用户名: 密码: 验证码:
LPAAM复合高吸水树脂的制备及性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高吸水树脂是一种具有超强吸水能力的新型功能高分子材料,其保水能力非常好,由于其优良的特性,高吸水树脂已引起广大科技工作者的兴趣,并进行了大量研究,已在农林园艺、生理卫生用品、医药、土壤改良等方面取得了广泛的应用。随着石油资源的日益匮乏和人们环保意识的不断增强,利用可再生的天然资源制备高吸水树脂是当今研究的重要课题之一。
     木质素来源广泛,可再生,无毒价廉,其开发和利用有着重要价值。目前工业木质素的主要来源是造纸工业,虽然已采用先进的废水回用技术与设施,以充分利用制浆造纸废水中的有用物质及水资源等,但其中大量的木质素通常作为燃料使用,有的甚至未经处理直接排放,造成严重的资源浪费和环境污染。因此研究利用工业木质素,对于综合治理造纸工业废水污染、充分利用天然资源具有重要的现实意义。
     以木质素磺酸钠(LS-Na)、丙烯酸(AA)、丙烯酰胺(AM)为原料,高岭土(Kaolin)为无机添加剂,过硫酸钾(KPS)为引发剂,N,N’-亚甲基双丙烯酰胺(NMBA)为交联剂,采用先溶液聚合后皂化法制备了高岭土/木质素磺酸钠接枝丙烯酸-丙烯酰胺(LPAAM)复合高吸水树脂,并对它的吸液、吸附和保水性能进行了研究。溶液聚合中选用正交设计方法,以蒸馏水和0.9%NaCl溶液中的平衡吸液倍率为评价参数得到了较优配方:m(AM):m (AA)=1:1, m (KPS) =1.0%,m (NMBA)=0.1%, pH=3。然后,将较优配方条件下的LPAAMO以不同浓度NaOH于90℃皂化2h,得到皂化后的LPAAM复合高吸水树脂,该树脂在蒸馏水和0.9%NaCl(质量浓度,下同)溶液中的平衡吸液倍率分别为1003g/g及89g/g。
     系统研究了LPAAM复合高吸水树脂在不同盐溶液中的吸液倍率与时间的关系。考察了溶液种类、溶液浓度、pH、温度对LPAAM复合高吸水树脂在不同盐溶液中的平衡吸液倍率的影响。
     通过对LPAAM复合高吸水树脂吸附金属Cu2+和Zn2+的研究发现,该树脂对Cu2+和Zn2+的吸附动力学可以用来描述;探讨了LPAAM复合高吸水树脂对过渡金属Cu2+和Zn2+的吸附等温式,溶液pH值对LPAAM复合高吸水树脂吸附Cu2+和Zn2+的影响,最大吸附量分别为180mg/g和169mg/g。对吸附金属离子前后的LPAAM复合高吸水树脂结构进行了比较,发现吸附Cu2+和Zn2+后,树脂的红外光谱部分吸收锋发生了变化(在1668cm-1处的吸收峰红移,在1565cm-1处的吸收峰蓝移);根据热重分析可知,开始分解的温度提高,残重比分别增大3.91%和3.70%;树脂吸附金属离子后,表面存在更多深浅不均匀的沟壑,堆砌得非常密实。
     研究了自然蒸发条件下,LPAAM复合高吸水树脂在土壤中保水性能,考察了LPAAM复合高吸水树脂用量、肥料溶液种类和土壤质地对土壤保水性能的影响。对同一土壤,树脂用量越多,土壤保水率下降越慢。但随树脂用量增加,土壤保水率下降趋于平衡。LPAAM复合高吸水树脂用量为0.5%时,单一肥料溶液和不同混合肥料溶液中,三种质地土壤对10%尿素、10%尿素/0.1%磷酸二氢钠(溶液质量比1:1,下同)混合溶液保水效果较好,对0.5%氯化钾、0.1%磷酸二氢钠/0.5%氯化钾混合溶液保水效果较差。
Superabsorbent polymer(SAP) is a kind of new functional polymeric materials, which can absorb a large amount of water and the absorbed water is hardly removed even under some pressure. Beeause of their excellent properties, superabsorbents have attracted considerable interest and proceeded to research for sciencists and technolohists and been used in many applications such as agriculture, horticulture, feminine napkins, sanitation, medicine and soil improvement.
     Lignin is renewable, non-toxic and commercially available, which makes lignin utilization avaluable. Nowadays, most lignin applications are based on technical lignins, which are mostly separated during pulping process. Most useful materials and water reseources can be well reused by the application of advanced treatment technology for the wastewater of pulping and papermaking. However a large number of lignin in the wastewater are used as a source of fuel, or discharged without any treatment, which caused consequent heavy waste of resources and severe pollution of environment. So, research on the utilization of technical lignin is very important and significant to treat with the watse water from paper mill and to make full utilazation of natural resource.
     In this paper, LPAAM is prepared using sodium lignosulfonate(LS-Na), acrylic acid(AA) and acrylamide(AM) as raw materials, kaolin as inorganic filler, potassium peroxydisulfate(KPS) as initiator, N,N'-methylene-bis-acrylamide(NMBA) as cross-linker, by solution polymerization using orthogonal design and saponification reaction. The optimized formula based on the assessment of the absorbencies in distilled water and 0.9%NaCl solution is obtained as follows:m(AM):m(AA)=1:1, m(KPS)=1.0%, m(NMBA)=0.1%, pH=3. Then the saponification reaction based on the above-mentioned optimized formula superabsorbent is used with different NaOH solution at 90℃for 2h. Its absorbencies in distilled water and 0.9% NaCl (mass concentration) aqueous solution are respectively 1003g/g and 89g/g.
     The relationship between the absorbency of LPAAM and the absorbing time is investigated. The effect of types and concentrations, pH and temperatures of the salt solutions on the balance absorbency is discussed.
     Through the research of the adsorption of Cu2+ and Zn2+ onto LPAAM, the adsorption kinetics of Cu+ and Zn2+ onto LPAAM can be described as The relationship between the concentrations of metal ions and the adsorption capacities is investigated; the effect of solution pH is explored. The maximum adsorption capacities of Cu+ and Zn+ are respectively 180mg/g and 169mg/g. Comparing LPAAM with LPAAM after adsorption of Cu2+ and Zn2+, the results have shown that some FTIR absorption peaks have changed(the small red shifts of the 1668 cm-1 absorption peak, the small blue shifts of the 1565 cm-1 absorption peak); according to TG, the decomposed temperature has rised and residual weight ratio increases respectively by 3.91% and 3.70%; there are more deepened non-uniform gullies on the surface of LPAAM after adsorption of metal ions, and the surface is built-up densely.
     Under the conditions of the natural evaporation, the water retention capacity of LPAAM in soil is investigated. The effect of mass of LPAAM, the types of fertilizer solution and the soil on the water retention capacity of the soil is discussed. With the same type of soil, the more the resin is used; the more slowly the water retention capacities of soil has been dropped. However, with the more resin, soil losing water will tend to balance. When the dosage of LPAAM is 0.5%(wt.) of soil, among the single and various mixed fertilizers solution, the effect of the water-retention capacities of three kinds of soil for 10%(wt.) urea and 10% urea/0.1% sodium dihydrogen phosphate(1:1, mass ratio) mixed solution are more than 0.5% potassium chloride and 0.1% sodium dihydrogen phosphate/0.5% potassium chloride mixed solution.
引文
[1]邹新禧.超强吸水树脂[M].北京:化学工业出版社,2002.440-444.
    [2]许晓秋,刘延栋,李景庆,等.高吸水性树脂的工艺与配方[M].北京:化学工业出版社,2004.12-13.
    [3]张楷亮,王立新,张文林,等.高吸水性树脂的研究及其发展趋势[J].河北化工,2000,(2):4-7.
    [4]谭德新,王艳丽,修乐平.高吸水树脂的应用[J].化学推进剂与高分子材料,2009,7(6):26-30.
    [5]赵建兵,赵欣,降林华,等.木质素基丙烯酸系吸水性树脂研究进展[J].中国科技论文在线,2008,3(9):626-636.
    [6]Hua S B, Wang A Q. Synthesis, characterization and swelling behaviors of sodium alginate-g-poly(acrylic acid)/sodium humate superabsorbent[J]. Carbohyd Polym, 2009,75(1):79-84.
    [7]Pourjavadi A, Samadi M, Ghasemzadeh H. Temperature Sensitive Superabsorbent Hydrogels from Poly(N-t-butyl acrylamide-co-acrylamide) Grafted on Sodium Alginate[J]. Macromolecular Symposia,2008,274(1):177-183.
    [8]Chen Y, Liu Y F, Tan H M. Synthesis and characterization of a novel superabsorbent polymer of N, O-carboxymethyl chitosan graft copolymerized with vinyl monomers[J]. Carbohyd Polym,2009,75(2):287-292.
    [9]Xie Y T, Wang A Q. Effects of Modified Vermiculite on Water Absorbency and Swelling Behavior of Chitosan-g-Poly(Acrylic Acid)/Vermiculite Superabsorbent Composite[J].J Composite Materials,2009,43(21):2401-2417.
    [10]POURJAVADI A, FEIZABADI K H, HOSSEINZADEH H. Synthesis and Swelling Behavior of a Novel Protein-based Superabsorbent Hydrogel Composite:Collagen-g-poly (sodium acrylate)/kaolin[J].J Polym Mater,2006, 23(3):331-339.
    [11]Lim D W, Song K G, Yoon K J, et al. Synthesis of Acrylic acid-based superabsorbent interpenetrated with sodium PVA sulfate using inverse-emulsion polymerization[J]. Eur Polym J,2002, (38):579-586.
    [12]Deo H T, Gotmare V D. Acrylonitrile monomer grafting on gray cotton to impart high water absorbency [J]. J Appl Polym Sci,1999,72(7):887-894.
    [13]Takaki, Morio, Itoh. Synthesis of colored superabsorbent polymer and its use to demonstrate convection currents water by heating[J]. J Chem Edu,1999,76(1): 62-63.
    [14]Lim D W, Whang H S, Yun K J. Synthesis and absorbency of a superabsorbent from sodium starch sulfate-g-polyacrylonitrile[J]. J Appl Polym Sci,2001,(79): 1423-1430.
    [15]Yoshimura T, Ochi Y, Fujioka R. Synthesis and Properties of Hydrogels Based on Polyaspartamides with Various Pendants[J]. Polym Bull,2005, (55):377-383.
    [16]Rao K. S. V. Krishna, Ha Chang-Sik. pH Sensitive hydrogels based on acryl amides and their swelling and diffusion characteristics with drug delivery behavior[J]. Polym Bull,2009,62(2):167-81.
    [17]陈煜,陆铭,王海涛,等.壳聚糖接枝丙烯酸高吸水树脂的合成工艺[J].高分子材料科学与工程,2005,21(5):266-269.
    [18]张克举,王乐明,李小红,等.魔芋粉-丙烯酸-丙烯酰胺接枝共聚合成高吸水树脂[J].化工学报,2007,58(6):1592-1597.
    [19]柳明珠,曹立歆.丙烯酸与海藻酸钠共聚制备耐盐性高吸水树脂[J].应用化学,2002,19(5):455-459.
    [20]张立颖,梁兴唐,黄艳杰,等.高吸水树脂介绍[J].大众科技,2008,108(8):108-109.
    [21]谢建军,陶国华,罗迎社.我国高吸水树脂发展中存在的问题与趋势[J].精细化工中间体,2008,38(4):8-11.
    [22]Li W, Wang J L, Zou L Z, et al. Synthesis and characterization of potassium humate-acrylic acid-acrylamide hydrogel[J]. J Polym Res,2008,15(6): 435-445.
    [23]沈上越,夏开胜,范力仁,等.锻烧高岭土/高吸水保水复合材料的合成与性能研究[J].功能材料,2007,38(1):154-160.
    [24]葛艳蕊,张炳烛,冯薇,等.高吸水性树脂的制备及其表征[J].河北科技大学学报,2006,27(4):285-287.
    [25]Lee W F, Huang Y L. Superabsorbent polymeric materials X:Effect of degree of neutralization on swelling behavior of crosslinked poly(sadium acrylate) in aqueous salt solutions [J]. J Polym Res,2001,8(1):9-15.
    [26]Wan T, Wang L, Yao J, et al. Saline solution absorbency and structure study of poly(AA-AM) water superabsorbent by inverse microemulsion polymerization[J]. Polym Bull,2008, (60):431-440.
    [27]Gugliemelli L, Weaver M O, Russell C R, et al. Base hydrolyzed starch-polyacylonitrile(S-PAN) graft copolymer[J]. J Appl Polym Sci,1996, 13(6):2007-2017.
    [28]Liang R, Yuan H B, Xi G X. Synthesis of wheat straw-g-poly(acrylic acid) superabsorbent composites and release of urea from it[J]. Carbohyd Polym, 2009,77(2):181-187.
    [29]塔娜,温国华,李冲,等.以羧甲基纤维素合成含氮吸水剂及性质研究[J].胶体与聚合物,2006,24(2):24-25.
    [30]Xie J J, Liu X R, Liang J F, et al. Swelling properties of superabsorbent poly(acrylic acid-co-acrylamide) with different crosslinkers[J]. J Appl Polym Sci,2009,112(2):602-608.
    [31]Wu J H, Wei YL, Lin J M, et al. Study on starch-graft-acrylamide/mineral powder superabsorbent composite[J]. Polymer,2003,44(21):6513-6520.
    [32]Pourjavadi A, Farhadpour B, Seidi F. Synthesis and investigation of swelling behavior of new agar based superabsorbent hydrogel as a candidate for agrochemical delivery[J]. J Polym Res,2009,16(6):655-665.
    [33]Jang J H, Go W S. Continuous photografting of HEMA onto polypropylene fabrics with benzophenone photo initiator [J]. Fiber Polym,2008,9(4):375-379.
    [34]刘莲英,孙玉凤,何辰凤,等.光引发玉米淀粉一丙烯酸反相乳液接枝共聚合制备高吸水性树脂[J].石油化工,2005,34(8):739-743.
    [35]徐昆,宋春雷,张文德,等.微波法合成淀粉接枝丙烯酸盐类高吸水性树脂的研究[J].功能高分子学报,2004,17(3):473-478.
    [36]刘姣,汪晓军,万小芳,等.互穿网络高吸水树脂IPN的合成[J].合成化学,2007,15(2):181-183.
    [37]崔英德,郭建维,刘卅,等.静态溶液聚合法合成SA-IP-SPS型高吸水性树脂[J].化工学报,2003,54(5):665-669.
    [38]姚美芹,买买提江·依米提,司马义·努尔拉.高耐盐性吸水树脂的紫外光引发合成及其性能[J].功能高分子学报,2009,(2):178-182,212.
    [39]谭德新,王艳丽,吉小利,等.高吸水树脂的UV固化合成及研究[J].涂料工业,2009,(7):17-20.
    [40]杨新革,刘兴武.微波法合成淀粉丙烯酸高吸水性树脂的研究[J].:临沂师范 学院学报,2008,(3):66-70.
    [41]舒静,任丽丽,张铁珍,等.微波辐射淀粉接枝丙烯酸合成高吸水树脂[J].微波学报,2009,25(5):92-96.
    [42]韩立宏,刘立红.马铃薯淀粉基高吸水树脂的微波干法合成研究[J].江苏农业科学,2009, (5):242-243.
    [43]伍亚华,石亚中.微波合成甘薯淀粉基高吸水树脂[J].应用化工,2009,38(7):958-961.
    [44]Liu Z S, Rempel G L. Preparation of superabsorbent polymers by crosslinking acrylic acid and acry lamide copolymers[J]. J Appl Polym Sci,1997,64:1345-1353.
    [45]罗勇.水溶液聚合法制备聚丙烯酸盐型高吸水聚合物[J].合成橡胶工业,1998,21(3):146-149.
    [46]Chen J W, Zhao Y M. An efficient preparation method for superabsorbents polymers[J]. J Appl Polym Sci,1999,74(1):119-124.
    [47]Alexander W, Anderson M, Teppo M. A method and apparatus for continuously water absorbing resin[P].Eur Pat,206,808,1986-11-21.
    [48]宋彦凤,崔占臣,陈欣芳.耐盐型聚丙酸类高吸水性树脂的制备[J].应用化学,1995,12(1):117-118.
    [49]Elliout J E, Macdonald M, Nie J, et al. Structure and swelling of poly (acry lic acid) hydrogels:effect of pH, ionic strength, and dilution on the crosslinked polymer structure[J]. Polymer,2004,45(5):1503-1510.
    [50]Yoshinobu M, Sakata I. Morphological Study of Hydrogels of Cellutosic Super water Absorbents by CPYO-SEM observation[J]. J Apple polym Sci,1994, (53): 1203-1209.
    [51]乌兰,柳明珠.玉米淀粉接枝丙烯酸制备高吸水性树脂[J].高分子材料科学与工程,2006,22(1):250-253.
    [52]黄伟光.高吸水性树脂的应用与合成工业[J].龙岩师专学报,2000,3(18):77-81.
    [53]冯新德.高分子合成化学[M].北京:科学出版社,1981.23-46.
    [54]陈展云.木薯淀粉接枝丙烯酸超强吸水树脂的制备及性能研究[D].广西大学,2008.2-5.
    [55]Gong J P, Katsuyama Y, Kurokawa T, et al. Double-network hydrogels with extremely high mechanical strength[J]. Adv Mater,2003,15(14):1155-1158.
    [56]Lim D W, Yoon K J, Ko W S. Synthsis of AA-based superabsorbent:interpene-trated with sodium PVA sulfate[J]. J Appl Polym Sci, 2000,78(10):2525-2532.
    [57]Jin S P, Liu M Z, Zhang F, et al. Synthesis and characterization of pH-sensitivity semi—IPN hydrogel based on hydrogen bond between poly(N-vinylpyrrolidone) and poly(acrylic acid)[J]. Polymer,2006,47(5):1526-1532.
    [58]Zhao Y, Kang J, Tan T W. Salt-, pH-and temperature-responsive semi-interpenntrating polymer network hydrogel based on poly(aspartic acid) and poly(acrylic acid)[J]. Polymer,2006,47(22):7702-7710.
    [59]Cao X D, Zhang L N. Effects of molecular weight on the miscibility and properties of polyurethane/benzyl starch semi-interpenetrating polymer networks[J]. Biomacromolecules,2005, (6):671-677.
    [60]Cao X D, Deng R, Zhang L N. Structure and properties of cellulose films coated with polyurethane/benzyl starch semi-IPN coating[J]. Ind Eng Chem Res,2006, 45:4193-4199.
    [61]李胜方,杨亚江,杨祥良,等.干燥方式对含直链淀粉半互穿网络水凝胶溶胀和降解的影响[J].高分子学报,2007,(7):593-598.
    [62]Ping Z H. States of water in different hydrophilic polymers[J]. Polymer,2001, 42:8451-8457.
    [63]赵新,崔建春,刘多明,等.辐射合成水凝胶的结构与溶胀特性[J].高分子学报,1994,(5):600-603.
    [64]Wu J H, Lin J M, Li G Q. Infunce of the COOH and COONa group and crosslink density of poly(acrylic acid)/montmorillonite superabsorbent composite on water absorbency[J]. Polym Int,2001,50(9):1050-1053.
    [65]王爱勤,张俊.有机-无机复合高吸水性树脂[M].北京:科学出版社2006.45-47.
    [66]谢建军,刘赛,李晟,等.溶液聚合法制备PAMPS高吸水树脂及其性能研究[J].中南林业科技大学学报,2008,28(2):100-103.
    [67]朱秀林,顾梅,倪新元.丙烯酸-丙烯酰胺共聚物和高岭土交联的吸水树脂的合成及性能研究[J].石油化工,1994,(23)::431-435.
    [68]万涛,朱忠伟,许晓东,等.水溶液聚合高岭土复合聚丙烯酸钠-丙烯酰胺高吸水性树脂的研究[J].现代化工,2003,23(4):35-38.
    [69]谢建军,吴海刚,蒋佳星,等.PAAS高吸水树脂对重金属离子盐溶液的吸 液及吸附性能[J].功能材料,2007,38(8):1 331-1333.
    [70]谢建军,刘新容,梁吉福.PAAAM高吸水树脂在盐液中吸水及吸附性能[J].化工学报,2006,157(17):1715-1717.
    [71]谢建军,梁吉福,刘新容,等.聚丙烯酸/丙烯酰胺高吸水性树脂吸附性能[J].化工学报,2007,58(7):1762-1767.
    [72]刘新容.PAAAM吸水树脂溶液聚合法及其吸液吸附性能研究[D].湘潭大学,2006.34-39.
    [73]陶用珍,管映亭.木质素的化学结构及其应用[J].纤维素科学与技术,2003,11(1):42-55.
    [74]王筱捷,程贤.木质素的研究进展和在橡胶工业中的应用[J].橡胶科技市场,2006,(19):16-20.
    [75]刘学苏,李广学.木质素的应用进展[J].广州化工,2005,33(4):9-11.
    [76]蒋挺大.木质素[M].北京:化学工业出版社,2001.18-21.
    [77]杨东杰,邱学青,陈焕钦.木素磺酸盐系表面活性剂[J].化学通报,2001,(7):416-420.
    [78]Goring D A I, Gancet C, Vuong R, et al. The flatness of lignosulfonate macromolecules as demonstrated by electron microscopy [J]. J Appli Polym Sci, 1979,24(4):931-936.
    [79]Willis J W, Yean W Q, Goring D A I. Molecular weights of lignosulphonate and carbohydrate leached from sulfite chemimechanical pulp[J]. J Wood Chem Technol,1987,7(2):259-268.
    [80]Fanasjev A N, Korobova E, Parfenova L. The structure of lignosulphonates macromolecules in solution[A].1997 ISWPC Proceedings, Montreal, Canadian, 1997,11(2):1-3.
    [81]周明.MMT-淀粉接枝复合吸水剂的研制及性能评价.西南石油学院,2005.
    [82]张小勇,张建安,韩润林,等.草浆木质素化学加氨[J].化工冶金,1999,(2):215-219.
    [83]王云普,梁燕,张继.马铃薯茎叶/木质素磺酸钠高吸水材料及其制备[P].CN101280091,2008-10-08.
    [84]王鹤义,陈懋琪.木质素-丙烯腈接枝共聚物及其水解产物吸水性能的研究[J].石油大学学报(自然科学版),1988,(1):132-136.
    [85]罗学刚,徐东.环境友好的木素高吸水树脂及其制备方法[P].CN1766000,2004-10-25.
    [86]杨磊,李坚.木质基高吸水树脂的合成[J].东北林业大学学报,2003,31(2):11-12.
    [87]陈福林,叶舒展,周彦毫.高岭土表面改性研究进展[J].橡胶工业,2004,51(12):759-765.
    [88]刘永兵,浦万芬,胡琴,等.三元共聚复合吸水树脂的合成与性能[J].西南石油学院学报,2005,5(27):62-65.
    [89]郭红梅.新型高吸水树脂的制备及性能研究[D].西安:西安科技大学,2006.29-42.
    [90]徐青林.木素接枝改性物及其应用研究进展[J].造纸科学与技术,2005,24(3):43-48.
    [91]Velasquez J A, Ferrando F, Salvado J. Effects of Kraft lignin addition in the production of binderless fiberboard from steam exploded miscanthus sinensis[J]. Ind Crops Prod,2003,18:17-23.
    [92]Boudet, Kajita A M, Grima-Pettenati S, et al. Lignins and lignocellulosics:a better control of synthesis for new and improved uses[J]. Trends in Plant Science,2003,12(8):576-581.
    [93]Sharma K R, Wooten J B, Baliga V L, et al. Characterization of chars from pyrolysis of lignin[J].Fuel,2004, (83):1469-1482.
    [94]王海洋,陈克利.木质素的综合利用概况与分析[J].化工时刊,2004,18(4):8-10.
    [95]杜太生,康绍忠,魏花.保水剂在节水农业中的应用研究现状与展望[J].农业现代化研究,2000,21(5):317-320.
    [96]孙福强,崔英德.高吸水性树脂的保肥作用研究[J].化工技术与开发,2004,33(16):11-14.
    [97]Pages L, Vercambre G, Drouet J L, et al. Root Type:a generic model to depict and analyse the root system architecture [J]. Plant and Soil,2004,258:103-119.
    [98]刘赛.聚(2-丙烯酰胺-2-甲基丙磺酸)型高吸水性树脂的合成及吸液吸附性能研究[D].湘潭:湘潭大学,2007.16-21.
    [99]Omidian H, Hashemi S A, Sammes P G, et al. Modified acrylic-based superabsorbent polymers. Effect of temperature and initiator concentration[J]. Polymer,1998,399(15): 3459-3466.
    [100]Castle D, Ricard A, Audebert R. Swelling of anionic and cationic starch-based superabsorbents in water and saline solution[J]. J Appl Polym Sci,1990,39: 11-29.
    [101]李云龙,林松柏,欧阳娜.CMC-g-(AA-co-AM)基高吸水性材料吸液性能研究及应用[J].工塑料应用,2009,37(4):45-50.
    [102]Wu L, Liu M Z, Liang R. Preparation and properties of a double-coated slow-release NPK compound fertilizer with superabsorbent and water-retention[J]. Bioresource Technol,2008,99(3):547-554.
    [102]张剑波,冯金敏.离子吸附技术在废水处理中的应用和发展[J].环境污染治理技术与设备,2000,(1):46-51.
    [103]黄美荣,李新贵,彭前云.新型合成聚合物重金属离子吸附剂及其吸附性能[J].工业水处理,2005,25(1):14.
    [104]洪树楠.一种球型木质素金属吸附剂的研制及其应用研究[D].福州大学,2004.56-73.
    [105]Mohan D, Pittman C, Steele P. Single, Binary and multi-component adsorption of copper and cadmium from aqueous solutions on Kraft lignin-a biosorbent[J].J Colloid and Interface Sci,2006,297:489-504.
    [106]Parajuli D, Kawakita H, Inoue K, et al. Recovery of Gold(Ⅲ) Palladium (Ⅱ), and Platinum(IV) by Aminated Lignin Derivatives[J]. Ind Eng Chem Res, 2006,45:6405-6412.
    [107]Ramazan C, Cengiz S, Mehmet S. Adsorption of copper(Ⅱ), nickel(Ⅱ)and cobalt (Ⅱ) ions from aqueous solution by methacrylic acid/acrylamide monomer mixture grafted poly(ethylene terephthalate)fiber[J]. Sep Puri Technol,2006, 49(2):107-114.
    [108]Ramazan C, Cengiz S, Mehmet S. Removal of some heavy metal ions from aqueous solution by adsorption using poly(ethylene terephthalate)-g-itaconic acid/acrylamide fiber[J]. Reac Funct Polym,2006,66(3):599-608.
    [109]Hasine K, Saadet O, Murat O. Modified polyacrylamide hydrogels and their application in removal of heavy metal ions[J]. Polymer,2003,44(6): 1785-1793.
    [110]Cengiz K, Ali T S, Bekir S. Selectivity of cyclam modified poly(p-chloromethyl styrene-ethyleneglycol dimethacrylate)microbeads for Cu(Ⅱ), Ni(Ⅱ), Co(Ⅱ)and Zn(Ⅱ)[J]. Sep Purif Technol,2005,45(1):32-40.
    [111]近藤精一,石川达雄,安部郁夫.吸附科学[M].北京:化学工业出版社,2006.37-40.
    [112]Wu F C, Tseng R L, Juang R S. Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan[J]. Water Res,2001,35(3):613-618.
    [113]习龙明杰.高聚物土壤改良剂的研究(Ⅱ,高聚物对土壤肥料的作用)[J].土壤肥料,2000,(5):13-18.
    [114]李法虎.土壤物理化学[M].北京:化学工业出版社,2006.24-32.
    [115]庄文化,冯浩,吴普特.高分子保水剂农业应用研究进展[J].农业工程学报,2007,23(6):265-270.
    [116]郑易安,杨逵,王爱勤.PAA-AM/SH/MMT多功能保水剂的溶胀和保水性能研究[J].中国农业通报,2007,23(4):435-439.
    [117]彭冲,李发虎,潘兴瑶.聚丙烯酰胺施用对碱土和非碱土水里传导度的影响[J].土壤学报,2006,43(5):835-842.
    [118]Sepaskhah A R, Bazrafsham-Jahromi A R. Controlling run off and erosion in sloping land with polyacrylamide under a rainfall simulator [J]. Biosystems Engineering,2006,93(4):469-474.
    [119]邵明安,王全九,黄明斌.土壤物理学[M].北京:高等教育出版,2006.32-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700