用户名: 密码: 验证码:
汽油车冷起动挥发性有机物排放及生成机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
挥发性有机物(Volatile Organic Compounds, VOCs)是汽油车主要有害排放物之一,对人体健康和大气环境危害很大,而冷起动阶段汽油车VOCs排放恶劣。本文在国内外学者研究基础上,开发了一种汽车尾气采集系统,采集并检测了汽车尾气中VOCs,包括多环芳香烃(Polycyclic Aromatic Hydrocarbons,PAHs)、羰基化合物(Carbonyl Compounds)、细粒子(nano-particulate)等,重点研究了其在冷起动阶段各工况的排放特性;同时,利用KIVA-3V软件,对冷起动工况下碳氢化合物(HC)生成机理及排放规律进行了模拟研究。论文主要研究工作和结果如下:
     1.基于常规的汽车尾气检测平台,开发了汽车尾气采集系统,该系统在按国III方法检测尾气常规排放的同时,可瞬时完成所需工况点的尾气采集,且能够连续采集多个工况点,便于对VOCs排放结果的分析、对比。根据汽油机尾气排放特点,针对不同组分的化学特性,设计了合理的尾气采集方案。
     2.建立了汽油机VOCs主要有害排放物的前处理和检测方法,其中被检测PAHs的回收率大于90 %,相对标准偏差均低于15 %;醛酮类物质的平均回收率在96.07~99.99 %,各衍生物的相对标准偏差为0.193~0.409 %,具有较高的测试准确度,满足对于极低含量物质的检测。
     3.汽油车起动工况下的VOCs排放量非常大,可达到10000ppm;按美国国家环保局(EPA)TO14、TO15标准,汽油车排放VOCs各组分中,芳香烃分担率很高,达50 %左右,其中以甲苯、二甲苯、三甲苯等所占比例较大;尾气中含有多环芳香烃,气态且环数较少的PAHs排放较高,如萘、苊、菲、芴等二环或三环组分,占PAHs的98 %左右;尾气中含大量细粒子,冷起动工况下直径小于1μm的粒子数量浓度可达到4.35x107个/cm3。
     4.利用KIVA-3V软件,构建了一个新的异辛烷氧化反应的骨架机理和新的液滴碰撞模型(MIC),并将其添加到KIVA-3V软件的动力学反应模块中,模拟了不同缸内温度下HC的生成情况,研究了点火提前角、进气温度、点火能量等因素对冷起动HC生成和排放的影响。模拟计算结果显示,适当减小冷起动时的点火提前角,增加后燃,能迅速的提高缸内温度,可减少冷起动HC排放;提高进气温度和加大点火能量也是降低冷起动下HC排放的可用措施。
Volatile organic compounds (VOCs) as one kind of the main hazardous exhaust pollutants from gasoline passenger cars have a great hazard to the atmospheric environment and human health, and most of them emitted in cold-start phase. In this thesis, based on the former investigations, a novel sampling system was developed to quickly collect VOCs in the exhaust emissions, including polycyclic aromatic hydrocarbons (PAHs), carbonyl compounds(CBCs), nano-particulate and so on. With this system developed, the specific emphasis was lay upon the emission characteristics of VOCs during each stage of cold-start phase. Meanwhile, the formation mechanism of hydrocarbons (HC) in cold-start condition was simulated using KIVA-3V software. The main work and conclusions to the study are summarized as follows:
     1. Based on the conventional automobile exhaust testing bed, a novel exhaust emissions sampling system was developed. The system can not only fulfill the collection of regulated exhaust emissions according to Stage III Standard, but also actualize to sample the VOCs at each applied operation mode expeditiously and consecutively. The collecting pattern of VOCs facilitates the contrast and analysis of the samples. In addition, the collecting programs were designed in accordance with the chemical characteristics of components in the gasoline engine exhaust emissions.
     2. New pretreatment and analytical methods were established to detect the hazardous components in the VOCs from a gasoline passenger car. By means of the methods, the recovery rate of PAHs exceeds 90 % with the relative standard deviation (RSD) less than 15 %, the average recovery of CBCs ranges from 96.07 % to 99.99 % with the RSD in the range of 0.193 % - 0.409 %. The results prove that the accuracy of analytical methods is high enough to detect the trace substances in the engine exhaust emissions.
     3. The VOCs have a so high content in the exhaust emissions from the gasoline passenger car during the cold-start period as to reach 10000ppm. According to the EPA TO-14/TO-15 methods, aromatic hydrocarbons are the major sort in the VOCs, and account for approximately 50 %. Toluene, xylene and trimethylbenzene are the most predominant components in aromatic hydrocarbons. PAHs are also found in the exhaust emissions, and the 2-ring or 3-ring aromatics such as naphthalene, acenaphthene, phenanthrene and fluorene are the PAHs quantified in higher concentration and share about 98 % of PAHs. A large number of nano-particulates were detected in the engine exhaust emissions by electrical low-pressure impactor (ELPI), and the number concentration of particulates with the aerodynamics diameter less than 1μm can reach 4.35x107 (1/cm3) in cold-start phase.
     4. In order to study the generation and evolution of hydrocarbons in the cold-start condition, a new framework mechanism of isooctane oxidation reaction and a new mesh independent collision (MIC) spray drop collision model were constructed and added to the overall dynamic reaction of KIVA-3V. The effect of several parameters, such as ignition advance angle, inlet temperature, ignition energy, on HC generation in cold-start phase of the gasoline engine were studied. The simulation results show that the reasonable decrease in ignition advance angle during cold-start period can increase after-burning, and then raise the cylinder’s temperature quickly, reducing cold-start HC emissions. Also, enhancing the intake air temperature and ignition energy are the feasible approach to reducing the cold-start HC emissions.
引文
[1]中国统计局.中国统计年鉴,2004.北京:中国统计出版社,2004.
    [2]中中华人民共和国公安部网站, http://www.mps.gov.cn/n16/n1237/ n1342/n803715/1910459.html
    [3]北京市统计局.北京统计年鉴,2004.北京:中国统计出版社,2004.
    [4] Kobos P H, Erickson J D,Drennen T E. Scenario anaysis of Chinese passenger vehicle growth. Contemporary Economic Policy, 2003, 21(2): 200-217.
    [5]郝吉明,傅立新,贺克斌等.城市机动车排放污染控制.北京:中国环境科学出版社,2001.
    [6] Sweet C. W., Vermette S. J. Toxic Volatile Organic Compounds in Urban Air in Illinois, Environmental Science & Technology, 1992, 26(1): 165-173
    [7] Possanzini M, Dipalo V, Petricca M, Measurements of lower carbonyls in Rome ambient air, Atmospheric Environment, 1996,30:3757-3764
    [8]环境与交通工作组,交通与环境,中国环境科学出版社,2001.57-68
    [9] Lahre, Tom, Cancer Risks from Air Toxic in Urban Areas, 81st annual Metting of APCA, Dallas, Texas, June 1988, 19~24
    [10] Doll, R., Peto, R. The Cases of Cancer: Quantitative Estimates of Avoidable Risks of Cancer in the United States today, Journal of National Cancer Institude,1981, 66(6):1191-1308
    [11] Levaggi, D. A., Sis, W., Gaseous Toxics Monitoring in the San Francisco Bay Area: a Review and Assessment of Four Years of Data, 84th Annual Meeting of A&WMA, Vancouver, B. C., Columbia. 1991
    [12] N.A. Heneina, M.K. Tagomorib, Cold-start hydrocarbon emissions in port-injected gasoline engines. Progress in Energy and Combustion Science, 1999, 25 : 563–593
    [13] Isabelle Caplaina, Fabrice Cazierb, Habiba Noualib, et al. Emissions of nregulated pollutants from European gasoline and diesel passenger cars. Atmospheric Environment. 2006, 40: 5954–5966
    [14]张锡朝,杨滨.汽油机冷启动过程中的HC排放.山东内燃机, 2003(,78):29-31
    [15] Henein N A.Tagomori M K. Cycle-by-cycle Analysis of HC emissions during Cold Start of Gasoline Engines. SAE paper,952402,1995
    [16] Bielaczyc p, Merkisz J. Cold Start Emissions Investigation at Different Ambient Temperature Conditions. SAE paper,980401,1998
    [17] Cheng W K, Hamrin D, Heywood J B et al. An Overview of Hydrocarbon Emissions Mechanisms in Spark-Ignition Engine.SAE paper 932708,1993
    [18]陆思华,白郁华,陈运宽等.北京市机动车排放挥发性有机化合物的特征,中国环境科学2003,23(2):127-130
    [19]路思华,白郁华,张广山,等,机动车排放及汽油中VOCs成分谱特征的研究,北京大学学报(自然科学版),2003,39(4):507-511
    [20]张爱东,王晓燕,修光利.上海市中心城区低空大气臭氧污染特征和变化状况,环境科学与管理,2006,31(6):21-26
    [21]付琳琳,邵敏,刘源,等,机动车VOCs排放特征和排放因子的隧道测试研究,环境科学学报,2005, 25(7): 879-885
    [22]陈阳,陆春霞,王宇骏,等.广州空气可吸入性颗粒物化学元素组成特征.环境科学研究,1999,12(4):1-5
    [23] Kaiser E W, Siegl W O, Henig Y I, et al.Effect of fuel structure on emissions from a spark-ignited engine. Environmental Science & Technology, 1991,25: 2005-2012
    [24] De Vlieger. On-board emission and fuel consumption measurement campaign on petrol-driven passenger cars. Atmospheric Environment, 1996,31: 3753-3761
    [25] Lenaers, G. On-board real life emission measurements on a 3 way catalyst gasoline car in motor way-, rural- and city traffic and on two Eurol- diesel city buses. Science of Total Environment. 1996,189:139-147
    [26] Pierson, W.R.,et al. Real-world automotive emissions Summary of studies in the Fort McHenry and Tuscarora mountain tunnels. Atmospheric Environment, 1996,30:2233-2256
    [27] Staehelin,et al., Emission factors from road traffic from a tunnel study (Gubrist tunnel, Switzerland). Part iii: results of organic compounds, SO2 and speciation of organic exhaust emissions. Atmospheric Environment , 1998, 32 : 999-1009
    [28] Andrew J. Kean, Eric Grosjean, Daniel Grosjean, et al.,et al. On-road measurement of carbonyls in California light-duty vehicle emissions. Environmental Science & Technology, 2001, 35 (21):4198-4204
    [29] Daniel Grosjean, Eric Grosjean, Alan W. Gertler. On-road emissions of carbonyls from light-duty and heavy-duty vehicles. Environmental Science & Technology, 2001,35(1):45-53
    [30] Siegle W O, Hammerle R H. Organic emissions profile for a light-duty diesel vehicle.Atmospheric Environment, 1999,33: 797–805
    [31] Harrison, M.R., Smith, D.J.,Source Apportionment of Atmospheric Polycyclic Aromatic Hydrocarbons Collected from Urban in Birmingham, U.K., Environmental Science & Technology, 1996, 30: 825~832
    [32] Maschet, P., Mouvier, G. Nikolaou, K., Relative Decay Index and Source of Polycyclic Aromatic Hydrocarbons, Atmospheric Environment, 1986, 20: 439-445
    [33] Baugh J,Ray W,Black F.Motor vehicle emissions under reduced ambient temperature idle operating conditions. Atmospheric Environment, 1987,21:2077-2082
    [34] Grosjean D.Formaldehyde and other carbonyls in Los Angelesambient air. Environmental Science & Technology,1982,16:254-262
    [35] Miguel A H, Deaquinoneto F R,Cardoso J N, et al.Characterization of indoor air quality in the cities of S o Paulo and Rio de Janeiro, Brazil. Environmental Science & Technology, 1995, 29:338-345
    [36] Sagebiel J C, Zielinska B,Pierson W R, et al. Real-world emissions and calculated reactivities of organic species from motor vehicles. Atmospheric Environment, 1996,30:2287-2296
    [37] Fraser M P, Cass C R, Simoneit B R T. Gas-phase and particle phase organic compounds emitted from motor vehicle traffic in a Los Angeles roadway tunnel. Environmental Science & Technology, 1998,32:2051-2060.
    [38] Keller C.D., Bidleman T. F. Collection of Airborne Polycyclic Aromatic Hydrocarbons and Other Organic with a Glass Fiber Filter-Polyurethane Foam System", Atmospheric Environment, 1984, 18: 837~845
    [39] Josephson, J., Polycyclic Aromatic Hydrocarbons, Environmental Science & Technology, 1981,15: 20~22
    [40] Dickhut R.M., Gustafson, K.E., Atmospheric Washout of Polycyclic Aromatic Hydrocarbons in the Southern Chesapeake Bay Region, Environmental Science & Technology, 1995, 29:1518~1525
    [41] H.H. Mi, W.J. Lee, P.J. Tsai. A comparison on the emission of polycyclic aromatic hydrocarbons and their corresponding carcinogenic potencies from a vehicle engine using leaded and lead-free gasoline, Environ. Health Persp. 2001,109 : 1285–1290
    [42] Benner, B.A., Gordon, G.E.,Mobile Source of Atmospheric Polycyclic Aromatic Hydrocarbons: A Roadway Tunnel Study , Environmental Science & Technology, 1989, 23:1269~1278
    [43] Halsall C. J., Coleman P. J., Davis B. J., et al. Polycyclic aromatichydrocarbons in UK urban air . Environmental Science and Technology.1994,28:2380-2386
    [44] Grimmer G. , Environmental Carcinogens: Polycyclic Aromatic Hydrocarbons.CRC Press, Boca Raton, FL, 1983
    [45]黄佐华,周龙保.点燃式发动机缸内未燃HC的研究现状及趋势,车用发动机,1993(5) 14- 17
    [46]郭海涛,黄佐华.火花点火发动机未燃碳氢形成机理及影响因素的研究,内燃机工程,1996 17(4) 14- 20
    [47] Adamczyk, A.A., Kaiser, E.W., Lavoie, G.A., A Combustion Bomb Study of Hydrocarbon Emissions from Engine Crevices, Combustion Science and Technology, 1983,33: 261-277
    [48] Adamczyk, A.A., Hydrocarbon Emissions from an Annular Crevice: Effects of Spark/Insert Position, Equivalence Ratio and Pressure, Combustion Science and Technology, 1989,64: 263-276
    [49] Weiss P., Keck J. C., Fast sampling valve measurements of hydrocarbons in the cylinder of a CFR engine, SAE Paper, 810149, 1981
    [50] Min, K., The Effect of Crevices on Exhaust Hydrocarbon Bomb Study of the Hydrocarbon Emissions from Emissions, Ph.D. Thesis, Department of Mechanical Engineering, MIT.,October,1993
    [51] Wentworth J.T., The Piston crevice volume effect on exhaust hydrocarbon emissions,”Combustion Science and Technology,”1971,4: 97-100
    [52]黄佐华、周龙保。火花点火发动机顶环岸间隙处未燃碳氢生成和释放过程的数值模拟计算,西安交通大学学报,1994,28 (6):15-22
    [53] Ishizawa S., Tagaki Y., A study of HC emissions from spark ignition engine, JSME International Journal, 1987, 30(6): 360~317
    [54] Gatellier, B., Trapy, J., Herrier D. et al., Hydrocarbon Emissions of SI Engines as Influenced by Fuel Absorption-Desorption in Oil Films, SAE paper 920095,1992.
    [55] Dent J.C., Lakshminarayanan, P. A., A Model for Absorption and Desorption of Fuel Vapour by Cylinder Lubricating Oil Films and Its Contribution to Hydrocarbon Emissions, SAE paper 830652, 1983.
    [56] Adamczyk, A.A. and Kack, R.A., The Effect of Engine Deposit Layers on Hydrocarbon Emissions from Closed Vessel Combustion, Combustion Science and Technology, 1986,47:193-212,
    [57] Daniel, W.A., Flame Quenching at the Walls of an Internal Combustion Engine, In Proceedings of Sixth International Symposium on Combustion, Reinhold, New York ,1957, 886-891
    [58] LoRusso, J.A., Kaiser, E.W., and Lavoie, G.A., In-Cylinder Measurementsof Wall Layer Hydrocarbons in a Spark Ignited Engine, Combustion Science and Technology, 1983,33: 75-112
    [59] Cheng. W. K., Hamrin, D., Heywood, J.B. et al, An Overview of Hydrocarbon Emissions Mechanisms in Spark-Ignition Engines, SAE paper 932708, 1993
    [60] Yang, J., Kaiser, E.W., Siegl, W.O. et al, Effects of Port-Injection Timing and Fuel Droplet Size on Total and Speciated Exhaust Hydrocarbon Emissions,”SAE paper 930711,presented at the International Congress & Exposition, Detroit, MI, March 1-5.1993
    [61] Fox, J.W., Min, K-D., Cheng, W.K., and Heywood, J.B.,“Mixture Preparation in a SI Engine with Port Fuel Injection During Starting and Warm-Up, SAE paper 922170, 1992
    [62] Meernik, P., and Alkidas, A., Impact of Exhaust Valve Leakage on Engine-Out Hydrocarbon, SAE paper 932752, 1993.
    [63]汪卫东,国外三大汽车排放法规体系,柴油机设计与制造2003,4:4-8
    [64]陈吉刚,欧美日汽车法规简介,汽车工业研究,2001,3:25-30
    [65]吴咏,张尚娇,国外的汽车排放法规,汽车科技,2001,1: 31-35
    [66] Robert N C. Laboratory Evaluation of ultra-short Metal Monolith Catalyst. SAE 98067,1998
    [67] Bielaoyc P. EuroⅢ/ EuroⅣEmissions—A Study of Cold Warm Up Phase a SI (Spark Ignition) Engine. SAE, 1999-01-1073
    [68] Horie k. Emission Reduction During Warm Up Period by Incorporating a Wall-Wetting Fuel Model on the Fuel Injection Strategy During Engine Starting. SAE 952478 ,1995
    [69] Fulcher S K. The Effects of Fuel Automization, Vaporization, and Mixing on the Cold-Start UHC Emissions of a Contemporary SI Engine with Intake- Manifold Injection, SAE 952482,1995
    [70] D Ludykar, R Westerholm, J. Almen. Cold Start Emission at 22, -7 and -20℃Ambient Temperatures from a Three -way Catalyst (TWC) Car: Regulated and Unregulated Components. Science of Total Environment, 1999, 235(1-3):65-69
    [71] Cheng W K,Hamrin D,Heywood J B et al.An Overview of Hydrocarbon Emissions Mechanisms in Spark-Ignition Engine. SAE paper 932708,1993
    [72]黄佐华,庞俊国等.冷启动和怠速是火花点燃式发动机缸内未燃碳氢生成过程的研究.燃烧科学与技术, 1997, (4): 406-411
    [73]程勇,王建昕等.降低汽油机起动及暖机过程中HC排放的探讨.内燃机学报, 2002, 20(4): 292-296
    [74]程勇,王建昕等.电喷汽油机起动及暖机过程HC排放的测试分析.汽车工程. 2002, 24(4): 331-335
    [75] Gerler A W. Diesel vs. gasoline emissions: Does PM from diesel or gasoline vehicles dominate in the US? Atmospheric Environment. 2005,39: 2349~2355
    [76] Douglas Lawson, Michael Gurevich. The Doe/Nrel Environmental Science and Health Effects Program-An Overview. SAE1999-01-2249
    [77] K. A. Bérubé, T. P. Jones, B. J. Williamson et al, Physicochemical Characterization of Diesel Exhaust Particles: Factors for Assessing Biological Activity, Atmospheric Environment, 1999, 33: 1599-1614
    [78] Ya-Fen Wang, Kuo-Lin Huang, Emissions of Fuel Metals Content from a Diesel Vehicle Engine, Atmospheric Environment, 2003, 37: 4637-4643
    [79]宋崇林,王玉秋,范国梁等,柴油机排气颗粒中有机组分的分离方法及微量金属的测定,天津大学学报,2000, 33(6), 707-710
    [80] Wift D L. The oronasal airways: the definer and ignored respiratory ozone of the PM10 regulatory convention. Inhalation Toxicoloty 1995,7(1): 125-150
    [81] Lighty J S, Veranth J M, Sarofim A F. Combustion aerosols:factors governing their size and composition and implications to human health. Journal of the Air & Waste Management Association 2000,50:1565~1618
    [82] Fox, J.W., Cheng, W.K., Heywood, J.B.,“A Model for Predicting Residual Gas Fraction in Spark-Ignition Engines,”SAE paper 931025,1993.
    [83]张萃民.固相微萃取技术在我国环境化学分析中的应用,环境污染治理技术与设,2001,2 (6):53一64.
    [84]胡弘鲲,谢家理.固相微萃取技术的应用及其进展,四川环境,2002,21(1):16一19
    [85] Artalt R J, Zilkoeski B W. Nonequilbrium Quantitation of volatiles in air streams by solid-microextration. Anal Chem,1999,71(1):92.
    [86]赵让梅,左向群,许生蛟等.一次热解吸直接进样浓缩方法的研究,分析测试技术与仪器.2005,11(4):255-260.
    [87] Robert N C. Laboratory Evaluation of ultra-short Metal Monolith Catalyst. SAE 98067,1998
    [88] Bielaoyc P . EuroⅢ/ EuroⅣEmissions—A Study of Cold Warm Up Phase a SI (Spark Ignition) Engine. SAE ,1999-01-1073.
    [89] Horie k . Emission Reduction During Warm Up Period by Incorporating aWall-Wetting Fuel Model on the Fuel Injection Strategy During Engine Starting. SAE 952478 ,1995.
    [90] Fulcher S K et al. The Effects of Fuel Automization, Vaporization, and Mixing on the Cold-Start UHC Emissions of a Contemporary SI Engine with Intake- Manifold Injection, SAE 952482,1995
    [91] D Ludykar , R Westerholm , J . Almen. Cold Start Emission at 22 , - 7 and - 20℃Ambient Temperatures from a Three -way Catalyst ( TWC) Car : regulated and Unregulated Components. Science of Total Environment , 1999 , 235(1 - 3) :65 -69
    [92] Lilei, Makram T. Suidan et.al. Assessing the Bioavailability of PAHs in Field-Contaminated Sediment Using XAD-2 Assisted Desorption. Environ. Sci. Technol. 2004, 38, 1786-1793
    [93] Chuang, J.C., Hannan, S.W., Wilson, N.K., Field Comparison of Polyurethane Foam and XAD-2 Resin for Air Sampling for Polynuclear Aromatic Hydrocarbons”, Environmental Science & Technology, 1987, 21(8): 798-804
    [94] Susan K. Durlak and Pratim Biswas. Characterization of Polycyclic Aromatic Hydrocarbon Particulate and Gaseous Emissions from Polystyrene Combustion. Environ. Sci. Technol. 1998, 32, 2301-2307
    [95] James J. Leea, Kuo-Lin Huang, Yaochien Y. Yu et.al. Laboratory retention of vapor-phase PAHs using XAD adsorbents. Atmospheric Environment 38 (2004) 6185–6193
    [96]高继东,宋崇林,张铁臣等.汽油车排气中颗粒物粒径的分布特性.燃烧科学与技术,2007.13(3) : 248-252
    [97]涂险峰,内燃机排气中多环芳烃的测量及排放特性的研究,吉林工业大学硕士毕业论文,1999
    [98]张文美,现代柴油机燃烧过程中微粒及多环芳香烃变化规律的研究:[硕士毕业论文],天津;天津大学,2007
    [99]魏万之,胡妍波,夏建军等.气相色谱-质谱联用法分析卷烟烟气中15种多环芳烃.湖南大学学报.2005,32(2):76-80
    [100]赵瑞芬,乙醇/柴油混合燃料羰基化合物的检测及排放特性的研究:[硕士毕业论文],天津;天津大学,2007
    [101]张铁臣,宋崇林,范嘉瑞等,汽油车挥发性有机物排放特性的研究,工程热物理学报,2008,29(4):703-706
    [102] David B. Kittelson. Engines and Nanoparticles: A Review. J.Aerosol Sci. 1998, 29(5/6) 575-588
    [103] Urs Mathis, Martin Mohr, Anna-Maria Forss. Comprehensive particlecharacterization of modern gasoline and diesel passenger cars at lowambient temperatures. Atmospheric Environment, 2005, (39) 107–117
    [104] Dekati. ELPI User Manual. Dekati Ltd. Tampere, Finland
    [105]刘双喜,高继东,景晓军.车用发动机颗粒物测量和评价方法的发展研究.小型内燃机与摩托车.2005,4:43-46
    [106] Fraser M., et al. Gas-phase and Particle-phase Organic Compounds Emitted from Motor Vehicle Traffic in a Los Angeles Roadway Tunnel. Environmental Science & Technology, 1998,32:2051-2060.
    [107] Zhang Y, et al. World On-Road Vehicle Exhaust Emissions Study by Remote Sensing. Environmental Science & Technology, 1995,29 :2286-2294.
    [108] Urs Mathis,Martin Mohr,Anna-Maria Forss.Comprehensive particle characterization of modern gasoline and diesel passenger cars at low ambient temperatures.Atmospheric Environment, 39 (2005) 107–117.
    [109] A.A.Amsden. KIVA-3V: A Block-Structured KIVA Program for Engines with Vertical or Canted Valves. Los Alamos National Laboratory,1997
    [110] Patankar S.V., Numerical Heat Transfer and Fluid Flow. New York,McGraw-Hill,1980,79-138
    [111]陈庆光,徐忠,张永建. RNG k-ε模式在工程湍流数值计算中的应用.力学季刊,2003,24(1):88-94.
    [112] F.Hattori et al. Anslysis of Fuel and Combustion Behavior During Cold Starting of SI Gasoline Engine.JSAE Review,1997,(18):351-359
    [113]朱云,王建昕,肖建华.冷启动和暖机时减少排放物的研究.云南农业大学学报,2000, 15(1):80-84
    [114] N. A. Heneina, Cold-start Hydrocarbon Emissions in Port-Injected Gasoline Engines. Progress in Energy and Combustion Science, 1999, 25(3):563-593
    [115] M.Weilenmann et al. Regulated and Nonregulated Diesel and Gasoline Cold Start Emissions at Different Temperatures. Atmospheric Environment, 2005, (39):2433-2441
    [116] Thomas Schmitz, Dieter Hassel, F. J. Weber. Determination of VOC-components in the exhaust of gasoline and diesel passenger cars. Atmospheric Environment, 2000, (34): 4639-4647.
    [117] Norbert V.Heeba, A.M.Forss, Christian J.S, Patrick.W. Methane,benzene and alkyl benzene cold start emission data of gasoline-driven passenger cars representing the vehicle technology of the last two decades. Atmospheric Environment, 2003, (37): 5185-5195.
    [118] Benson S.W.The Kinetics and Thermochemistry of Chemical Oxidationwith Application to Combustion and Flames. Progress in Energy and Combustion Science,1981,7(2) :125-134
    [119] Tanaka S, Ayala F. Areduced Chemical Kinetic Model for HCCI Combustion of Primary Reference Fuels in a Rapid Compression Machine. Combustion an Flame,2003,133(4):467-481
    [120] Li H,Prabhu S K,Miller D L,et al.Autoignition Chemistry Studies on Primary Reference Fuels in a Motored Engine.SAE Paper 942062,1994
    [121]贾明.均质压燃(HCCI)发动机着火与燃烧过程的理论与数值研究[学位论文.大连,大连理工大学, 2006:112-114
    [122] http://www.me.berkeley.edu/gri_mech
    [123] F.Hattori et al. Anslysis of Fuel and Combustion Behavior During Cold Starting of SI Gasoline Engine. JSAE Review,1997,(18):351-359
    [124] N.A.Heneina et al. Cold-start Hydrocarbon Emissions in Port-Injected Gasoline Engines. Progress in Energy and Combustion Science,1999,25(3):563-593
    [125] M.Weilenmann et al. Regulated and Nonregulated Diesel and Gasoline Cold Start Emissions at Different Temperatures.Atmospheric Environment,2005, (39):2433-2441
    [126] Ken Umehara, Tetsuya Tateishi et al. HC Reduction System for Cold Start and Warm-up Phases-Improvement of Catalyst Warm-up by Retarded Ignition. JSAE Review,1997,(18):67-69
    [127] Thomas Schmitz, Dieter Hassel, F.J.Weber. Determination of VOC-components in the exhaust of gasoline and diesel passenger cars. Atmospheric Environment, 2000,(34):4639-4647
    [128]刘金武,龚金科,谭理刚等.基于多维模型的电喷汽油机MAP图的数值生成.汽车工程,2006,28(8):719-724

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700