increases Protection Against Oxidative Stress 1. Plant and cell physiology 1999 (40):725-732
    Waterhouse P, Helliwell C. Exploring plant genomes by RNA-induced gene silencing. Nature Reviews Genetics 2003 (4):29-38
    Welinder K. Superfamily of plant, fungal and bacterial peroxidases. Curr Opin Struct Biol 1992 (2):388-393
    Welinder K. Bacterial catalase-peroxidases are gene duplicated members of the plant peroxidase superfamily. Biochimica et biophysica acta Protein structure and molecular enzymology 1991 (1080):215-220
    Wesley S, Helliwell C, Smith N, Wang M, Rouse D, Liu Q, Gooding P, Singh S, Abbot D, Stoutjesdijk P. Construct design for efficient, effective and high-throughput gene silencing in plants. The Plant Journal 2001 (27):581-590
    Willekens H, Langebartels C, Tire C, Montagu M, Inze D, Camp W. Differential expression of catalase genes in Nicotiana plumbaginifolia (L). Proceedings of the National Academy of Sciences 1994 (91): 10450-10454
    Wolf G, Fric F. A rapid staining method for Erysiphe graminis f. sp. hordei in and on whole barley leaves with a protein-specific dye. Phytopathology 1981 (71):596-598
    Wolter M, Hollricher K, Salamini F, Schulze-Lefert P. The mlo resistance alleles to powdery mildew infection in barley trigger a developmentally controlled defence mimic phenotype. Mol Gen Genet 1993 (239): 122-128
    Wu G, Shortt B, Lawrence E, Levine E, Fitzsimmons K, Shah D. Disease resistance conferred by expression of a gene encoding H 202-generating glucose oxidase in transgenic potato plants. The Plant Cell 1995 (7): 1357-1368
    Yabuta Y, Motoki T, Yoshimura K, Takeda T, Ishikawa T, Shigeoka S. Thylakoid membrane-bound ascorbate peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress. The Plant Journal 2002 (32):915-925
    
    Yun B, Atkinson H, Gaborit C, Greenland A, Read N, Pallas J, Loake G. Loss of actin cytoskeletal function and EDS 1 activity, in combination, severely compromises non-host resistance in Arabidopsis against wheat powdery mildew. The Plant Journal 2003 (34):768-777

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700