用户名: 密码: 验证码:
面向雷电预报的雷达、卫星遥感资料同化及其应用初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以面向雷电预报的雷达、卫星遥感资料同化及其应用为研究目的,利用NCEP资料、新一代多普勒雷达网、FY2C气象卫星、闪电定位仪网、自动气象站等观测资料的诊断、同化模拟以及理论分析等方法,对气象遥感资料的同化设计及其在雷暴天气条件下雷电预测方面的应用进行了综合研究和初步分析。
     主要得到了以下结论:
     1)雷达资料间接同化方面:以夏季暴雨为研究对象,用MUSCAT技术做双多普勒雷达风场反演资料的间接同化,与非同化实验相比,同化风场反演资料的实验能够对初始风场做有效调整;随着积分的进行,可预报出风场、温度场等的中尺度结构。但总体来说,对湿度场的调整并不显著,而且受双雷达反演区域较小的限制,短时降水模拟结果与实况有出入。但同化实验对于主要降水中心的反映仍然比非同化实验好得多,对于初始场调整、模式预报仍然起到了积极作用。
     2)雷达资料直接同化方面:以夏季暴雨为研究对象,在仅有NCEP资料的情况下,通过ARPS-3DVar和ADAS同化系统直接同化多普勒雷达资料可以对气象要素场产生显著影响和改善。多普勒雷达资料的同化时次越多,对于风场、水汽场等的调整与实际观测越接近,尤其是水汽场,使得短时降水模拟与实况越吻合;直接同化结果比间接同化显著。
     其中,径向风资料对初始风场调整显著,使中尺度特征明显地表现出来;当积分开始进行后(如1h),径向风资料同化实验的水汽场出现大值中心,但这种水汽条件与实际不符。
     反射率因子资料对初始水汽场调整明显,在风暴发生处产生清晰的水汽中心;当积分进行1h后,反射率因子资料同化实验对风场的调整已经相对清晰,与此时的径向风同化实验类似,基本可以模拟出风暴的中尺度风特征,并且保持。
     个例实验说明反射率因子资料在改进模式预报场方面更加显著。
     3)卫星资料间接同化方面:分别用TCFM导风技术和国家局下发的云导风资料,进行了卫星资料间接同化实验。以台风个例作为研究对象,TCFM云导风资料同化实验对初始的垂直风场调整显著,不论是低、中、高层,在台风眼壁区域均出现强烈的上升运动,且这种特征一直持续数小时。配合此处模式模拟得到的水汽中心,为台风眼壁区的强风暴、降雨创造了条件。同化实验对于台风眼区的螺旋形雨带贡献显著,说明TCFM云导风资料同化实验不仅有效调整了模式的垂直速度场,还对降水模拟有了明显改善。
     4)通过理论分析,利用云粒子与极化降水粒子碰撞并弹离的感应起电机制和较大过冷云滴与雹粒碰冻并产生冰屑的温差起电机制下得到的E-I_r,由雷达、卫星遥感资料直接和间接同化模拟得到I_r,来反推E,了解雷暴云中闪电强度的平面分布,设置放电阈值为300KV/m,推算出放电的位置和首次发生闪电的时间。计算的闪电发生的时间和位置无法区分是IC还是CG。但计算结果和LLS观测资料也有可比性。
     5)个例分析表明,自动气象站实测的降水和LLS观测的CG资料对比分析结果为:二者在时、空同时配对出现的几率很小;降雨与-CG所占比例关系较为密切,二者峰谷配合,在时间上-CG峰值出现时间一般比降雨早10min左右。+CG则可能与雷暴过程中的龙卷、冰雹等强天气过程相关。
Herein main purpose is preliminary study on CINRAD (Chinese Next Generation Weather Radar) and satellite data assimilation and applications oriented to lightning storm forecast. Based on data of NCEP, CINRAD net, FY2C meteorological satellite, LLS(Lightning Location System) nets, AWS(Automatic Weather Station) nets, remote sensing observations assimiliaton and lightning storm forecast are studied and analyzed preliminarily with diagnosis, numerical simulation and theories, leading to the following main results.
     1) Radar data indirect assimilation experiments: for rainstorm forecast, dual-Doppler radar radial velocity data through MUSCAT (Multiple-Doppler Synthesis and Continuity Adjustment Technique) method are assimilated into numerical model ARPS. Compared with non-assimilation experiment, initial wind fields are improved effectively. Followed with integral time, indirect assimilation experiments can predict mesoscale structures of wind, temperature and so on. While as a whole, adjusted humidity fields are not very clear, furthermore, the retrieval area limit of dual-Doppler radar is exit, all of these result in simulated rainfall locations are different from observation in situ. While indirect assimilation experiment is better than that of non-assimilation one in rainfall center, the former appears positive role.
     2) Radar observations direct assimilation experiments: By means of ARPS-3DVar and ADAS (ARPS Data Analysis/Assimilation System), CINRAD observations are assimilated only with NCEP reanalysis data for the forecast of rainstorm. Results show that meteorological element fields are improved observably by assimilation experiments. And more assimilation times lead to better wind field, water vapor field and the like, which are closer to observations in situ, especially for water vapor field, leading to the fact that short-time precipitation simulation is also closer to observations. All of these results are better than that of indirect assimilation experiments.
     Thereinto radar radial velocity data improve mostly upon initial wind field with obvious mesoscale structures. The corresponding assimilation experiment improves effectively on water vapor field, causing clear water vapor center, just in actual rainstorm center. After 1h integral, reflectivity data's role on wind field is clear, and mesoscale structure can be simulated continually, similarly with radial velocity data assimilation experiment.
     For radial velocity data, followed with the beginning of integral, for example, after one hour, radial velocity data assimilation experiment appears water vapor centers with great values, but these are not concord with actual condition.
     It is showed that reflectivity data assimilation experiments are briefly marked on improving forecast fields than that of radial velocity.
     3) FY2C satellite observations indirect assimilation experiments: CMW (Cloud Motion Wind) data from TCFM (Tracking Cloud with Combined Fourier Phase Analysis and maximum Correlation) method and CMA (China Meteorological Administration) released CMW data are assimilated into numerical model respectively. For the example of typhoon, CMW data from TCFM method assimilation experiment adjusts effectively on initial vertical wind field, resulting intense ascent motions at eye wall of the typhoon MATSA, whatever in lower, middle or upper levels, lasting out for hours. These ascent motions are just at the center of modeled water vapor fields, which leading to severe storm and rainfall at eye wall of typhoon. It is presented that indirect assimilation experiment of CMW data from TCFM method improves effectively not only on vertical velocity field but for precipitation.
     4) Based on theory analysis, E-I_r relationship is brought forward with two electrification mechanisms. One is inductive mechanism, i.e., cloud particles collide with precipitation particles then flick away, the other is noninductive mechanism because of different temperature, i.e., bigger supercooled cloud particles collide and freeze with hail particles combined with ice scraps. By means of CINRAD and FY2C data assimilation, precipitation intensity I_r can be obtained, then electric field intensity E, discharge time and locations can be achieved with supposed threshold 300KV/m. Though it can not distinguish between IC (Intra-Cloud) lightning and CG (Cloud-to-Ground) lightning, results are still comparable to LLS observations.
     5) Example analysis shows that the relationship between precipitation data from AMS and CG data from LLS is not very clear. The probability of the two appears at the same time period and same location is very small. Rainfall is closer to -CG than that of +CQ their crests and troughs match, crests and troughs of -CG are earlier than that of rainfall, roughly 10min. +CG maybe relative to severe storm like spout, hail and the like.
引文
[1]Armijo,L.,1969:A theory for the determination of wind and precipition velocities with Doppler radar,J.Atmas.,Sci.,26,570-573
    [2]Lhermitte R.M.,Miller L.J.,1970:Doppler radar methodology for the observation of convective storms.In:14~(th)Radar Meteorology Conference.American,Tucson:Amer.Meteor.Soc.133-138
    [3]Miller L.J.,Strauch R.G.,1974:A dual-Doppler radar method for the determination of wind velocities within precipitating weather systems.Remote Sens.Environ,3(4),219-235
    [4]Ray P.S.,Ziegler C.L.,Bumgamer W.,et al.1980:Single and multiple Doppler radar observations of tornadic storms.Mon.Wea.Rev.,108(10),1607-1625
    [5]Chong M.,Campos C.1996:Extended overdetermined dual Doppler formalism inn synthesizing air born Doppler radar data.J.Atmos.Oceanic Tech.,13(3),581-597
    [6]O.Bousquet,Chong M.1998:A multiple-Doppler synthesis and continuity adjustment technique(MUSCAT)to recover wind components from Doppler radar measurement.J.Atmos.Oceanic Tech.,13,343-359
    [7]周海光、张沛源,2002:笛卡尔坐标系的双多普勒天气雷达三维风场反演技术,气象学报,60(5),548-561
    [8]Shapiro A.et al.,1996:Initial forecast fields created from single-Doppler wind retrieval、thermodynamic retrieval and ADAS.Preprint 11~(th)Conf.On NWP American Meteorologial Society,5A,7
    [9]邱崇践、Xu Q.,2000:多普勒雷达资料对中尺度系统短期预报的改进,气象学报,58(2),244-249
    [10]马青云、李泽椿,2001:单部多普勒天气雷达风场反演及其在数值预报中的应用实验,应用气象学报,12(4),488-493
    [11]Lindskog,Met aL 2002:Development of Doppler radar wind data assimilation for the HIRLAM 3D-VAR.HIRLAM Technical Report 52,HIRLAM-5 Project.
    [12]郭霞、党人庆等,1999:雷达资料在江淮流域数值模拟中的应用实验,热带气象学报,15(4),352-362
    [13]徐慧、葛文忠,2000:雷达和卫星资料在淮河流域暴雨实时数值预报实验中的应用,气象科学,20(4),433-439
    [14]徐玉貌、夏文梅,2001:雷达和卫星资料对江淮暴雨数值模拟的影响,南京气象学院学报,24(4),545-552
    [15]徐枝芳、徐玉貌,2002:雷达和卫星资料在中尺度模式中的初步应用,大气科学,22(2),167-174
    [16]Aonashi K.An initialization method to incorporation precipitation data into a mesoscale numerical weather prediction model.J.Meteor.Soc.Japan,1993,71:393-406
    [17]Wang W.,Warner T.T.Use of four-dimensional data assimilation by Newtonian relaxation and latent-heat forcing to improve a mesoscale model prediction forecast:A case study.Mon.Wea.Rev.,1988,116:2593-2613
    [18]Jones C.D.,Macpherson B.A latent heat nudging scheme for the assimilation of precipitation data into an operational mesoscale model.Meteor.Appl.,1997,4:269-277
    [19]Macpherson B.Operational experience with assimilation of rainfall data in the Met.Office Mesoscale model.Meteor.Atmos.Phys.,2001b,76:3-8
    [20]Guo Y-R.,Kuo Y-H.,Four-dimensional variational data assimilation of heterogeneous mesoscale observations for a strong convective case.Mon.Wea.Rev.,2000,128:619-643
    [21]Marecal V.,Mahfouf J.F.,Four dimensional variational assimilation of total column water vapour in rainy areas.Technical Memorandum 314,ECMWF,2000
    [22]Lin Y.C.,Retrieval of three-dimensional wind and temperature fields from one component wind data by using the four-dimensional data assimilation technique.Master thesis,University of Oklahoma,1990,112pp
    [23]Xue M.,Prediction of the 7 May 1995 squall line over the central U.S.with intermittent data assimilation.12~(th)conference on Numerical Weather Prediction,1998,191-194
    [24]Bielli S.,Roux F.,Initialization of a cloud-resolving model with airborne Doppler radar observation of an ocean tropical convective system.Mort.Wea.Rev.,1999,127:1038-1055
    [25]Chris Snyder,Fuqing Zhang.Assimilation of simulated Doppler radar observations with an Ensemble Kalman Filter[J].Mon.Wea.Rev.,2003.131(8):1663-1677.
    [26]Sun J.,N.A.Crook.Dynamical and microphysical retrieval from Doppler radar observation using a cloud modal and its adjoint.Part Ⅰ:Model development and simulated data experiments[J].J.Atmos.Sci.,1997.54:1642-1661.
    [27]Sun J.,N.A.Crook.Dynamical and microphysical retrieval from Doppler radar observation using a cloud model and its adjoint.Part Ⅱ:Retrieval experiments of an observed Florida convective storm[J].J.Atmos.Sci.,1998.55:835-852.
    [28]Xu Xiaoyong,Liu Liping,Zheng Guoguang.Dynamical and Microphysical Retrieval from Simulated Doppler Radar Observations Using the 4DVAR Assimilation Technique[J].Acta Meteorologica Sinca,2005.19(2):160-173.
    [29]Ming Hu,Ming Xue.3DVar and cloud analysis with WSR-88D level-Ⅱ data for the prediction of the Fort Worth Tomadic thunderstorms.Part Ⅰ:Cloud analysis and its impact[J].Mon.Wea.Rev.,2005.Accepted.
    [30]Ming Hu,Ming Xue.3DVar and cloud analysis with WSR-88D level-Ⅱ data for the prediction of the Fort Worth Tornadic thunderstorms.Part Ⅱ:Impact of radial velocity analysis via 3DVar[J].Mon.Wea.Rev.,2005.Accepted.
    [31]M.Lindskong.Doppler radar wind data assimilation with HIRLAM 3DVar[J].Ame.Met.Soc.,2004.132(5):1081-1092.
    [32]余贞寿,廖胜石,黄克慧.0414号台风“云娜”的数值模拟[J].气象学报, 2005.63(6):903-914.
    [33]Qingnong Xiao,Y-H Kuo,J.Sun,et al.Assimilation of Doppler radar observations and its impacts on forecasting of the landfalling typhoon Rusa(2002)[C].Rroceeding of the Third European Conference on Radar Meteorology(ERAD)together with the COST 717 Final Seminar,2004.178-182.
    [34]盛春岩,浦一芬,高守亭.多普勒天气雷达资料对中尺度模式短时预报的影响[J].大气科学,2006.30(1):93-107.
    [35]Zhang J.,Moisture and diabatic initialization based on radar and satellite observations.Ph.D.thesis,University of Oklahoma,1999
    [36]Ducrocq V.,Initialization of a fine scale model for convective system prediction:A case study.Quart.J.Roy.Meteor.Soc.,2000,in press.
    [37]许小永,郑国光,刘黎平,多普勒雷达资料4DVAR同化反演的模拟研究,气象学报,2004,62:410-422
    [38]许小永,郑国光,多普勒雷达反演技术及雷达资料在数值模式中的应用,气象,2005,31:7-11
    [39]李柏,张沛源,多普勒天气雷达资料分析及同化在暴雨中尺度天气系统数值模拟中的应用研究,博士论文,中国气象科学研究院,155pp,2005.
    [40]万齐林,薛纪善,庄世宇,多普勒雷达风场信息变分同化的实验研究,气象学报,2005,63:129-145.
    [41]Deblonde et al.,1995,Assimilation of SSM/I and GOEs humidity retrievals with a one-dimensional variational analysis scheme.J.A.M.,34,1536-1550
    [42]Deblonde et al.,1999,Variational assimilation of SSM/I total precipitable water retrievals in the CMC analysis system.MWR,127.
    [43]Tsuyuki,1997.Variational data assimilation in the tropics using precipitation data,Part Ⅲ:Assimilation of SSM/I rates.
    [44]Lipton A.E.and Vonder Haar,1990,Mesoscale analysis by numerical modeling coupled with sounding retrievals from satellites.M.W.R.118:1308-1329.
    [45]Schmetz J,Holmlund K,Hoffman J,et al.Operational Cloud-Motion W inds from Meteosat Infrared Images[J].J.Appl.Meteor,1993,32(7):1206-1225.
    [46]Kidder S Q,Vonder Haar T H.Satellite Meteorology:An Introduction[M].New York:Academic Press,1995.
    [47]TomassiniM,KellyG,SaundersR.Use and Imapct of Satellite Atmospheric Motion Winds on ECMWF Analyses and Forecasts[R].Eumetsat/Ecmwf Research Report No.6,1997.
    [48]ShenkW E.Suggestion for Improving the Derivation of Winds from Geosynchronous Satellites[A].Proc.to theWorkshop on Wind Extraction from Operational Meteorological Satellite Data[C].In Washington D.C.,17-19 Sept.1991.
    [49]Wang Z H,Zhou J.A Preliminary Study of Fourier Series Analysis for Cloud Tracking with GOES High Temporal Resolution Images[J].Acta Meteor Sinica,2000,14(1):82-94.
    [50]许健民,张其松,方翔.用红外和水汽两个通道的卫星测值指定云迹风高度[J].气象学报,1997,55(4):408-417.
    [51]朱平,王振会,许建明,TCFM导风技术介绍及其初步实验研究[J],遥感学报,2007,11(4):538-544
    [52]李红莉,沈桐立,公颖,云导风资料同化在伴随模式同化系统中的应用[J],气象科技,2006,34(4):358-363
    [53]McNally A P,Derber J C,Wu W,et al.,The use of TOVS level lb radiances in the NCEP SSI analysis system[J],Quart J Roy Meteor Soc,2000,126:689-724
    [54]刘志权,张凤英,吴雪宝,等,区域极轨卫星ATOVS辐射偏差订正方法研究[J],气象学报,2007,65(1):113-123
    [55]罗淇,任芝花,邹树峰等,自动气象站现场方案校准方法探讨[J],气象,2007,33(12):93-97
    [56]蒙伟光,严敬华,扈海波,热带气旋背景条件下的城市效应与广州夏季雷 暴[J],中国科学D辑,2007,37(12):1660-1668
    [57]刘树华,周彬,应用一改进的模式对北京夏季风、温和湿度场的模拟[J],北京大学学报(自然科学版),2006,1(2):1-6
    [58]许洪泽.2007硕士学位论文
    [59]Stolzenburg,M.,Rust,W.D.,and Marshall,TC.1998.Electrical structure in thunderstorm convective regions.2.Isolated storms,d.Geophys.Res.103:14 07996.
    [60]Goodman,S.J.,and MacGorman,D.R.1986.Cloud-to-ground lightning activity in mesoscale convective complexes.Mort.Wea.Rev.114:2320-8.
    [61]Knupp,K.R.,Geerts,B.,and Goodman,S.J.1998.Analysis of a small,vigorous mesoscale convective system in a low-shear environment.Part Ⅰ:Formation,radar echo structure,and lightning behavior.Mon Wea.Rev.126:1812-36.
    [62]Price C,Rind D,1992,A simple lightning parameterization for calculating global lightning distribution.J.Geophys.Res.,97,9919-9933.
    [63]孙景群,1987,大气电学手册,气象出版社,189-205.
    [64]郄秀书,R.toumi,周筠君,青藏高原中部地区闪电活动及其地域差异。科学通报。2003。48(1):87-90。
    [65]程向阳,王兴荣,胡雯等.雷暴天气在多普勒雷达资料上的前兆特征分析.气象科学,2003,23(4):485-490.
    [66]许爱华,马中元,郭艳.“7.17"庐山雷击事件分析,气象,2003,30(6):35-38.
    [67]薛秋芳,孟青,柴秀梅.北京地区雷击事例的气象条件分析.气象,26(6):12-15.
    [68]冯桂力,边道相,刘洪鹏等.冰雹云形成发展与闪电演变特征分析.气象,27(3):33-37.
    [69]何明元等,卫星闪电定位校正,解放军理工大学学报(自然科学版),2003,4(1),89-92.
    [70]Kuettner,J.P.,Zev Levin,Sartor,J.D.,Thunderstorm electrification-inductive or non-inductive,J.Atmos.Sci.,1982,38,2470-2484.
    [71] Takahashi,T.,Thunderstorm electrification-a numerical study, J. Atmos. Sci., 1984, 41,2541-2558.
    [72] Ziegler, C., MacGorman, D., Dye, J., Ray, P., A model evaluation of non-inductive graupel-ice charging in the early electrification of a mountain thunderstorm,J Geophys. Res., 1989,96,12833-12855.
    [73] Takahashi, T. Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci., 1978,35,1536-1548.
    [74] C.P.R.Saunders,W.D.Keith,et al.The effect of liquid water on thunderstorm charging. J. Geophys. Res.,1991,96,11007-11017.
    [75] Elster, J., and H. Geitel, Uber die Elektrizitats-Entwicklung bei der Regenbildung. Ann. Phys. Chem., 1985, 25,121-131.
    [76] Helsdon, J. H. Jr., and R. D. Farley, A numerical modeling study of a Montana thunderstorm, 2 , Model results versus observations involving electrical aspects. J. Geophys. Res.,1987,92,5661-5675.
    [77] Vonnegut, B., Possible mechanism for the formation of thunderstorm electricity, Bull. Amer. Meteorol. Soc, 34,378-381,1953.
    [78] Gish, O. H. and C. R. Wait, Thunderstorms and the Earth's general electrification, J. Geophys. Res., 55,473-484,1950.
    [79] Kropfil, R. A. and L. J. Miller, Kinematic structure and flux quantities in a convective Storm from dual-Doppler radar observations, J. Atmos. Sci., 33, 520-529,1976.
    [80] Krehbiel, P. R., The electrical structure of thunderstorms, In: The Earth's Electrical Environment, National Academy Press, Washington, D, C., 90-113, 1986.
    [81] Hallett, J. and Mossop, S. C., Production of secondary ice Particles during riming process, Nature, 247,26-28,1974.
    [82]言穆弘,葛正谟.雷暴云极化降水起电机制的一种计算.高原气象.1983,2(3):26-39.
    [83]言穆弘,葛正谟.雹云中与冰相有关的起电机制.高原气象.1985,4(1):46-55.
    [84]言穆弘,郭昌明,刘欣生.雷暴对流起电机制理论分析.大气科学.1991,15(2).
    [85]薛松,庄洪春.雷暴起电过程的电响应考察.大气科学.1990,14(4).
    [86]Williams E R,Weber M E,Orville R E,The relationship between lightning type and convective state of thunderclouds[J].J.Geo.Res.,1989,94:13213-13220
    [86]Carey L D,Rutledge S A.Electric and multiparameter radar observations of a severe hailstorm[C].Proceedings of 10~(th)international conference on atmospheric electricity,Osaka:The society of atmospheric electricity of Japan,1996,212-215
    [87]张义军,言穆弘,刘欣生,雷暴中放电过程的模式研究[J],科学通报,1996,44(12):1322-1325
    [88]周筠君,郄秀书,张义军,地闪与对流性天气系统中降水关系的分析[J],气象学报,1999,57(1):103-111
    [89]Oie S S,Yan M H,Guo C M,et al.,Lightning data and study of thunderstorm nowcasting[J],ACTA Meteorological Sinica,1993,7:244-256
    [90]Petersen W A,Rutledge S A.Cloud-to-Ground lightning observations from TOGA COARE:selected results and lightning location algorithms[J],Mon.Wea.Rev.,1996,124:602-620
    [91]Mason B J.云物理学(中译本),中国科学院大气物理研究所译,北京:科学出版社,1978
    [92]盛裴轩,毛节泰,李建国等,大气物理学,北京:北京大学出版社,2003,382-398
    [93]孙景群,大气电学手册,北京:气象出版社,1978
    [94]Xue M,Droegemeier KK,Wong V,et al.ARPS Version 4.0 User's Guide.Center for Analysis and Prediction of Storms[E].1995,http://www.caps.ou.edu/ARPS
    [95] Thompson JF, Warsi ZUA, Mastin CW. Numerical Grid Generation: Foundations and Applications. Amsterdom: North-Holland, 1985,483 pp
    [96] Sharman RD, Keller TL, Wurtele MG. Incompressible and anelasticow simulations on numerically generated grids. Mon Wea Rev, 1998, 116: 1124-1136
    [97] Shyy W, Vu TC. On the adoption of velocity variable and grid system for fuidow computation in curvilinear coordinates. J Comput Hys, 1991, 92: 82-105
    [98] Noilhan J, Planton S. A simple parameterization of land surface processes for meteorological models. Mon Wea Rev, 1989,117:536-549
    [99] Pleim JE, Xiu A. Development and testing of a surface flux and planetary boundary layer model for application in mesoscale models. J Appl Meteor, 1995, 34:16-32
    [100] Kessler E . On the Distribution and Continuity of Water Substance in Atmospheric Circulations,1969,84 pp
    [101] Schultz P. An explicit cloud physics parameterization for operational numerical weather prediction. Mon Wea Rev, 1995,123: 3331-3343
    [102] Lin Y-L, Farley RD, Orville HD. Bulk parameterization of the snow (?)eld in a cloud model. J Climate Appl Meteor, 1983,22:1065-1092
    [103] Klemp JB, Wilhelmson RB. The simulation of threedimensional convective storm dynamics. J Atmos Sci, 1978,35:1070-1096
    [104] Kuo HL. On the formation and intensi(?)cation of tropic cyclones through latent heat release by cumulus convectionJ Atmos Sci, 1965, 22: 40-63
    [105] Kuo HL. Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J Atmos Sci, 1974, 31:1232-1240
    [106] Kain JS, Fritsch JM. A one-dimensional entraining/detraining plume model and its application in convective parameterization. J Atmos Sci , 1990, 47: 2784-2802
    [107] Kain JS, Fritsch JM . Convective parameterization for mesoscale models: The Kain-Fritsch scheme. The representation of cumulus convection in numerical models, Meteor Monogr, Amer Meteor Soc, 1993,165-170
    [108] Chou M-D. Paramemterization for the absorption of solar radiation by O_2 and CO_2 with application to climate studies. J Climate, 1990,3: 209-217
    [109] Chou M-D. A solar radiation model for climate studies. J Atmos Sci, 1992, 49: 762-772
    
    [110] Chou M-D, Suarez MJ. An ef(?)cient thermal infrared radiation parameterization for use in general circulation models, NASATechMemo , 1994, 104606, 85 pp. [Available from NASA Center for Aerospace Information, 800 Elkridge Landing Road, Linthicum Heights, MD 21090-2934]
    
    [111] Tao W-K, Lang S, Simpson J, et al. Mechanism of cloud-radiation interaction in the tropics and mid-latitude. J Atmos Sci, 1996,54: 2624-2651
    [112] Arakawa A, Lamb VR. Computational design of the basic dynamical processes of the UCLA general circulation model. In: J Chang (ed.) Methods in Computational Physics. New York: Academic Press, 1977, 174-264
    [113] Skamarock WC, Klemp JB. Adaptive grid re(?)nement for two-dimensional and three-dimensional nonhydrostatic atmospheric flow. Mon Wea Rev, 1993,121: 788-804
    [114] Orlanski I. A simple boundary condition for unbounded hyperbolic flows. J Comput Phys, 1976, 21:251-269
    [115] Davies HC. Limitations of some common lateral boundary schemes used in regional NWP models. Mon Wea Rev, 1983, 111: 1002-1012
    [116] Klemp J B, Durran D R. An upper boundary condition permitting internal gravity wave radiation in numerical mesoscale models. Mon Wea Rev, 1983, 111: 430-444
    [117] Xue M, Droegemeier KK, Wong V, The Advanced Regional Prediction System (ARPS)-A multiscale nonhydrostatic atmospheric simulation and prediction tool.Part Ⅰ:Model dynamics and veri(?)cation.Meteor Atmos Physics 2000,75:161-193
    [118]周海光,郭富德.梅雨锋暴雨中尺度对流系统结构模型的双多普勒雷达研究[J].南京气象学院学报,2007,30(1):1-8.
    [119]Xue,M.ARPS website[OL],http://www.caps.ou.edu/ARPS/ARPSdoc.html.
    [120]Bratseth,A.M.Statistical interpolation by means of successive corrections[J].Tellus,1986,38A:439-447.
    [121]杨艳蓉,多普勒雷达资料在中尺度模式中的应用实验,2003,中国气象科学研究院硕士论文,P46
    [122]P.K.Rao等编著,许建民等翻译,气象卫星——系统、资料及其在环境中的应用,北京,气象出版社,1994
    [123]陈渭民,卫星气象学,北京,气象出版社,2003
    [124]Tom新闻网:http://news.tom.com/hot/maisha/
    [125]http://xzw.net.cn/News_Show2.asp?NewsID=2621,热带气旋云墙和螺旋雨带
    [126]谭涌波等,雷暴云随机击穿放电参数化方案的模拟实验,中国气象学会2004年年会会论文(下册),76,2004.
    [127]Mansell,E.R.,Electrification and lighting in simulated supercell and nonsupercell thunderstorms,Ph.D.dissertation,211pp.Univ.of Okla.,Norman,2000.
    [128]Mansell,E.R.,Simulated three-dimensional branched lightning in a numerical thunderstorm model,J.Geophys.Res.107(9),2002.
    [129]Moore C B,VonnegutB,Vrablik E A,et al.Gushes of rain and hail after lightning[J].J Atmos Sci,1964,21(6):646-665.
    [130]Piepgrass M V,Krider E P.Lightning and surface rainfall during Florida thunderstorms[J].J Geophys Res,1982,87(c13):11193-11201.
    [131]BuchlerD E,Wright P D,Goodman S J.Lightning rainfall relationships during COHMEX[C].Preprints Atmospheric Sciences conference on atmospheric electricity.Alberga,1990:710-714.
    [132]张义军,华贵义,言穆弘.对流和层状云系电活动对流及降水特性的相关分析[J].高原气象,1995,14(4):396-405.
    [133]李建华,郭学良,肖稳安.北京强雷暴的地闪活动与雷达回波和降水的关系[J].南京气象学院学报,2006,29(2):228-234.
    [134]MacGorman D R,Burgess D W.Po sitive Cloud2Gground Lightning in Tornadic Storm s and Hailstorms[J].Mon Wea Rev,1994,122(8):1671-1679.
    [135]Kdder,P ifer A E,V ance D L.L igh thing direction2finding system for forecast fire detection[J].Bull Amer Meteor Soc,1980,61(9):980-986.
    [136]Orville,Henderson R W,Bosart L F.A neast coast lightning detection network [J].Bull Amer Meteor Soc,1983,64(9):1029-1037.
    [137]Mach D M,MacGorman D R,Rust W D,et al.Site errors and detection efficiency in a magnetic direction-finder network for location lightning strikes to ground[J].J Atmos Oceanic Technol,1986(3):67-74.
    [138]Ziegler C L,M acGorman D R.Observed lightning morphology relative to modeled space charge distributions in a tornadic storm[J].J Atmos Sci,1994,51(6):833-851.
    [139]葛正谟,郭昌明,言穆宏等.灾害性天气中的地闪特征[J].高原气象,1995,14(1),39-46.
    [140]Proceedings of the 13th International Conference on Atmospheric Electricity[C],ICAE2007,Aug 13-17,Beijing
    [141]国家卫星气象中心(NSMC),风云二号C卫星业务产品释用手册
    [142]赵旭寰,2006年南京信息工程大学KLME年会报告

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700