雷暴电活动的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文的主要目的是为了利用数值模拟手段对雷暴云内起电和放电做进一步研究。首先,对国内外有关雷暴云起电机制的试验结果和起/放电的非云模式和云模式的研究结果进行了回顾,总结了这两方面研究的主要发展历程、现状及所涉及的重要问题。然后,在一个三维强风暴动力-电耦合数值模式的基础上,主要做了三方面的工作:(1)采用多项式回归分析法,给出了基于Takahashi实验数据的非感应转移电荷量的数学公式,并与实验值进行了比较;(2)在模式中引入基于Saunders实验结果的非感应起电参数化方案S91,并利用云水饱和度替代环境温度和有效液水含量,将S91方案变形。对比分析了一次雷暴单体首次放电前,变形后的S91方案和原S91方案模拟得到的非感应转移电荷的极性、量级、电荷结构以及与霰和冰晶粒子分布之间的关系;(3)采用固定电场阈值触发、双向随机发展的放电参数化方案,通过一次雷暴过程的模拟,分析了空间电荷结构和电荷分布对闪电放电特征的影响。
     结果表明,在温度高于-10℃,液水含量介于0.08~8g/cm3的情况下,由数学公式得到的非感应转移电荷量与实验结果一致性较好,但在温度低于-25℃,液水含量介于0.5~2g/cm3的情况下,两者的一致性不是很好。因此,可以在模式中引入基于Takahashi的非感应起电参数化方案时,直接应用此公式,而替代以前较繁琐的查表法;首次放电前,当云水环境趋于过饱和状态时,转移电荷产生的主要区域位于高温、低有效液态水区,且转移电荷数目也较少。当云水环境趋于亚饱和或饱和状态时,转移电荷主要产生于低温、高有效液态水区域,且转移电荷数目不断增加。放电后,雷暴云初期和中期,由于对流强度较强,云层高度较高,在反偶极性电荷结构出现的情况下,云内闪电起始于上部负电荷和中部正电荷区之间,且正、负电荷区中心浓度较大,闪电主要为反极性云闪。随着对流的进一步发展,在雷暴云末期,当云内粒子增多、增大,大部分霰粒子逐渐降落到中低层,使上部负电荷中心浓度减小,底部的起电区域增大,这种情况下云内闪电多发生在中部正电荷和底部负电荷区之间,闪电主要为正常极性的云闪。关键词雷暴云数值模式非感应起电机制放电电荷结构
In order to further study the charging and discharge in thunderstorm by combining of numerical simulation, recent developments in the area of thunderstorm electrification and lightning discharge are reviewed in this paper. The important problems and major achievements of researches are summarized as the mechanism of electrification and numerical simulation of thundercloud electrification. It introduced the development of the ion, particle and other electrification mechanisms in detail, and reviewed some results and progress of the models of electrification and discharge at home and abroad from non-cloud model and cloud model aspects.The work of thee aspects is put forward in a three-dimensional dynamic electrification coupled model. Firstly, the paper used stepwise regression analysis to obtain empirical equations for the separated non-inductive based on Takahashi's experiment, and fitness analysis of the equations are made with experiment's values. Secondly, a parameterization of non-inductive graupel-ice charge separation S91based on the laboratory results of Saunders is introduced into the model. The effective liquid water content and environment temperature in S91are replaced by cloud saturation, to result in the deformation of Saunders. The evolution characteristics of non-inductive charge separation polarity, magnitude, charge structure and their relationships with ice crystal and graupel particle distributions produced by the deformation of S91and original S91in a typical storm before the first discharge are analyzed, respectively. Thirdly, the Bi-directional Stochastic Lightning Parameterization scheme is used in the parameterization of discharge, and The structure of spatial charge and charge distribution effects on the characteristics of discharge are analyzed.
     The results indicate, the calculated values are very close to the experiment's data, and the method can be introduced into the parameterization of non-inductive based on Takahashi's experiment. Before the first discharge, in the supersaturated circumstance, charge separation mainly occurs in the region at high temperature and low effective liquid water content, and the transfer charge become lower. Whereas, in the subsaturated or saturated circumstances, charge separation mainly occurs in the region at low temperature and high effective liquid water content, and the transfer charge continuously increasing. After the first discharge, because of the strength of convection intensity and the high of cloud height, lead to the characteristic of discharge is inverted IC flash in the case of the structure is inverted dipole discharge in the early of thunderstorm. With the further development of convection, the characteristic of discharge is positive IC flash when the number of graupel and ice is increasing and the grauple decrease by the middle and low level, which makes the bottom of electrical region expand in the end of thunderstorm. In addition, the occurrence rate of inverted IC flash and positive IC discharge has related to the convection intensity, the distribution of particle, the electrification region and the distribution of charge density.
引文
[1]王道洪,郄秀书,郭昌明.雷电与人工引雷.上海:上海交通大学出版社,2000:7
    [2]Gunn R. Electricfield regeneration in thunderstorms. J Meteor,1954,11:130-138.
    [3]Gunn R. The hyper electrification of raindrops by atmospheric electric field. J Meteor,1956,11:130-138.
    [4]Wilson C T R. Some thunderstorm problems. J. Franklin Inst,1929,208:1-12.
    [5]梅森.云物理学.中国科学院大气物理研究所译.北京:科学出版社,1978.
    [6]Grenet,G., Essai d'explication de la charge electrique des nuages d'orages. Extrait Ann.Geophys.,1947,3:306.
    [7]Vonnegut, B. Possible mechanism for the formation of thunderstorm electricity. Bull.American Meteor.Soc.,1953,34:378-381.
    [8]Vonnegut, B., and C.B. Moore. Preliminary attempts to influence convective electrification in cumulus clouds by the introduction of space charge into the lower atmosphere. in Recent Advances in Atmospheric Electricity. L.G.Smith, Pergamon, New York,1958,317-331.
    [9]Krehbile P R.The electrical structure of thunderstorms. In The Earth's Electrical Environment, National Acad. Press, Washington, D.C.,1986, pp:90-113.
    [10]Chiu, C.S., and J.D. Klett.Convective electrification of clouds. J. Geophys. Res.,1976, 81:1111-24.
    [11]Takahashi,T.Warm cloud electricity in a shallow axisymmetric cloud model. J.Atmos. Sci.,1979,36:2236-58.
    [12]Elster,J., and H.Geitel, Zur influenztheorie der Niederschlagselektrizitat. Phys.Z.,1913,14:1287.
    [13]Mufiller-Hillebrand,D.Charge generation in thunderclouds by collision of ice crystals with graupel falling through a vertical electric field,Tellus,1954,6:367-381.
    [14]Aufdermaur,A.N.,and D.A.Johnson,Charge separation due to riming in an electric field. Q.J.R. Meteorol.Soc.,1972,98:369-382
    [15]Ziegler C L, D R MacGorman, J E Dye, P S Ray. A model evaluation of non-inductive grauopel-ice charging in the early electrification of a mountain thunderstorm. J.Geophys.Res.1991,96:12833-12855.
    [16]Moore C B. Rebound limits on charge separation by falling precipitation. J Geophys Res,1975,80:2658-2662.
    [17]Reynolds,S E, and M. Brook, Correlation of the initial electric field and the radar echo in thunderstorms. J.Metorol.,1956,13:376-380.
    [18]Takahashi T, Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci.,1978,35:1536-1548.
    [19]Jayaratne E R, C.P.R. Saunders, J Hallett. Laboratory studies of the charging of soft hail during ice crystal interactions. Q J R Meteorol Soc,1983,109:609-630.
    [20]Saunders C P R, W D Keith, R P Mitzeva. The effect of liquid on thunderstorm charging. J.Geophys.Res.,1991,96:11007-17.
    [21]Marshall B J P, Latham J, Saunders C P R. A laboratory study of charge transfer accompanying the collision of ice crystals with a simulated hailstone. Quart.J.Roy.Meteor.Soc.,1978,104:163-178.
    [22]Keith,W.D.,and C.P.R.Saunders. Further laboratory studies of the charging of graupel during ice crystal interactions. J. Atmos. Sci.,1990,25:445-464.
    [23]Brooks I M, Saunders C P R. An experimental investigation of the inductive mechanism of thunderstorm electrification. J. Geophys. Res.,1994,99:10,627-10, 632.
    [24]Brooks I M,Saunders C P R,Mitzeva R P,er al. The effect on thunderstorm charging of the rate of rime accretion by grauperl. Atmos.Res.,1997,43:277-295.
    [25]Avila E.E.,Pereyra P.G. Charge transfer during crystal-graupel collisions for two different cloud droplet size distributions. Geophys.Res.Lett,2000,27:3837-3840.
    [26]Grenet,G., Essai d'explication de la charge electrique des nuages d'orages. Extrait Ann.Geophys.,1947,3:306.
    [27]Vonnegut, B. Possible mechanism for the formation of thunderstorm electricity.Bull.American Meteor.Soc.,1953,34:378-381.
    [28]Vonnegut, B., and C.B. Moore. Preliminary attempts to influence convective electrification in cumulus clouds by the introduction of space charge into the lower atmosphere. in Recent Advances in Atmospheric Electricity. L.G.Smith, Pergamon, New York,1958,317-331.
    [29]Takahashi,T.Warm cloud electricity in a shallow axisymmetric cloud model. J.Atmos. Sci.,1979,36:2236-58.
    [30]Elster,J.,H.Geitel,Zur influenztheorie der Niederschlagselektrizitat.Phys.Z.,1913, 14:1287.
    [31]Mufiller-Hillebrand,D.Charge generation in thunderclouds by collision of ice crystals with graupel falling through a vertical electric field,Tellus,1954,6:367-381.
    [32]Aufdermaur,A.N.,and D.A.Johnson,Charge separation due to riming in an electric field. Q.J.R. Meteorol.Soc.,1972,98:369-382
    [33]Ziegler C L, D R MacGorman, J E Dye, P S Ray. A model evaluation of non-inductive grauopel-ice charging in the early electrification of a mountain thunderstorm. J.Geophys.Res.1991,96:12833-12855.
    [34]Moore C B. Rebound limits on charge separation by falling precipitation. J Geophys Res,1975,80:2658-2662.
    [35]Reynolds,S E, and M. Brook, Correlation of the initial electric field and the radar echo in thunderstorms. J.Metorol.,1956,13:376-380.
    [36]Marshall B J P, Latham J, Saunders C P R. A laboratory study of charge transfer accompanying the collision of ice crystals with a simulated hailstone. Quart.J.Roy.Meteor.Soc.,1978,104:163-178.
    [37]Keith,W.D.,and C.P.R.Saunders. Further laboratory studies of the charging of graupel during ice crystal interactions. J. Atmos. Sci.,1990,25:445-464.
    [38]Brooks I M, Saunders C P R. An experimental investigation of the inductive mechanism of thunderstorm electrification. J. Geophys. Res.,1994,99:10,627-10, 632.
    [49]Brooks I M,Saunders C P R,Mitzeva R P,er al. The effect on thunderstorm charging of the rate of rime accretion by grauperl. Atmos.Res.,1997,43:277-295.
    [40]Avila E.E.,Pereyra P.G. Charge transfer during crystal-graupel collisions for two different cloud droplet size distributions. Geophys.Res.Lett,2000,27:3837-3840.
    [41]Baker B, Baker M.B, Jayaratne E.R., t al. The influence of diffusional growth rates on the charge transfer accompanying rebounding collisions between ice crystal and soft hailstones. Q J R Meteor Soc,1987,113:1193-1215.
    [42]Baker M B, Dash J G. Charge transfer in thunderstorms and the surface melting of ice. J Growth,1989,97:770-776.
    [43]Baker M B, Dash J G. Mechanism of charge transfer between colliding ice particles in thunderstorms. J Geophys Res,1994,99:10621-10626.
    [44]Pereyra,R.G., E.E.Avila, N.E.Catellano and C.P.R.Saunders. A laboratory study of graupel charging. J.Geophys.Res.,2000,105:20803-20812.
    [45]Hallett J. and Mossop S.C. Production of secondary ice particles during riming process. Nature,1974,247:711-713.
    [46]Mossop S C. Concentration of ice crystal in clouds. Bull. Amer.Meteor.Soc., 1970,51:474-47.
    [47]T W Choularton. Laboratory studies of ice splinter production during riming. Clouds physics,1980, Ⅶ Int.Conf.
    [48]Phillips,B.B. Lonic equilibrium and the electrical conductivity in thundercluds. Mon.Wea.Rev.1967b,12:854-862.
    [49]Phillips,B. B. Convected charge in thunderstorms.Mon.Wea.Rev.1967c,12:863-870.
    [50]Ruhnke,L.H. A simple model of electric charges and fields in nonraining convective clouds. J.Appl.Meteor.,1970,9:947-950.
    [51]Hotston E S. A preliminary investigation into the screening of the electrical charges of thundercloud. Peiceedings conference on lightning and static electricity. April 1975, at culham laboratory,England.
    [52]Mason B J, Chien C W. Cloud droplet growth by condensation in cumulus.Q J R Met Soc,1962,88,136:133-138.
    [53]Orville, H. D., A numerical study of the initiation of cumulus clouds over mountainous terrain. J. Atmos. Sci.,1965,22:684-699.
    [54]Smith M H., and H D. Orville.,Electrical effects for a numerical cloud model.Project Themis,1970,70-2:38.
    [55]Chiu C S. Numerical study of cloud electrification in an axisymmetric time-dependent cloud model. J Geophys Res,1978,83:5025-49.
    [56]Pringle, J. E., Atmospheric electricity in a numerical cloud model. M.S. thesis, SD School of Mines and Technology, Rapid City,1971,SD,106.
    [57]Stechmann, T. D., Atmospheric electricity in a numerical cloud model which includes the ice stage. M.S. thesis, SD School of Mines and Technology, Rapid City, 1972,SD,93
    [58]Kuettner J P,Zev Levin, Sartor J D. Thunderstorm electrification-inductive or non-inductive. J.Atmos.Sci.,1982,38:2470-2484.
    [59]Rawlins F. A numerical study of thunderstorm electrification using three-dimensional model in corporating the ice phase.Q J R Meteor Soc,1982,108: 779-800.
    [60]Takahashi,T. Thunderstorm electrification-A numerical study. J.Atmos. Sci.,1984, 41:2541-58.
    [61]Helsdon J H Jr., R.D. Farley, A numerical modeling study of a Montana thunderstorm:2.Model results verus observations involving electrical aspects. J. Geophys. Res.,1987,92:5661-75.
    [62]Helsdon J.H., Jr., Williams A.W.,Farley R.D. An examination of thunderstorm-charging mechanisms using a two-dimensional storm electrification model. J.Geophys.Res.,2001,60(D1):1165-1192.
    [63]Helsdon J.H.Jr.,Gattaleeradapan,S.,Farley,R.D.,er al. An examination of the convective charging hypothesis:Charge structure electric fields, and Maxwell currents. J.Geophys Res.,2002,107(D22):ACL9-1-26.
    [64]Mansell E. R., MacGorman D. R., Ziegler C. L., er al. Charge structure and lightning sensitivity in a simulated multicell thunderstorm. J. Geophys. Res.,2005,110 (D12): ACL2-1-2-14.
    [65]Saunders C P R, Peck S L. Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collsions. J Geophys Res,1998,103: 13949-13956.
    [66]Altaratz O., Reisin T., Levin Z. Simulation of the electrification of winter thunderclouds using the three-dimensional Regional Atmospheric Modeling System (RAMS) model:Single cloud simulations. J. Geophys Res,2005,110 (D20).
    [67]B.D.Tsenova and R. Mitzeva, C.Saunders. Parmeterization of thunderstorm charging including the cloud saturation effect. Atmos. Res,2009,96:356-365.
    [68]言穆弘,葛正谟.雹云中与冰相有关的起电机制.高原气象,1985,4(1):46-55.
    [69]言穆弘,郭昌明,葛正谟.积云动力和电过程二维模式研究-Ⅰ理论和模式.地球物理学报.,1996,39(1):52-64.
    [70]言穆弘,郭昌明,葛正谟.积云动力和电过程二维模式研究-Ⅱ计算结果.地球物理学报,1996.39(1):65-77.
    [71]张义军,言穆弘,张翠华等.不同地区雷暴电荷结构的模式计算.气象学报,2000,58(5):617-627
    [72]孙安平,言穆弘,张鸿发等.播撒金属丝对雷暴云电结构影响模拟研究.高原气象,2000,19(1):32-42.
    [73]孙安平,言穆弘,张义军等.三维强风暴动力-电耦合数值模拟研究Ⅰ:模式及其电过程参数化方案.气象学报,2002,60(6):722-731.
    [74]孙安平,言穆弘,张义军等.三维强风暴动力-电耦合数值模拟研究Ⅱ:电结构形成机制.气象学报,2002,60(6):732-739.
    [75]孙安平,张义军,言穆弘.雷暴电过程对动力发展的影响研究[J].高原气象,2004,23(1):26-32.
    [76]郭凤霞,张义军,郄秀书等,雷暴云不同空间电荷结构数值模拟研究.高原气象,2003,22(3),268-274.
    [77]郭凤霞,张义军,言穆弘,董万胜.环境温湿层结对雷暴云空间电荷结构的影响[J].高原气象,2004,23(5):678-683.
    [78]郭凤霞,张义军,言穆弘等.青藏高原雷暴云降水与地面电场的观测和数值模拟.高原气象,2007,26(2):257-263.
    [79]郭凤霞,张义军,言穆弘.雷暴云首次放电前两种非感应起电参数化方案的比较.大气科学,2010,34(2):361-373.
    [80]张廷龙,郄秀书,言穆弘等.中国内陆高原不同海拔地区雷暴电学特征成因的初步分析.高原气象,2009,28(5):1006-1016.
    [81]黄丽萍,管兆勇,德辉明。基于高分辨率中尺度气象模式的实际雷暴过程的数值模拟实验.大气科学,2008,32(6):1341-1351.
    [82]周志敏,郭学良.强雷暴云中电荷多层分布与形成过程的三维数值模拟研究.大 气科,.2009,33(3):600-620.
    [83]Takahashi, T., Determination of lightning origins in a thunderstorm model. Journal of Meteorological Society Japanese.,1987,65:777-794.
    [84]Baker,M.B., H.J.Christian and J.Latham, A computational study of the relationships linking lightning frequency and other thundercloud parameters, Quarterly Journal of the Royal Meteorological Society,1995,121:1525-548.
    [85]Helsdon, J.H.,Jr.,G.Wu, and R.D.Farley,An intracloud lightning parameterization scheme for a storm electrification model, J.Geophys. Res.,1992,97:5865-5884.
    [86]Kasemir,H,W., A contribution to the electrostatic theory of a lightning discharge. Journal of Geophysical Research,1960,65(2):1873-1878.
    [87]Solomon,R., and M.B. Baker, A one-dimensional lightning parameterization, J.Geophys.Res.,1996,101:14983-14990.
    [88]Mazur,V., and L.H. Ruhnke, Model of electric charges in thunderstorms and associated lightning.J.Geophys.Res.,1998,103:23299-23308.
    [89]MacGorman, D.R., J.M., Straka, and C.L.,Ziegler, A lightning parameteriz-Ation for numerical cloud models, J. Appl. Meteorol.,2001,40:459-478.
    [90]Solomon, R., Schroeder. V., Baker,M.B., Lightning initiation-conventional and runaway-breakdown hypotheses, Q.J.Roy.Meteoro.Soc.2001,127:2683-704.
    [91]Mansell,E.R., D. MacGorman, C.L.Ziegler and J.M.Straka, Simulated three dimensional branched lightning in a numerical thunderstorm model[J], Journal of Geophysical Research.2002,107(D9):4075,doi:10.1029/2000JD000244.
    [92]Wiesmann, H.J. and H.R.Zeller, A fractal model of dielectric breakdown and pre-breakdown in soild dielectrics, Journal of Applied Physics,1986,60:1770-1773.
    [93]张义军,言穆弘,刘欣生,雷暴中放电过程的模式研究.科学通报,1999,44(12):1322-1324.
    [94]马明,雷电与气候变化相互关系的一些研究,博士学位论文,2004,98-137.
    [95]谭涌波,陶善昌.闪电放电与雷暴云电荷、电位分布相互关系的数值模拟,博士论文,2006,35-135.
    [96]孔凡铀,黄美元,徐华英.对流云中冰相过程的三维数值模拟.Ⅰ:模式建立及冷云参数化.大气科学.1990,14(4):441-453.
    [97]孔凡铀,黄美元,徐华英.对流云中冰相过程的三维数值模拟Ⅱ:繁生过程作用.大气科学,1991,15(6):78-88.
    [98]B.Tsenova,R.Mitzeva, New parameterization of non-inductive charge transfer based on previous laboratory experiments, Atmos.Res.91,250-258,2009
    [99]Mitzeva R.P. Saunders C.P.R. Tsenova. B. A modelling study of the effect of cloud saturation and particle growth rates on charge transfer in thunderstorm electrification. Atmospheric Research,2005,76:206-221.
    [100]Emersic.C.,Saunders C.P.R. Further laboratory investigations into the relative diffusional growth rate theory of tunderstorm electrification[J]. Atmospheric Research, 2010,98:327-340.
    [101]Wojcik, W. A. An examination of thunderstorm charging mechanisms using the IAS 2D storm electrification model. Master's thesis, So. Dakota Schl. Mines Technol., Rapid City,1994:113.
    [102]Tsenova B.D. Mitzeva R. and Saunders C. A modeling study of the effect of ice particle sizes and relative velocity on ice crystal/graupel collisional charge transfer. Atmos. Res.2009a.,91:250-258.
    [103]肖辉,吴玉霞,胡朝霞等.旬邑地区冰雹云的早期识别及数值模拟,高原气象,2002,21(2):159-166.
    [104]Baker M B, Dash J G. Charge transfer in thunderstorms and the surface melting of ice. J Growth,1989,97:770-776.
    [105]Baker M B, Dash J G. Mechanism of charge transfer between colliding ice particles in thunderstorms. J Geophys Res,1994,99:10621-10626.
    [106]Griffiths,R.F., and Phelps, C.T. The effects of air pressure and water capor content on the propagations to lightning initiation. Q.J.R.Meteor. Soc.1976,102:419-426
    [107]Griffiths,R.F., and Phelps, C.T. A model of lightning initiation arising from positive
    corona streamer development. J. Geophys. Res.1976,31:3671-3676.
    [108]Macky, W.A., Some investigations on the deformation and breaking of water drops
    in strong electric fields. Proc.Roy.Soc.1931,A 133:567-87.
    [109]张义军,P.R.Krehbiel,刘欣生.雷暴中的反极性放电和电荷结构,科学通报,2002,47(15):1192-1195.
    [110]张义军,P.R.Krehbiel,刘欣生.雷暴中的反极性放电和电荷结构,科学通报,2002,47(15):1192-1195.
    [111]L.M. Coleman, T.C. Marshall, and M. Stolzenburg. Effects of charge and electrostatic potential on lightning propagation. Journal of Geophysical Research, 2003,108(D9),4298:doi:10.1029/2002JD002718.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700