用户名: 密码: 验证码:
形貌可控的纳米Ag和Ag/ZnO复合材料的制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于Ag纳米材料本身具有极大优越性,即具有独特的光学性、高导电性、高催化性和高抗菌性,使其在光电材料、电极材料、催化材料及抗菌材料等领域中占有重要地位,而纳米Ag这些优异特性主要取决于其形貌和尺寸,因此,对纳米Ag形貌可控制备研究成为纳米材料研究热点。本文采用微波辅助多元醇法,系统的研究了可控制备不同形貌纳米Ag及形成机理,并以所得Ag纳米线为原料,采用微波法和水热法,研究了蠕虫状结构Ag/ZnO和鞭炮状结构Ag/ZnO制备及其生长机理。主要研究结果如下:
     1、以乙二醇(EG)为还原剂和溶剂,在表面活性剂聚乙烯吡咯烷酮(PVP)存在下,微波加热快速制备了Ag纳米颗粒。分别研究了反应时间、微波功率、AgNO3浓度、PVP浓度对Ag纳米颗粒的影响。结果表明:Ag纳米颗粒分散性较好,且PVP能够吸附于Ag晶体表面,防止Ag纳米颗粒的团聚。随着反应时间增加,PVP对Ag晶核的吸附作用大于晶核生长速度,有利于形成小尺寸Ag纳米颗粒;而随着微波功率和AgNO3浓度的增加,其形核速度大于生长速度,从而有利于形成小尺寸Ag纳米颗粒。
     2、以Na2S为控制剂,制备了Ag纳米线和纳米立方体。添加低浓度Na2S时可制备尺寸可控的Ag纳米立方体。由于Ag2S胶体为n型半导体,低浓度下催化还原Ag+,加大Ag+还原速度,促使溶液中Ag原子过饱和状态,从而形成更多单晶晶种,在PVP吸附下而快速形成Ag纳米立方体。而添加高浓度Na2S时,可制备尺寸可控的Ag纳米线。高浓度Ag2S胶体的形成减少了溶液中自由Ag+浓度,导致Ag+还原速度减小,从而利于十面体孪晶晶种形成。由于PVP对晶种{100}晶面族的选择吸附作用,使得十面体孪晶晶种各向异性生长而形成Ag纳米线。随着Na2S浓度的变大,可获得尺寸较大的Ag纳米线。
     3、以CuCl2为控制剂,可制备出尺寸可控Ag纳米线。研究了CuCl2浓度、Cu2+存在等对Ag纳米线的影响。结果表明:C1-与Ag+形成AgCl胶体,减少溶液中Ag+的浓度,使得Ag原子还原速度减低,从而促进十面体孪晶晶种形成。随着反应进行,AgCl不断将Ag+释放到溶液中。Cu2+被EG还原成Cu+,而Cu+被O2氧化成Cu2+以此不断消耗02,从而抑制十面体孪晶晶种被C1-/O2蚀刻。这些晶种在PVP选择吸附下快速长成Ag纳米线。
     4、以前期所得Ag纳米线、醋酸锌、三乙醇胺(TEA)为原料,微波法合成蠕虫状Ag/ZnO核壳结构。该结构是由ZnO(为壳)包覆Ag纳米线(为核)生长而成。以前期所得Ag纳米线、硝酸锌、六次甲基四胺(HMT)为原料,水热法制备了鞭炮状Ag/ZnO异质结。该结构由约100nm ZnO纳米棒垂直于Ag纳米线长度方向生长而形成。
Silver nanostructures have great advantages, such as unique optical properties, high electrical conductivity, high catalytic ability, high antibacterial activity. These advantages determine that Silver nanostructures play an important role in photoelectric materials, electrode materials, catalytic materials, and antibacterial materials. However, the excellent properties of silver nanostructures are mainly dependent on their shapes and sizes. Thus, the shape-controllable synthesis of silver nanostructures has garnered a significant attention. In this paper, the synthesis and growth mechanism of shape-controlled silver nanostructures were investigated systematically by microwave assisted polyols method. The wormlike Ag/ZnO and firecracker-like Ag/ZnO were synthesized with prepared silver nanowires by microwave method and hydrothermal method. And their formation mechanisms were also clarified. These main results are listed as below:
     1. Uniform silver nanoparticles were prepared with ethylene glycol (EG) as reducing agent and solvent and with poly (vintlpyrrolidone)(PVP) as surfactant. The effects of reaction time, microwave power, PVP concentration, and AgNO3 concentration on the morphology and size of silver nanostructures were studied. The results show that the dispersivity of Ag nanoparticles was good, and the surfaces of silver nanoparticles were easily absorbed and covered by PVP, which prevented the agglomeration of silver nanoparticles. As the reaction time increased, the adsorption effect of PVP was greater than that of growth rate, promoting the formation of small size Ag nanoparticles. As the microwave power and the AgNO3concentration increased, the nucleation rate became higher than growth rate, promoting the formation of small size Ag nanoparticles.
     2. Silver nanowires and nanocubes were obtained by adding different concentrations of Na2S into the solution. Silver nanocubes were synthesized under low concentration of Na2S. The low concentration of Ag2S, which is an n-type semiconductor as catalytic agent, catalyzed Ag+reduction, increased the rate of Ag+reduction, and promoted supersaturation with silver seeds and subsequent formation of single-crystalline seeds. The seeds fast grew into silver nanocubes with the PVP adsorption. Silver nanowires were synthesized of high concentration of Na2S. A high concentration of Ag2S as controlling agents reduced the concentration of free Ag+in the solution, decreased the rate of Ag+reduction, and promoted the formation of the decahedral twinned nanoparticle. In the subsequent reaction, Ag+ions were gradually released from Ag2S colloids into the solution, keeping the equilibrium concentrations of in soluble and soluble salts. The twincrystal nanparticles fast grew into silver nanowires with the adsorption of PVP on the{100} facets. When the concentration of Na2S gradually increased (rang from2.0mM to3.5mM), silver nanowires with large diameters were obtained.
     3. Silver nanowires were obtained using CuCl2as controlling agents. The results show that AgCl colloids were formed from Cl-and free Ag+in the solution, reducing the concentration of Ag+ions in solution, decreasing the rate of Ag+reduction, and resulting in formation of multiply twinned seeds of decahedral shape. In the subsequent reaction, Ag+ions were gradually released from AgCl colloids into the solution. Cu2+was reduced Cu+, and then Cu+was oxidized Cu to consume O2and thus to prevent the silver seeds from being etched by Cr/O2.These multiply twinned seeds of decahedral shape can grew into silver nanowires due to selective adsorption of PVP on{100} facets.
     4. Wormlike Ag/ZnO core-shell structures were synthesized by microwave method with silver nanowires, zinc acetate, and triethanolamine (TEA) as raw materials. The structures were composed of single crystal Ag nanowires (core) and dense regular ZnO particles (shell) grown on Ag nanowires. Firecracker-like Ag/ZnO heterojunction was synthesized by hydrothermal method using silver nanowires, zinc nitrate, and hexamethylene tetramine (HMT) as raw materials. The structures were formed by the growth of about100nm ZnO nanorods perpendicular to the axis of Ag nanowires.
引文
[1]倪星元,姚兰芳,沈军,等.纳米材料制备技术[M].北京:化学工业出版社,2008:7-10.
    [2]石川,程谟杰,曲振平,等.纳米银催化的甲烷选择还原NO反应研究[J].复旦学报(自然科学版),2002,41(3):269-273,279.
    [3]Au L, Zheng D, Zhou F, et al. A quantitative study on the photothermal effect of immuno gold nanoeages targeted to breast cancer cells[J]. ACS Nano,2008,2(8):1645-1652.
    [4]Maier S A, Brongersma M L, Kik P G, et al. Plasmonies a route to nanoseale optical devices[J]. Adv. Mater,2001,13(19):1501-1505.
    [5]Rosi N L, Mirkin C A. Nanostructures in biodiagnostics[J]. Chem. Rev.,2005,105(4): 1547-1562.
    [6]张金中,王中林,刘俊,等.自组装纳米结构[M].北京:化学工业出版社,2005:230-238.
    [7]张太蔚,张露,杨生春,等.银纳米粒子的形状控制合成与应用[J].稀有金属材料与工程,2007,36(8):1495-1499.
    [8]Ferry D K. Nanowires in nanoelectronics[J]. Science,2008,319(5863):579-580.
    [9]Yang R, Sui C H, Gong J, et al. Silver nanowires prepared by modified AAO template method[J]. Materials Letters,2007,61(3):900-903.
    [10]Furneaux R C, Rigby W R, Davidson A P. The formation of controlled porosity membranes from anodically oxidized aluminium[J]. Nature,1989,337(6203):147-149.
    [11]Sun X Y, Xu F Q, Li Z M, et al. Cyclic voltammetry for the fabrication of high dense silver nanowire arrays with the assistance of AAO template[J]. Materials Chemistry and Physics,2005,90(1):69-72.
    [12]Wei G, Zhou H L, Liu Z G, et al. One-step synthesis of silver nanoparticles, nanorods, and nanowires on the surface of DNA network[J]. J. Phys. Chem. B,2005,109(18): 8738-8743.
    [13]Kim K S. Self-assembled organic nanotubes and self-synthesized silver subnanowire arrays in an ambient solution phase[J]. Current Applied Physics,2002,2(1):65-69.
    [14]Mock J J, Oldenburg S J, Smith D R, et al. Composite plasmon resonant nanowires[J]. Nano Letters,2002,2(5):465-469.
    [15]Wang J G, Tian M L, Mallouk T E, et al. Microtwinning in template-synthesized single-crystal metal nanowires [J]. J. Phys. Chem. B,2004,108(3):841-845.
    [16]Piquemal J Y, Viau G, Beaunier P, et al. One step construction of silver nanwires in hexagonal mesoporous silica using the polyol process[J]. Materials Research Bulletin, 2003,38(3):389-394.
    [17]Sun Y, Xia Y. Large scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process[J]. Adv. Mater.,2002,14(11):833-837.
    [18]Chen D, Qiao X, Qiu X, et al. Convenient synthesis of silver nanowires with adjustable diameters via a solvothermal method[J]. Journal of Colloid and Interface Science,2010, 344:286-291.
    [19]Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio[J]. Chem. Commun.,2001, (7):617-618.
    [20]Hu J Q, Chen Q, Xie Z X, et al. A simple and effective route for the synthesis of crystalline silver nanorods and nanowires[J]. Advanced Functional Materials,2004, 14(2):183-189.
    [21]Wang Z, Liu J, Chen X, et al. A simple hydromemal route to large-scale synmesis uniform silver nanowires [J]. Chemistry-A European Journal,2005,11 (1):160-163.
    [22]Zhu J J, Liao X H, Zhao X N, et al. Preparation of silver nanorods by electrochemical methods[J]. Materials Letters,2001,49(2):91-95.
    [23]Zhu J J, Qiu Q F, Wang H, et al. Synthesis of silver nanowires by a sonoelectrochemical method[J]. Inorganic Chemistry Communications,2002,5(4):242-244.
    [24]Zheng X, Zhu L, Yan A, et al. Controlling synthesis of silver nanowires and dendrites in mixed surfactant solutions[J]. Journal of Colloid and Interface Science,2003,268(2): 357-361.
    [25]邹凯,张晓宏,吴世康,等.光化学法合成银纳米线及其形成机理的研究[J].化学学报,2004,62(18):1771-1774.
    [26]Liu F K, Huang P W, Chang Y C, et al. Microwave-assisted synthesis of silver nanorods[J]. J. Mater. Res.,2004,19(2):468-473.
    [27]Liu F K, Huang P W, Chu T C, et al. Gold seed-assisted synthesis of silver nanomaterials under microwave heating[J]. Materials Letters,2005,59(8-9):940-944.
    [28]Gou L, Chipara M, Zaleski J M. Convenient, rapid synthesis of Ag nanowires [J]. Chem. Mater.,2007,19(7):1755-1760.
    [29]Zhu Y, Wang X, Guo W, et al. Sonochemical synthesis of silver nanorods by reduction of sliver nitrate in aqueous solution[J]. Ultrasonics Sonochemistry,2010,17(4): 675-679.
    [30]Liu B, Luo W, Zhao X. A facile synthesis of ordered ultralong silver nanobelts[J]. Materials Research Bulletin,2009,44(3):682-687.
    [31]Bai J, Qin Y, Jiang C, et al. Polymer controlled synthesis of silver nanobelts and hierarchical nanocolumns[J]. Chem. Mater.,2007,19(14):3367-3369.
    [32]姜妲,翟玉春,陈元涛,等.单晶银纳米带的合成与机理分析[J].2006,37(11):1832-1834
    [33]Park J H, Oh S G, Jo B W. Fabrication of silver nanorubes using functionalized silica rod as templates[J]. Materials Chemistry and Physics,2004,87(2-3):301-310.
    [34]Wei G, Nan C, Yu D. Large-scale self-assembled Ag nanotubes[J]. Tsinghua Science and Technology,2005,10(6):736-740.
    [35]Gao P, Zhan C, Liu M. Controlled synthesis of double and multiwall silver nanotubes with template organogel from a bolaamphiphile[J]. Langmuir,2006,22(2):775-779.
    [36]Benjamin J W, Wang Z, Wei J, et al. Synthesis and electrical characterization of silver nanobeams[J]. Nano Lett.,2006,6(10):2273-2278.
    [37]高雯雯,兰新哲,宋永辉,等.化学法制备形状可控纳米银的研究进展[J].贵金属,2009,30(2):64-74.
    [38]Zhang J, Li X, Sun X, et al. Surface enhanced raman scattering effects of silver colloids with different shapes[J]. J. Phys. Chem. B,2005,109 (25):12544-12548.
    [39]楚广,杨天足,刘伟峰,等.纳米银粉的制备及其应用研究进展[J].贵金属,2006,27(1):57-63.
    [40]Jin R C, Cao Y W, Mirkin C A, et al. Photoinduced conversion of silver nanospheres to nanoprisms[J]. Science,2001,294(5548):1901-1903.
    [41]Pastoriza-Santos I, Liz-Marzan L M. Synthesis of silver nanoprisms in DMF[J]. Nano Letter,2002,2(8):903-905.
    [42]Dong X, Ji X, Jing J, et al. Synthesis of triangular silver nanoprisms by stepwise reduction of sodium borohydride and trisodium citrate[J]. J. Phys. Chem. C,2010, 114(5):2070-2074.
    [43]Yamamoto T, Yin H, Wada Y, et al. Morphology control in microwave assisted synthesis of silver particles in aqueous solutions[J]. Bulletin of the Chemical Society of Japan,2004,77(4):757-761.
    [44]He R, Qian X, Yin J, et al. Preparation of polychrome silver nanoparticles in different solvents[J]. J. Mater. Chem.,2002,12(2):3783-3786.
    [45]Darmanin T, Nativo P, Gilliland D, et al. Microwave-assisted synthesis of silver nanoprisms/nanoplates using a "modified polyol process"[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2012,395:145-151.
    [46]Xue C, Metraux G S, Millstone J E, et al. Mechanistic study of photomediated triangular silver nanoprism growth[J]. J. Am. Chem. Soc,2008,130(26):8337-8344.
    [47]蒋伟燕,张传福,张银亮.片状银粉的性能及其制备方法[J].材料研究与应用,2008,2(3):183-186.
    [48]吴海斌,孟淑媛,唐元勋.小粒径片状银粉的制备[J].电子工业技术,2008,29(5):286-290.
    [49]谭富彬,赵玲.片状银粉的特性及其电性能[J].贵金属,1999,20(2):10-15.
    [50]梁焕珍,金东镇,喻克宁,等.六方片状银粉的合成[J].粉末冶金技术,2003,21(4):218-223.
    [51]武慧芳,马艳芸,谢兆雄.银纳米片的室温合成及其生长机理[J].科学通报,2007,52(18):2217-2219.
    [52]Yi Z, Li X, Xu X, et al. Green, effective chemical route for the synthesis of silver nanoplates in tannic acid aqueous solution[J]. Colloids and Surfaces A:Physicochem. Eng. Aspects,2011,392(1):131-136.
    [53]Cui X, Li C M, Bao H, et al. Hyaluronan-assisted photoreduction synthesis of silver nanostructures:from nanoparticle to nanoplate[J]. J. Phys. Chem. C,2008,112(29): 10730-10734.
    [54]Rocha TCR, Winnischofer H, Westphale E, et al. Formation kinetics of silver triangular nanoplates[J]. J. Phys. Chem. C,2007,111(7):2885-2891.
    [55]Guevel L X, Wang F Y, Stranik O, et al. Synthesis, stabilization, and functionalization of silver nanoplates for biosensor applications[J]. J. Phys. Chem. C,2009,113(37): 16380-16386.
    [56]Zhang Q, Hu Y, Guo S, et al. Seeded growth of uniform Ag nanoplates with high aspect ratio and widely tunable surface plasmon bands[J]. Nano Lett.,2010,10(12): 5037-5042.
    [57]He X, Zhao X. Solvothermal synthesis and formation mechanism of chain-like triangular silver nanoplate assemblies:Application to metal-enhanced fluorescence (MEF)[J]. Applied Surface Science,2009,255 (16):7361-7368.
    [58]Huang L, Zhai Y, Dong S, et al. Efficient preparation of silver nanoplates assisted by non-polar solvents[J]. Journal of Colloid and Interface Science,2009,331(2):384-388.
    [59]Yang J, Lu L, Wang H, et al. Glycyl glycine templating synthesis of single crystal silver nanoplates [J]. Crystal Growth & Design,2006,6(9):2155-2158.
    [60]Jiang L P, Xu S, Zhu J M, et al. Ultrasonic assisted synthesis of monodisperse single crystalline silver nanoplates and gold nanorings[J]. Inorg. Chem.,2004,43(19): 5877-5883.
    [61]Chen S, Fan Z, Carroll D L. Silver nanodisks:synthesis, characterization, and self-assembly [J]. J. Phys. Chem. B,2002,106(42):10777-10781.
    [62]Maillard M, Huang P, Brus L. Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+][J]. Nano Lett.,2003,3 (11):1611-1615.
    [63]Chen Y B, Chen L, Wu L M. Structure controlled solventless thermolytic synthesis of uniform silver nanodisks [J]. Inorg. Chem.,2005,44(26):9817-9822.
    [64]Hao E, Kelly K L, Hupp J T, et al. Synthesis of silver nanodisks using polystyrene mesospheres as templates[J]. J. Am. Chem. Soc,2002,124(51):15182-15183.
    [65]Hsu S L H, Wu R T. Synthesis of contamination free silver nanoparticle suspensions for micro-interconnects[J]. Materials Letters,2007,61(17):3719-3722.
    [66]司民真,武荣国,张鹏翔.负电性纳米银的制备及性质研究[J].化学物理报,2001,14(4):465-468.
    [67]Liang H, Wang W, Huang Y, et al. Controlled synthesis of uniform silver nanospheres[J]. J. Phys. Chem. C,2010,114(16):7427-7431.
    [68]Cobley C M, Rycenga M, Zhou F, et al. Controlled etching as a route to high quality silver nanospheres for optical studies[J]. J. Phys. Chem. C,2009,113(39): 16975-16982.
    [69]Shchukin D G, Radtchenko I L, Sukhorukov G B. Photoinduced reduction of silver inside microscale polyelectrolyte capsules[J]. ChemPhysChem,2003,4(10): 1101-1103.
    [70]Lim P Y, Liu R S, She P L, et al. Synthesis of Ag nanospheres particles in ethylene glycol by electrochemical-assisted polyol process[J]. Chem. Phys. Lett.,2006,420(4-6): 304-308.
    [71]Yang L, Shen Y, Xie A, et al. Facile size controlled synthesis of silver nanoparticles in UV-Irradiated tungstosilicate acid solution[J]. J. Phys. Chem. C,2007,111(14): 5300-5308.
    [72]Zhang W, Qiao X, Chen J, et al. Preparation of silver nanoparticles in water in oil AOT reverse micelles[J]. Journal of Colloid and Interface Sciene,2006,302(1):370-373.
    [73]Wen X, Xie Y T, Mak M W C, et al. Dendritic nanostructures of silver:Facile synthesis, structural characterizations, and sensing applications[J]. Langmuir,2006,22(10): 4836-4842.
    [74]Wei G, Nan C W, Deng Y, et al. Self-organized synthesis of silver chainlike and dendritic nanostructures via a solvothermal method[J]. Chem. Mater.,2003,15(23): 4436-4441.
    [75]Wang Z, Zhao Z, Qiu J. A general strategy for synthesis of silver dendrites by galvanic displacement under hydrothermal conditions[J]. Journal of Physics and Chemistry of Solids,2008,69(5-6):1296-1300.
    [76]Xie S, Zhang X, Xiao D, et al. Fast growth synthesis of silver dendrite crystals assisted by sulfate ion and its application for surface-enhanced raman scattering [J]. J. Phys. Chem. C,2011,115(20):9943-9951.
    [77]Zhang G, Sun S, Banis M N, et al. Morphology-controlled green synthesis of single crystalline silver dendrites, dendritic flowers, and rods, and their growth mechanism[J]. Cryst. Growth Des.,2011,11(6):2493-2499.
    [78]Sun X, Hagner M. Novel preparation of snowflake-like dendritic nanostructures of Ag or Au at room temperature via a wet-chemical route[J]. Langmuir,2007,23(18): 9147-9150.
    [79]Wang L, Li H, Tian J, et al. Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites:rapid, large-scale, wet-chemical synthesis and their application as SERS substrates [J]. ACS App. Mate, interfaces,2010,2(11):2987-2991.
    [80]Zheng X, Zhu L, Wang X, et al. A simple mixed surfactant route for the preparation of noble metal dendrites[J]. Journal of Crystal Growth,2004,260(1-2):255-262.
    [81]Xia Y, Wang J. Hierarchical silver nanodendrites:one-step preparation and application for SERS[J]. Materials Chemistry and Physics,2011,125(1-2):267-270.
    [82]Gu C, Zhang T Y, Electrochemical synthesis of silver polyhedrons and dendritic films with superhydrophobic surfaces[J]. Langmuir,2008,24(20):12010-12016.
    [83]Zhou Y, Yu S H, Wang C Y, et al. A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites[J]. Adv. Mater.,1999,11(10):850-852.
    [84]He R, Qian X, Yin J, et al. Formation of silver dendrites under microwave irradiation[J]. Chemical Physics Letters,2003,369(3-4):454-458.
    [85]Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles[J]. Science, 2002,298(5601):2176-2179.
    [86]Wiley B, Herricks T, Sun Y, et al. Polyol synthesis of silver nanoparticles:use of chloride and oxygen to promote the formation of single crystal, truncated cubes and teyrahedrons[J]. Nano Letters,2004,4(9):1733-1739.
    [87]Lee Y T, Im S H, Wiley B, et al. Quick formation of single-crystal nanocubes of silver through dual functions of hydrogen gas in polyol synthesis[J]. Chemical Physics Letters, 2005,411(4-6):479-483.
    [88]Taguchi A, Fujii S, Ichimura T, et al. Oxygen-assisted shape control in polyol synthesis of silver nanocrystals[J]. Chemical Physics Letters,2008,462(1-3):92-95.
    [89]Kundu S, Maheshwari V, Niu S, et al. Polyelectrolyte mediated scalable synthesis of highly stable silver nanocubes in less than a minute using microwave irradiation[J]. Nanoteehnology,2008,19(6):065604-065608.
    [90]王悦辉,张琦,周济.银纳米立方体的制备及其影响因素[J].材料导报,2008,22(3):144-147.
    [91]姚素薇,曹艳蕊,张卫国.光还原法制备不同形貌银纳米粒子及其形成机理[J].应用化学,2006,23(4):438-440.
    [92]Zhou J, An J, Tang B, et al. Growth of tetrahedral silver nanocrystals in aqueous solution and their SERS enhancement[J]. Langmuir,2008,24 (18):10407-10413.
    [93]Gracia-Pinilla M A, Perez-Tijerina E, Garcia J A, et al. On the structure and properties of silver nanoparticles[J]. J. Phys. Chem. C,2008,112 (35):13492-13498.
    [94]Wiley B J, Xiong Y, Li Z Y, et al. Right bipyramids of silver:a new shape derived from single twinned seeds[J]. Nano Letters,2006,6(4):765-768.
    [95]Zhang J, Langille M R, Mirkin C A. Photomediated synthesis of silver triangular bipyramids and prisms:the effect of pH and BSPP[J]. J. Am. Chem. Soc,2010, 132(35):12502-12510.
    [96]Pietrobon B, Kitaev V. Photochemical synthesis of monodisperse size controlled silver decahedral nanoparticles and their remarkable optical properties[J]. Chem. Mater.,2008, 20(16):5186-5190.
    [97]Zheng X, Zhao X, Guo D, et al. Photochemical formation of silver nanodecahedra: structural selection by the excitation wavelength [J]. Langmuir,2009,25(6):3802-3807.
    [98]Tsuji M, Ogino M, Matsuo R, et al. Stepwise growth of decahedral and icosahedral silver nanocrystals in DMF[J]. Cryst. Growth Des.,2010,10 (1):296-301.
    [99]Tsuji M, Maeda Y, Hikino S, et al. Shape evolution of octahedral and triangular platelike silver nanocrystals from cubic and right bipyramidal seeds in DMF[J]. Cryst. Growth Des.,2009,9(11):4700-4705.
    [100]Terabe K, Hasegawa T, Nakayama T, et al. Quantized conductance atomic switch[J]. Nature,2005,433(47-50):47-50.
    [101]朱桂琴,史建公,王万林.银纳米材料制备和应用进展[J].科技导报,2010,28(22):112-117.
    [102]Park S, Seo D, Lee J. Preparation of Pb-free silver paste containing nanoparticles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008,313-314: 197-201.
    [103]Wu H P, Liu J F, Wu X J, et al. High conductivity of isotropic conduetive adhesives filled with silver nanowires[J]. International Joumal of Adhesion and Adhesives,2006, 26(8):617-621.
    [104]Andersson M, Pedersen J S, Palmqvist A E C. Silver nanoparticle formation in microemulsions acting both as template and reducing agenit[J]. Langmuir,2005,21(24): 11387-11396.
    [105]Gao Y, Jiang P, Song L, et al. Growth mechanism of silver nanowires synthesized by polyvinylpyrrolidone-assisted polyol reduction[J]. J. Phys. D:Appl. Phys.,2005,38(7): 1061-1067.
    [106]Bryant G W, Garcia de Abajo F J, Aizpurua J. Mapping the plasmon resonances of metallic nanoantennas[J]. Nano Lett.,2008,8(2):631-636.
    [107]Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment J]. J. Phys. Chem. B,2003, 107(3):668-677.
    [108]Link S, EI-Sayed M A. Spectral properties and relaxation dynamics of surafce plasmon electronic oscillations in gold and silver naodots and nanorods[J]. J. Phys. chem. B, 1999,103(40):8410-8426.
    [109]Sun Y, Wiederrecht G P. Surfactantless synthesis of silver nanoplates and their application in SERS[J]. Small,2007,3(11):1964-1975.
    [110]Baker G A, Moore D S. Progress in plasmonic engineering of surface-enhanced raman-scattering substrates toward ultra-trace analysis[J]. Analytical and Bioanalytical Chemistry,2005,382(8):1751-1770.
    [111]Thomas V, Yallapu M M, Sreedhar B, et al. A versatile strategy to fabricate hydrogel-silver nanocomposites and investigation of their antimicrobial activity[J]. Journal of Colloid and Interface Science,2007,315(1):389-395.
    [112]Gong P, Li H, He X, et al. Preparation and antibacterial activity of Fe3O4@Ag nanoparticles[J]. Nanotechnology,2007,18(28):285604-285610.
    [113]毛爱丽,彭兵,柴立元,等.载银纳米TiO2抗菌竹炭制备工艺研究[J],材料导报,2007,11(21):229-231.
    [114]舒东,何春,郭海福.纳米Ag-TiO2/lTO光催化膜的制备、表征及光催化活性的研究[J].精细化工,2004,21(6):421-424.
    [115]Chimentao R J, Kirm I, Medina F, et al. Different morphologies of silver nanoparticles as catalysts for the selective oxidation of styrene in the gas phase[j]. Chem. Commun., 2004,4(7):846-847.
    [116]沈江,山巍,杜俊明.一种用于1,2一丙二醇气相脱氢氧化合成丙酮醛的纳米银沸石膜催化剂的制备方法[P].中国专利:1586719A,2005-03-02.
    [117]Sun Y G, Xia Y N. Gold and silver nanoparticles:a class of chromophores with colors tunable in the range from 400 to 750 nm[J]. Analyst,2003,128 (6):686-691.
    [118]Chen S H, Webster S, Czerw R, et al. Morphology effects on the optical properties of silver nanoparticles[J]. Journal of Nanoscience and Nanotechnology,2004,4(3): 254-259.
    [119]Murphy C J, Jana N R. Controlling the aspect ratio of inorganic nanorods and nanowires[J]. Adv. Mater.,2002,14(1):80-82.
    [120]Muniz-Miranda M. On the occurrence of the central line (~1025 cm-1) in the SERS spectra of pyridine adsorbed on silver hydrosols[J]. Chemieal Physies Letters,2001, 340(5-6):437-443.
    [121]胡滨,刘国军,刘素花,等.抗菌涂料中无机抗菌剂的研究进展[J].现代涂料与涂装,2009,12(1):18-19.
    [122]Yu D, Yam V W W. Hydrothermal-induced assembly of colloidal silver spheres into various nanoparticles on the basis of HTAB-modified silver mirror reaction[J]. J. Phys. Chem. B,2005,109(12):5497-5503.
    [123]Talebi J, Halladj R, Askari A. Sonochemical synthesis of silver nanoparticles in Y-zeolite substrate[J]. J. Mater. Sci.,2010,45(12):3318-3324.
    [124]Fievet F, Lagier J P, Figlarz M. Preparing monodisperse metal powders in micrometer and submicrometer sizes by the polyol process[J]. MRS Bull.,1989,14(12):29-34.
    [125]Li C, Shuford K L, Chen M, et al. A facile polyol route to uniform gold octahedra with tailorable size and their optical properties[J]. ACS Nano,2008,2(9):1760-1769.
    [126]Komarneni S, Dongsheng L, Newalkar B, et al. Microwave-polyol process for Pt and Ag nanoparticles[J]. Langmuir,2002,18(15):5959-5962.
    [127]Hu J, Palchik O, Chen S, et al. Microwave assisted preparation of CdSe, PbSe, and Cu2-xSe nanoparticles[J]. J. Phys. Chem. B,2000,104(31):7344-7347.
    [128]姚宝慧,徐国财,张宏艳,等.PVP催化还原及稳定化纳米银的微波合成[J].无机化学学报,2010,26(9):1629-1632.
    [129]吉小利,徐国财,谭德新,等.微波辐照纳米银的制备与表征[J].化工新型材料,2011,39(9):53-56.
    [130]Nadagouda M N, Varma R S. Microwave-assisted shape-controlled bulk synthesis of Ag and Fe nanorods in poly (ethylene glycol) solutions[J]. Cryst. Growth Des.,2008, 8(1):291-295.
    [131]付敏,江志东,马紫峰,等.微波水热法合成钦酸钠盐纳米管[J].无机材料学报,2005,20(4):808-8 1 4.
    [132]尹荔松,阳素玉,何鑫,等.球形纳米银粒子制备新方法及其表征[J].纳米技术与精密工程,2010,8(4):295-299.
    [133]Carotenuto G, Pepe G P, Nieolais L. Preparation and characterization of nanosized Ag/PVP composites for optical applications[J]. The European Physical Journal B-Condensed Matter and Complex Systems,2000,16(1):11-17.
    [134]Mock J J, Barbic M, Smith D R, et al. Shape effects in plasmon resonance of individual colloidal silver nanoparticles[J]. J. Chem. Phys.,2002,116(15):6755-6760.
    [135]Wiley B J, Im S H, Li Z Y, et al. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis[J]. J. Phys. Chem. B,2006,110(32): 15666-15675
    [136]Sosa I O, Noguez C, Barrera R G. Optical properties of metal nanoparticles with arbitrary shapes[J]. J. Phys. Chem. B,2003,107(26):6269-6275
    [137]Slistan-Grijalva A, Herrera-Urbina R, Rivas-Silva J F, et al. Assessment of growth of silver nanoparticles synthesized from an ethylene glycol silver nitrate polyvinylpyrrolidone solution[J]. Physica E:Low-dimensional Systems and Nanostructures,2005,25(4):438-448
    [138]Xia Y, Xiong Y, lim B, et al. Shape-controlleds synthesis of metal nanocrystals:simple chemistry meets complex physics?[J]. Angew. Chem. Int. Ed,2008,48(1):60-103.
    [139]徐恒钧.材料科学基础[M].北京:北京工业大学出版社,2001:221-229.
    [140]Zhang Z T, Zhao B, Hu L M. PVP protective mechanism of ultrafine silver powders synthesized by chemical reduetion processes[J]. Journal of Solid State Chemistry, 1996,121(1):105-110.
    [141]Wile B, Sun Y, Mayers B, et al. Shape-controlled synthesis of metal nanostructures:The case of silver[J]. Chem. Eur. J.,2005,11(2):454-463.
    [142]陈昌.银纳米材料的形貌可控制备及其应用研究[D].浙江:浙江大学,2006.
    [143]Chen C, Wang L, Jiang G, et al. The influence of seeding conditions and shielding gas atmosphere on the synthesis of silver nanowires through the polyol process[J]. Nanotechnology,2006,17(2):466-474.
    [144]Im S H, Lee Y T, Wiley B, et al. Large-scale synthesis of silver naocubes:the role of HCI in promoting cube perfection and monodispersity[J]. Angew Chem. Int. Ed.,2005, 117(14):2192-2195.
    [145]Lin S Y, Tsai Y T, Chen C C, et al. Two-step functionalization of neutral and positively charged thiols onto citrate-stabilized Au nanoparticles[J]. J. Phys. Chem. B,2004, 108(7):2134-2139.
    [146]Chen D, Qiao X, Qiu X, et al. Convenient, rapid synthesis of silver nanocubes and nanowires via a microwave-assisted polyol method[J]. Nanotechnology,2010,21(2): 1-7.
    [147]Liu F K, Huang P W, Chang Y C, et al. Microwave-assisted synthesis of silver nanorods[J]. J. Mater. Res.,2004,19(2):469-473.
    [148]Henglein A. Physicochemical properties of small metal particles in solution:" microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition[J]. J. Phys. Chem.,1993,97(21):5457-5471.
    [149]Marks L D. Experimental studies of small particle structures [J]. Rep. Prog Phys,1994, 57(6):603-649.
    [150]Gao Y, Song L, Jiang P, et al. Silver nanowires with five-fold symmetric cross-section[J]. J. Cryst. Growth,2005,276(3-4):606-612.
    [151]Rai M, Yadav A, Gade A. Silver nanoparticles as a new generation of antimicrobials [J]. Biotechnology Advances,2009,27 (1):76-83.
    [152]Sun Y, Mayers B, Herricks T, et al. Polyol synthesis of uniform siJver nanowires:a plausible growth mechanism and the supporting evidence[J]. Nano Lett.,2003,3(7): 955-960.
    [153]Huang H H, Ni X P, Loy G L, et al. Photochemical formation of silver nanoparticles in poly (N-vinylpyrrolidone)[J]. Langmuir,1996,12(4):909-912.
    [154]Bonet F, Tekaia-Elhsissen K, Sarathy K V. Study of interaction of ethylene glycol/PVP phase on noble metal powders prepared by polyol process[J]. Bull. Mater. Sci.,2000, 23(3):165-168.
    [155]Kryukov A 1, Stroyuk A L, Zin'chuk N N, et al. Optieal and catalytic properties of Ag2S nanopartieles[J]. J. Mol. Catal. A:chem.,2004,221(1-2):209-221.
    [156]陈大鹏.纳米银的可控制备及其应用研究[D].湖北:华中科技大学,2010.
    [157]江成军,段志伟,张振忠,等.不同表面活性剂对纳米银粉在乙醇中分散性能的影响[J].稀有金属材料与工程,2007,36(4):724-727.
    [158]Korte K E, Skrabalak S E, Xia Y. Rapid synthesis of silver nanowires through a CuCl-or CuCl2-mediatedpolyol process[J]. J. Mater. Chem.,2008,18(4):437-441.
    [159]Mokari T, Sztrum C G, Salant A, et al. Formation of asymmetric one-sided metal-tipped semieonduetor nanoerystal dots and rods[J]. Nature Materials,2005,4(11):855-863.
    [160]Dawson A, Kamat P V. Semiconductor-metal nanocomposites. photoinduced fusion and photoeatalysis of gold-capped TiO2 (TiO2/Gold) nanoparticles[J]. J. Phys. Chem. B, 2001,105(5):960-966.
    [161]Wiley B J, Chen Y, McLellan J M, et al. Synthesis and optical properties of silver nanobars and nanorie[J]. Nano Lett.,2007,7(4):1032-1036.
    [162]Haes A J, Duyne R P V. A nanoscale optical biosensor:sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanopartieles[J]. J. Am. Chem. Soc,2002,124(35):10596-10604.
    [163]Shegai T, Li Z, Dadosh T, et al. Managing light polarization via plasmon-molecule interactions within an asymmetric metal nanoparticle trimer[J]. Proc. Nati. Acad. Sci. U.S.A.,2008,105(43):16448-16453.
    [164]Geddes C D, Cao H, Gryczynski I, et al. Metal enhanced fluorescence (MEF) due to silver colloids on a planar surface:potential applications of indocyanine green to invivo imaging[J]. J. phys. Chem. A,2003,107(18):3443-3449.
    [165]Wu J J, Liu S C. Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition[J].Adv. Mater.,2002,14(3):215-218.
    [166]Joo J, Kwon S G, Yu J H, et al. Synthesis of ZnO nanocrystals with cone, hexagonal cone, and rod shapes via non-hydrolytic ester elimination Sol-Gel reactions[J]. Adv. Mater.,2005,17(15):1873-1877.
    [167]Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis[J]. Chem. Rev.,1995,95(1):69-96.
    [168]Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results[J]. Chem. Rev.,1995,95(3):735-758.
    [169]Stroyuk A L, Shvalagin V V, Kuchmii S Y. Photochemical synthesis, spectral optical and electrophysical properties of composite nanoparticles of ZnO/Ag[J]. Theoretical and Experimental chemistry,2004,40(2):98-104.
    [170]Ren C, Yang B, Wu M, et al. Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance[J]. Journal of Hazardous Materials 2010,182(1-3): 123-129.
    [171]Song C, Lin Y, Wang D. et al. Facile synthesis of Ag/ZnO microstructures with enhanced photocatalytic activity[J]. Materials Letters,2010,64(14):1595-1597.
    [172]Gu C, Cheng C, Huang H, et al. Growth and photocatalytic activity of dendrite-like ZnO@Ag heterostructure nanocrystals[J]. Cryst. Growth Des.,2009,9(7):3278-3285.
    [173]Zheng Y, Chen C, Zhan Y, et al. Luminescence and photocatalytic activity of ZnO nanocrystals:Correlation between structure and property[J]. Inorg. Chem.,2007,46(16): 6675-6682.
    [174]Lin D, Wu H, Zhang R, et al. Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers[J]. Chem. Mater.2009,21(15):3479-3484
    [175]Raula M, Rashid M H, Paira T K, et al. Ascorbate-assisted growth of hierarchical ZnO nanostructures:sphere, spindle, and flower and their catalytic properties[J]. Langmuir 2010,26(11):8769-8782.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700