用户名: 密码: 验证码:
纳米Pd/PEG管状复合物的超声制备与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
采用超声辐射方法,合成了具有管状结构的纳米Pd/PEG复合材料。探讨了超声波还原机理以及不同分子量的PEG对二价钯离子的还原能力,并利用TEM,XRD, XPS等手段表征了超声合成的复合材料,初步研究了复合材料的流变性能。
     (1)采用超声波辐射的方式,合成出了有特殊结构的纳米Pd/PEG复合材料。在相同的条件下,讨论了不同分子量的PEG对还原二价钯离子的影响;UV-Vis表明纳米钯粒子在430nm处有吸收峰,且峰型较窄,PEG600的还原能力比较强,这是因为单位体积中,羟基越多,还原Pd2+的能力越强,即还原出来的纳米钯粒子越多;TEM显示所得到的纳米复合物是管状结构,钯粒子均匀地分散在PEG管腔中,而且钯晶颗粒规整。
     (2)在PEG保护下,反应体系的颜色均由最初的浅黄色逐渐转为深褐色,最后变为黑褐色。对制得的纳米钯悬浮液进行TEM、HRTEM等表征手段进行分析表明,PEG呈长约0.5μ m,直径为50-80nm的管状结构,并将部分纳米钯粒子包覆在其中,达到稳定纳米钯粒子的作用,而且纳米钯粒子的尺寸在5—10nm,呈球形或方形。XRD揭示了单分散纳米金属钯颗粒的5个晶面衍射特征峰,充分表明超声合成的纳米钯是具有面心立方结构的纳米粒子。XPS表明复合材料中PEG的C-OH中Ols结合能(532.3eV)比C-OH中的Ols的标准结合能(532.8eV)降低了0.5eV,说明聚合物中羟基上的氧原子和纳米钯之间形成了一定的相互作用。
     (3)采用循环剪切模式考察了剪切时间对剪切应力的影响以及体系的触变性,结果表明,与PEG600相比,纳米Pd/PEG600复合体系的最大应力提高了近5倍;体系的触变性也有了较大提高,提高了28.4%,可能是由于纳米钯与PEG600形成了管状结构的缘故。
Nano-palladium/Poly(ethylene glycol) composite materials with tubular structure were synthesized by ultrasonic irradiating. The mechanism of ultrasonic reduction and the reduction ability of Poly(ethylene glycol) of different molecular weight for Pd2+were discussed, the composite materials were characterized by means of TEM, XRD, XPS and so on. The rheological properties of the nanocomposites were also studied.
     (1)Nano-Pd/Poly (ethylene glycol) composite materials with particular structure were synthesized by ultrasonic irradiating. The reduction ability of PEG of different molecular weight for pd2+ion under the same. conditions were discussed. The results of UV-Vis spectrum showed that there was a strong but narrow absorption peak at430nm for nano-Pd particles.The reduction ability of PEG600was stronger than that of others due to more content of hydroxyl groups in the same volume.The more the hydroxyl groups,the more the nano-palladium particles reduced from Pd2+ion.The TEM of the nanocomposites showed that the nano Pd particles with uniform size well dispersed within the tube formed by PEG,the nanocoposites was of tubular structure.
     (2) The color of the reaction system was initially yellow, with a gradient moving to brown,and finally became black within the protection of PEG600. TEM showed that PEG displayed a clubbed structure with the length of about0.5μm and5-10nm in diameter. Part of the nano-Pd particles were buried into the tube so as to make them more stable. This resulted in spherical or square particles of Pd with5-10nm in size.By the examination of XRD. the five strong characteristic peaks are ascribed to the formation of monodispersed nano-Pd particles with face-centred cubic structure.XPS indicated that Ols binding energy (532.3eV) of C-OH on PEG dropped down0.5eV compared to the standard, it proved that there existed interaction between hydroxyl oxygen and the nano-Pd.
     (3) The influence of shear time on shear stress and thixotropy were studied by using cyclic shear mode, and the results showed that the maximum stress of nano Pd/PEG600composite increased nearly five times than that of PEG600;the thixotropy of system improved up to28.4%.probably due to the formation of tubular structure formed by nano-Pd and PEG600.
引文
[1]张立德,眸季美.纳米材料和纳米结构[M].北京:科学出版社,2002.
    [2]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社,2002.
    [3]杨志伊.纳米科技[M].北京:机械工业出版社,2004
    [4]杜宏伟,孔瑛,史德青.聚酰亚胺/Ti 02有机-无机纳米复合膜材料的合成与表征[J].高分子材料科学与工程,2004.,20(1):84-86.
    [5]Padmajap, Warrier K G. K, Padmanabnabhan M, et al. Structural aspects and porosity features of nano-size high surface area alumina-silica mixed oxide catalyst generated through hybrid sol-gel route [J]. Materials Chemistry and Physics,2006,95(1):56-61
    [6]Zhang Youjin, Hu Biao, Zhang Zude, et al. Room Temperature Redox Redox Reaction To Prepare AgCuSe Ternary Nanorods[J]. Chinese Journal of Chemical Physics,2005,18(4):594-598
    [8]徐国财,马家举,邢宏龙,等.原位分散紫外光固化SiO2纳米复合材料的性质[J].应用化学,2000,17(4):450-452.
    [9]K G Neoh, K K Tan, P L Goh, et al. Electroactive polymer-SiO2 n anocomposites for metal uptake Polymer[J].1999,40(4):887-893.
    [10]H S Zhou, T Wada, H Sasabe. Synthesis of nanometer-size silver coated polymerized diacetylene composite particles Applied Physic Letters[J].1996,68(9):1288.
    [11]干福熹.用溶胶-凝胶方法制备的有机-无机复合材料和纳米复合材料的非线形光学性质[J].自然科学进展,1999,9(4):289-295.
    [12]徐国财,张立德.纳米复合材料[M].北京:科学出版社.2002,3.
    [13]杨桂春,陈祖兴,胡春玲.聚合物支载合成杂环化合物的研究进展[J].有机化学,2002,22(12):936-942.
    [14]邱晓峰,朱俊杰.超声化学制备单分散金属纳米钯[J].无机化学学报.2003,7(19):766-769.
    [15]刘庆业,覃爱苗,聚乙二醇光化学法制备金纳米微粒及共振散射光谱研究[J].光谱学与光谱分析,2005,25(11):1857-1860.
    [16]韩旭,李疏芬,等富勒烯灰对聚乙二醇热分解和红外光谱的影响[J].光谱学与光谱分析,2008,28(12):2789-2792.
    [17]Shun-ya Onozawa,Norihisa Fukaya,Kaori Saitou,et al.PEG Modification Effect of Silica on the Suzuki-Miyaura Coupling Reaction Using Silica-immobilized Palladium Catalysts[J].Catalysis Letters,2011,19(141):866-871.
    [18]小琳.超声化学法制备无机纳米材料的研究进展[J].中国粉体技术,2004,10(01):44-48.
    [19]李延盛,尹其光.超声化学[M].北京:科学出版社,1995:427
    [20]谭德新,王艳丽,徐国财等.纳米钯粒子的超声制备和表征[J].无机化学学报,2006,22(10):1921-1924.
    [21]Arul D N, Gedanken A, Sonochemistry and Other Novel Methods Developed for the Synthesis of Nanoparticles[J]. J. Mater. Chem.,1998,8(2):445-450.
    [22]Abderrafik N, Jean-Luc R, Synthesis of Palladium Nanoparticles by Sonochemical Reduction of Palladium(II) Nitrate in Aqueous Solution. J. Phys. Chem. B,2006,110:383-387.
    [23]徐国财,戴明虎,张晓梅等.纳米Pd-Ga/PMMA复合体系界面的有序结构[J].材料研究学报,,2011,25(3):303-307.
    [24]章建忠,徐国财,王艳丽等.纳米银镓合金/聚甲基丙烯酸甲酯复合粒子的结构表征[J].复合材料学报,2007,24(4):67-70.
    [25]Guo Cai Xu,On Interaction between nano-Ag and P(AMPS-co-MMA) copolymer synthesized by ultrasonic[J].J Polym Res.2009,16:295-299.
    [26]沈一丁.高分子表面活性剂[M].北京:化学工业出版社,,2002.
    [27]P. Ahmadian Namini.A. A. Babaluo.B. Bayati.Palladium nanoparticles synthesis using polymeric matrix:poly(ethyleneglycol) molecular weight and palladium concentration effects[J]. International Journal of Nanoscience and Nanotechnology,2007,3(1):37-39.
    [28]E.B.Flint, K.S.Suslick. The temperature of cavitation[J]. Science,1991,253:1397-1399.
    [29]Dhas N A, Koltypin Y, Gedanken A, Sonochemical preparation and characterization of ultrafine chromium oxide and manganese oxide powders, Chem. Mater.,1997,9(12):3159-3163.
    [30]Dhas N A, Raj C P. Gedanken A. Synthesis, characterization and properties of metallic copper nanoparticles [J]. Chem. Mater,1998,10:1446-1452.
    [31]Lanzheng Ren, Lingjie Meng.Qinghua Lu.Fabrication of octahedral gold nanostructures using an alcoholic ionic liquid[J].Chemistry Letters,2008,37(1):106-107.
    [32]Lanzheng Ren, Lingjie Meng.Qinghua Lu, Fabrication of gold nano-and microstructures in ionic liquids---A remarkable anion effect[J] Journal of Colloid and Interface Science,2008,232(2):260-266.
    [33]常迎梅.疏水性纳米颗粒在储层微孔道劈头面的吸附机制[J].石油天然气学报,2010,32(1):106-109.
    [34]徐国财,汪厚安,侯丽等PMMA-b-PSt的ATRP合成及其与纳米铜的作用和组装[J]..高分子材料科学与工程,2010,26(5):17-20.
    [35]A.Vadivel Murugan, C.W.Kwon, G.Campet, et al. A Novel Approach To Prepare Poly(3, 4-ethylenedioxythiophene) Nanoribbons between V2O5 Layer by Microwave Irradiation[J]. Journal of Physical Chemistry B,2004;108(30):10736-10742.
    [36]徐国财,纳米科技导论[M].北京:高等教育出版社,2005
    [37]史铁钧,吴德峰等.高分子流变学基础[M].北京:化学工业出版社,2009.
    [38]宋厚春等.高聚物流变学的原理、发展及应用[J].合成技术与应用,2004,3(5):80-83.
    [39]周持兴.聚合物流变实验与应用[M].上海:上海交通大学出版社,2009.
    [40]王霏雯.嵌段共聚物在选择性溶剂中的形态结构及其流变学特性的研究[D].杭州:浙江大学,2008.
    [41]徐国财.紫外光辐射纳米SiO2有机复合材料的制备与表征[D].合肥:中国科学院,2004.
    [42]戴肖南,侯万国,李淑萍等Mg-Al-MMH-高岭土分散体系触变性研究[J].高等学校化学学报.2001,22(9):1578-1580
    [43]Abend S,Bonnke N,Gutschner U.Stabilization of emulsions by heterocoagulation of clay minerals and layered double hydroxides [J].Colloid and Polymer Science,1998,276(8):730-737.
    [44]过梅丽.高聚物与复合材料的动态力学热分析[M].北京:化学工业出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700