用户名: 密码: 验证码:
基于超声波技术的岩体稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
声波衰减是研究岩石能量吸收性质的主要方法,它与岩石内部微裂纹及其变化有着密切联系,是岩石领域需要深入研究的课题之一。本人在分析前人研究成果的基础上,组建了一套单轴压缩岩石裂纹扩张声波衰减测量系统,编制了数据处理程序,采用脉冲传播和频谱比例测量方法,对完整和含模拟弱面花岗岩试件,进行了衰减与裂纹扩张性质的实验研究,取得了有价值的数据。
    实验结果表明:压致性张裂与剪切滑移对岩石声波Qp变化具有不同的影响效应。开始Qp随压力增加逐渐增大,当压力达到一定值时,Qp转为减小。岩石破坏前,压致性张裂Qp出现渐变性下降,而剪切滑移Qp则无较大变化,破坏时发生突变。
    对声波在岩石中传播的衰减机制进行了讨论,认为矿物颗粒边界和微裂纹表面的粘滞性摩擦,以及宏观裂纹的散射效应是引起声波衰减的主要机制。
    在应用方面,对岩体声波测量系统作了改进,对石膏夹层混凝土大型试件进行了检测。结果表明:系统基本满足矿山岩体声学性能测试的要求,适应于围岩松动范围,以及坝基较弱夹层的波速与衰减测量。
Ultrasonic wave attenuation measure is an important method of researching the energy absorptance of rock. It relates with the variation of rock microcrack and is one of subjects to be researched continuously in rock area .On analyzing the results of other researchers, the author of this paper assembles a set of ultrasonic wave attenuation measure system of rock crack spread under untaxed pressure, makes up data program, using pulse transmition technique and spectral ratio method, with perfect and analogous crack basalt samples, performs experiment research in the relation of the attenuation and the crack spread, and obtains some of value data.
    The experiment results demonstrate that longitudinal on the variation of rock ultrasonic wave goodness. At first, Qp increases with pressure. When the pressure attains certain value, it change into reduce. Before the sample is broken up, longitudinal splitting Qp reduces gradually. But, shear glie Qp does not vary obviously and the sample occurs sharp destruction.
     The discussion of attenuation mechanism of ultrasonic wave transimtion in rock is performed. The viscosity friction of mineral grain and microcrack surface, and the scatter effect of macrocrack, are considered an prevailing attenuation mechanism.
    
    In application, rock ultrasonic wave measure system is reformed. It is fulfilled to detect large pollster layer concrete sample. The results show that the system can elementally satisfy the measure requirement of the acoustic quality of mine rock, and it is adaptable to the wave velocity and the attenuation measure of the loose area of rock, of weak layers under dam base.
引文
[1]王思敬etal.地下工程岩体稳定分析.科学出版社,2001
    [2]谷德振.岩体工程地质力学基础.科学出版社,2000:2-11
    [3]尹祥础etal.闭合裂纹面相互作用的实验研究.地球物理学报,2000;31(3):306-304
    [4]刘宝琛etal.破裂岩石力学模型探讨.岩土工程学报,1999;3(4):81-92
    [5]彭光忠.单轴压应力下页岩岩块的结构面方向与其力学特性的关系.岩士工程学报,1999;5(2):101-109
    [6]赵文瑞.泥质粉砂岩各向异性强度特征.岩士工程学报,1999;6(1):32-37
    [7] Holzhausen etal. Analyses of Longitudinal splitting of Uniaxially Compressed Rock Cylinders. Int. J. Rock Mech. Min.Sci.&Geomech.Abstr.,1997;16:163-177
    [8]Howarth.The Effect of Pre-existing Microcavities on Mechanical Rock Performance in Sedimentary and Crystalline Rocks. Int. J. Rock Min. Sci & Geomech.Abstr.2000;24(4):
    223-233
    [9]Walsh.Seismic Wave Attenuation in Rock Due to Friction. Journal of Geophysical Research.2001;71(10):2591-2599
    [10]White.Static Friction as A Source of Seimsic Attenuation. Geophysics,2001;XXXI(2):
    333-339
    [11]Winkler etal. Friction and Seismic Attenuation in Rocks, Nature, 1999;277:528-531
    [12]Winkler etal. Seismic Attenuation:Effects of Pore Fluids and Frictional Sliding.Geophysics,1998;47(1):1-15.
    [13]Bron. The Attenuation Constant of Earth Materials.Geophysics,1997;6:132-148
    [14]Biot. Mechanics of Deformation and Acoustic Propagation in Porous Media. Journal of Appliel Physics,2000;33(4):1482-1498
    [15]Brace etal. Dilatancy in the Fracture of Crystaline Rocks. Journal of Geophysical Research,2000;71:3939-3953
    [16]Janach. Failure of Granite under Compression Int.J. Rock Mech. Min. sci & Geomech.Abstr.2000;14:209-215.
    [17]Mckenzie etal.Ultrasonic Characteristics of a Rock Mass. Int .J.Rock Mech.Min Sci.&Geomech.Abstr.,1998;19:25-30.
    [18]Engelder etal.Changes in In Situ Ultrasonic Properties of Rock on strain Relaxation. Int J.Rock Mech. Min Sci.& Geomech.Abstr.,1997;21(2):75-82.
    
    [19]陆光泽etal.等声速区划图的理论及应用.煤岩学报,1998;1:33-39.
    [20]铁道科学研究院 西南所地质路基研究室:工程岩体及其加因措施质量的声波检测,1999
    [21]祝龙根etal.跨孔波速试验中孔间距和测点位置的确定方法.上海:同济大学,2000.
    [22]任甲祥etal.垂向不均匀介质中波传播特点的研究.地球物理学报,2001;30(1):69-79
    [23]长沙矿山研究院岩石力学实验室.地下工程岩体稳定性分类,2001
    [24]蔡忠理etal.单轴压缩过程中花岗岩声学特性的研究.岩石力学,1999;7(2):27-36
    [25]何祚镛etal.声学理论基础.北京:国防工业出版社,2000:7-12
    [26]Toksoz etal.Attenuation of Seismic waves in Dry and Saturation Rocks: I. Laboratory Meophysics,2000;44(4):681-690
    [27]Molina etal.Crack Field Characterization by ultrasonic Attenuation—Preliminary Study on Rocks. Int.J. Rock Mech. Min Sci. &.Greomech.Abstr,2000;19:267-278
    [28]刘祖源 etal. 单轴压缩下干燥和饱水岩石中超声P波的衰减.地球物理学报,1999;27(4):349-358
    [29]郭自强.固体中的波.北京:地震出版社,2001:232
    [30]J.C.耶格&.N.G.W库克著,中国科学院工程力学研究所.译.岩石力学基础.北京:科学出版社,1997:130
    [31]郑治真.波谱分析基础.北京:地震出版社,2001:79.
    [32]E.O.布赖姻著,获群译.快速傅立叶变换.上海科学技术出版社,1998:93
    [33]杨军等.岩石声频散的实验研究及声波速度的外推,地球物理学报,2001.1
    [33]李亚林.岩石孔渗特性与地震波衰减、传播速度的相互关系,天然气工业.2001.4
    [34]高文学等.岩石动态损伤特性的实验研究.北京工业大学学报,2001.1
    [35]杨军等.岩石动态损伤特性实验及爆破模型.岩石力学与工程学报,2001.3.
    [36]赵明阶.岩石损伤特性与强度的超声波声速研究.岩土工程学报,2000.6
    [37]赵明阶.工程岩体的超声波分类及强度预测.岩石力学与工程学报,2000.1
    [38]杨军等.岩石冲击损伤特性的声波测试研究.黑龙江矿业学院学报,2000.1
    [39]赵明阶.单轴受荷下岩石的声学特性模型与实验研究.金属矿山,1999.6
    [40]赵明阶,裂隙岩体在受荷条件下的声学特性研究,水利水电技术.1999.6
    [41]李亚林等.岩石孔隙流体对纵横波速度影响的实验研究及意义.矿物岩石.1998.1
    [42]刘新华.岩石超声波与岩石物理力学性质的关系.四川水力发电.1997.1
    [43]马涛等.乾陵石刻内部裂隙的超声波探测研究.文物保护与考古科学,2002.2
    
    [44]刘维国等.岩石扩容现象与超声模波特征参数相互关系研究评述.成都理工大学学报2003.1
    [45]尤明庆等.岩石动静参数间关系的研究.焦作工学院学报,2002.6
    [46]白利平等.高温高压下斜长岩纵波速度与电导实验研究.地震学报,2002.6
    [47]张晓春等.小波变换及其在岩石超声检测中的应用.黑龙江矿业学院学报.2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700