用户名: 密码: 验证码:
不同基因型水稻形态及生理特性对其产量潜力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
产量潜力是指通过最佳农艺措施(营养和水分不受限制,病、虫、杂草等得到有效控制)所可能达到的产量极限。提高产量潜力一直是水稻育种学家和生理学家的主要目的。良好的形态结构可以从空间结构上提高对光能的利用,是高质量群体的必备条件。在最优的管理条件下,研究不同基因型水稻形态和生理特性对其产量潜力的影响,比较基于产量与基于植株特性选择不同基因型水稻对提高产量的有效性,对于育种学家正确筛选不同基因型水稻品种及提高水稻产量潜力具有重要意义。本研究在2008年旱季(DS)选种的基础上,于2009年DS、2009年雨季(WS)、2010年DS在菲律宾国际水稻研究所(IRRI)试验农场进行。在2008DS水稻成熟前一周左右,从育种学家重复产量试验田196个F6-F7基因型中,基于株高、顶三叶片夹角、穗与剑叶的相对位置、穗子大小、穗子紧凑性、着粒密度等,目测选取最优52个不同基因型水稻,然后结合其总生物产量和结实率进一步筛选出16个不同基因型;同时从196个育种系中通过测产选取16个最高产量的基因型,其中3个为重叠基因型。另选取3个对照品种(IR72, NSICRc158, SL-8H/Mestizo7)进行大田试验。系统研究不同基因型组水稻形态和生理特性对其产量潜力的影响;比较基于形态和生理特性选择与基于产量选择对提高产量的有效性,并进一步探明在最优的作物管理条件下,理想株型是否能表现出较高的产量潜力。取得的主要研究结果如下:
     (1)基于植株特性选择组和重叠组水稻开花期和成熟期株高均显著高于基于产量选择组和对照组。剑叶与穗的相对高度差是指从水稻植株基部到剑叶顶端的高度减去从植株基部到穗顶端的高度,其差异反映了穗和剑叶所处的相对位置。研究结果表明,不同基因型水稻剑叶与穗的相对高度差均为正值,表明所有的稻穗均位于剑叶以下,而基于植株特性选择组水稻剑叶与穗的相对高度差显著高于基于产量选择组,且基于产量选择组剑叶与穗的相对高度差在四组中最小。因此,与基于产量选择组相比,基于植株特性选择组水稻穗子与剑叶的相对位置更有利于剑叶进行光合作用。
     (2)基于植株特性选择组的茎粗最粗且显著高于对照组。开花期,基于产量选择组水稻的茎蘖数显著高于基于植株特性选择组。水稻生长后期随着一些无效分蘖的死亡,水稻茎蘖数略有下降,使得成熟期不同基因型水稻的茎蘖数均稍低于开花期。但基于产量选择组水稻的茎蘖数显著高于基于植株特性选择组。单位面积高的有效穗数为基于产量选择组高产奠定了基础。
     (3)不同基因型组之间水稻幼穗分化期LAI和CGR无显著差异。开花期,基于植株特性选择组LAI显著高于基于产量选择组。不同基因型水稻LAI在各生育期间从大到小依次为:开花期>成熟期>幼穗分化期。基于植株特性选择组水稻从移栽到开花期积累的干物质总重显著高于基于产量选择组,且雨季干物质积累总量显著低于旱季。基于植株特性选择组的产量并未显著高于基于产量选择组。可见,基于植株特性选择组开花期高的干物质积累总量并未导致高的产量,其原因可能是由于其后期收获指数较低及倒伏所致。
     2009DS、2009WS和2010DS,32个不同基因型水稻抽穗扬花前干物质对籽粒的贡献率平均分别为26.9%,20.2%,26.9%,水稻抽穗扬花后干物质对籽粒的贡献率平均分别为73.1%,79.8%,73.1%。
     (4)水稻移栽早期,由于植株生长迅速,水稻冠层光辐射截获率增长较快,至水稻移栽后40天,冠层光辐射截获率达到91%左右,随后,截获的太阳辐射率缓慢增加,移栽后90天,对照组、基于植株特性选择组、基于产量选择组、重叠组水稻冠层太阳辐射截获率分别为96.9%,97.1%,97.4%,96.6%。四组中对照组的产量最高。水稻移栽后41天和54天,对照组辐射截获率与产量的相关系数R2分别达到0.8503和0.9265,说明水稻生长早期,冠层高截获率是其高产的基础。
     (5)开花期,对照组、基于植株特性选择组、基于产量选择组及重叠组SPAD值分别为35.0,32.8,34.7,33.8。施入穗肥后7天左右SPAD达到最大值,随后不同基因型水稻SPAD值开始下降至最低。单位时间内SPAD最大值与最小值之间的差异和SPAD最大值与最小值之间的差异与产量均成极显著的负相关,其相关系数(R2)分别为0.6951和0.7114。表明后期保证高的叶片SPAD值有利于产量的提高。可见,开花后增施氮肥可提高剑叶的叶绿素含量,延长叶绿素含量缓降期,使植株在生育后期保持较高的绿叶面积,对提高水稻产量具有重要意义。
     开花期叶片的氮素含量高于茎鞘,且基于产量选择组的叶片含氮量显著高于基于植株特性选择组。灌浆期,水稻茎、叶中氮素含量逐渐向穗部转移。不同基因型组水稻成熟期的饱粒含氮量显著高于其他器官。2009DS、2009WS和2010DS,32个不同基因型水稻饱粒累积含氮量占总氮比例平均分别为52.6%、54.7%、59.5%。基于植株特性选择组水稻在开花期氮素干物质生产效率显著高于基于产量选择组,在2009DS和2010DS,两者表现出极显著的差异。表明基于植株特性选择组高的氮素干物质生产效率导致高的干物质产量。基于产量选择组的氮素稻谷生产效率高于基于植株特性选择组,2010DS两者表现出显著的差异。基于产量选择组高的氮素稻谷生产效率可能是其收获指数显著高于基于植株特性选择组的主要原因。
     (6)基于产量选择组颖花/叶(m2)、实粒/叶(m2)均显著高于基于植株特性选择组。基于产量选择组粒重(mg)/叶(m2)在2009WS和2010DS显著高于基于植株特性组。颖花/叶(m2)、实粒/叶(m2)主要反映单位叶面积负载库容量的大小和抽穗后单位库容量。研究结果表明,基于产量选择组单位叶面积的负载库容显著高于基于植株特性选择组,且抽穗后单位库容量优于基于植株特性选择组。可见,由于基于产量选择组更有利于构建一个高质量的群体和提高群体光合生产力,故而其籽粒产量和产量潜力均较高,而基于植株特性选择组则正好相反。
     基于产量选择组颖花/叶(m2)、实粒/叶(m2)和粒重(mg)/叶(m2)及其与产量之间均表现出正相关关系,表明提高颖花/叶(m2),不仅不会因单位叶面积的负荷量增大而使结实率和粒重降低,相反,由于库对源的促进作用,提高颖花/叶(m2)能提高叶片光合强度并促进光合产物向穗部输送。
     综上所述,基于植株特性选择组的水稻株高、叶面积指数、开花期总干重、千粒重比基于产量选择组高。与基于产量组相比,基于植株特性选择组水稻穗子位于叶片较下方。然而,基于植株特性选择组水稻穗子大小和结实率并没有得到改善。在产量上,基于植株特性选择组水稻没有显著高于基于产量选择组。相反,在2010DS其产量显著低于基于产量选择组。在29个不同基因型中,三季的最高产量均出现在基于产量选择组中,最低产量均出现在基于植株特性选择组中。可见,本研究中,在最优的作物管理条件下,具有理想株型性状的基因型水稻并没有显示出高的产量优势。基于产量选择比基于植株特性选择对于育种学家筛选品种更有效。
Yield potential is defined as the maximum yield of a variety when grown under optimal crop management conditions. Yield improvement remains the main target for physiologists and breeders. Better morphological architecture means higher radiation use efficiency through spatial configuration, which is essential to higher quality population. Under optimal crop management conditions, studying the effect of morpho-physiological traits on rice yield potential and comparing the effectiveness between trait-based selection and yield-based selection were significant for properly selecting rice seeds with highest potential for the breeders and improving the yield potential of rice. Based on the selection of genotypes in 2008 dry season(DS), the field experiments were conducted in the same field at International Rice Research Institute (IRRI) farm for three consecutive seasons (2009 DS,2009 wet season (WS), and 2010 DS). In 2008DS, based on 196 breeding genotypes (F6 to F7 generations) grown in a replicated yield trial in a breeder's field at the IRRI farm,52 genotypes were selected visually based on plant morphological traits within one week before final harvest. These traits included moderately tall plants, erect top three leaves, panicles located inside the canopy, large and compact panicles with more spikelets per unit panicle length, and large grain size. Sixteen genotypes were further selected from the 52 genotypes based on aboveground total dry weight and grain-filling percentage. Three out of the 16 genotypes selected based on plant traits were also ranked in the top 16 based on grain yield. A group of three check varieties (IR72, NSICRcl58, and a hybrid) was also included in all field experiments. The objectives were to study the effect of morpho-physiological traits on rice yield potential, compare the effectiveness of trait-based and yield-based selection in increasing rice grain yield, and determine whether genotypes with ideal plant traits have the potential to express higher yield under optimal crop management conditions. The following results were obtained:
     (1) Plant heights at flowering stage and maturity were significantly higher in the traits-based selection and the overlap than those in yield-based selection and check. The difference in plant height measured to the tip of the highest leaf minus that measured to the tip of the panicle was used to judge the relative height of panicles within a canopy. Results showed that the differences in plant height were positive for all the genotypes, which meant all the panicles were below the flag leaf. The difference in plant height was significantly higher in trait-based selection than in yield-based selection, and the difference was smallest in yield based selection. Therefore, compared to yield-based selection, the relative position for trait-based selection was better for photosynthesis of the flag leaf.
     (2) The selection based on plant traits had the highest stem diameter, which was significantly thinner than that of check. At the flowering stage, the tiller number was significantly higher in yield-based selection than in trait-based selection. The tiller number dropped with the death of some non-productive tillering, and the number of total tiller at maturity was lower than that at flowering. However, the selection based on yield had higher tiller number and percentage of tiller than the selection based on plant traits. So, higher effective tiller number was the fundamental to higher yield in yield-based selection compared with that in trait-based selection.
     (3) There was no significant difference in LAI and CGR among the four genotypic groups at the panicle initiation stage. During the flowering stage, trait-based selection had higher LAI than yield-based selection. The order of LAI for the lines during different stages was:Flowering> maturity> panicle initiation. There was significantly higher total dry weight in trait-based selection than that of yield-based selection, and the total dry weight was lower in wet season than that in dry season.
     The contribution of dry matter before heading to grain for the 32 genotypes was 26.9%,20.2% and 26.9%, respectively, in 2009DS,2009WS and 2010DS. After heading, the contribution of dry matter to grain in the three consecutive seasons was73.1%,79.8% and 73.1%, respectively. The grain yield was highest in the check; the average yield of trait-based selection was not significantly higher than that of yield-based selection in all three seasons. In fact, yield-based selection produced significantly higher average yield than trait-based selection in 2010DS. Therefore, higher total dry weight during the flowering stage in trait-based selection did not lead to higher grain yield compared to yield-based selection, which might be due to lower harvest index and lodging at maturity.
     (4) During the early vegetative, the intercepted radiation percentage was increased faster with rice rapid growth. The intercepted radiation percentage was about 91% 40 days after transplanting. After that, it increased slowly and the intercepted radiation percentage was 96.9%,97.1% ,97.4%, and 96.6%, respectively, for the check, trait-based selection, yield-based selection and overlap. Among the four groups, the check had highest grain yield, and the correlation coefficients (R2) between the intercepted radiation percentage and grain yield were 0.8503 and 0.9265, respectively,41 and 54 days after transplanting. This showed high intercepted radiation percentage was fundamental to high grain yield during the early vegetative stage.
     (5) The SPAD values at flowering stage were 35.0,32.8,34.7, and 33.8 in check, trait-based selection, yield-based selection, and overlap, respectively. After topdressing at flowering, the SPAD value climbed to the peak, and then dropped to the minimum. There was negative correlationship between grain yield and the difference in maximum and minimum SPAD per day and its difference, and the coefficients were 0.6851 and 0.7114, respectively. Results showed that higher SPAD value in flag leaf during the postheading period was important for higher grain yield. Thus, nitrogen topdressing at flowering could increase chlorophyll content, delay the duration of chlorophyll degradation, and maintain green leaf for a long time, which were significant for improving grain yield.
     The content of nitrogen in leaf was higher than that in stem during the flowering stage, and yield-based selection had higher nitrogen in leaf than trait-based selection. During the grain filling, the content of nitrogen in stem and leaf transferred to panicle. The content of nitrogen in filled grain was highest in the four groups. The nitrogen accumulation of the 32 genotypes was 52.6、54.7% and 59.5%, respectively, in 2009DS, 2009WS and 2010DS. Higher nitrogen dry matter production efficiency in trait-based selection might be the reason why there was high dry matter weight during the flowering stage. The nitrogen grain production efficiency in yield-based selection was higher than that in trait-based selection, and there was significant difference between the two groups in 2010DS. Higher nitrogen grain production efficiency in yield-based selection might be the one reason why it had higher grain yield.
     (6) Both spikelets/leaf (m2) and filled spikelets/leaf (m2) in yield-based selection were higher than those in trait-based selection. In 2009WS and 2010DS, the filled spikelets/leaf (m2) in yield-based selection was significantly higher than that in trait-based selection. Because spikelets/leaf (m2) and filled spikelets/leaf (m2) could reflect the sink size per unit area of leaf and photosynthesis after heading. Results showed that sink size in yield-based selection was higher than that in trait-based selection, and yield-based selection had better photosynthesis after heading. So the yield-based selection could build high quality population and improved photosynthesis, and its grain yield and yield potential were higher compared with the trait-based selection.
     There was positive relationship among spikelets/leaf (m2), filled spikelets/leaf (m2), grain weight (mg)/leaf (m2) and yield, which indicated improved spikelets/leaf (m2) could not decrease grain filling percentage and grain weight, on the contrary, it could improve photosynthesis intensity and accelerate transporting photosynthesis production to grain.
     In conclusion, trait-based selection resulted in higher plant height, leaf area index, total dry weight at flowering, and grain weight than yield-based selection. In genotypes selected on the traits of plant traits, more leaf area was above panicles as reflected by a greater difference between plant heights from the base to the tip of the flag leaf and to the tip of the panicle. However, panicle size and grain-filling percentage were not improved by trait-based selection. Trait-based selection did not increase grain yield compared with yield-based selection across three seasons with a large differences in climatic yield potential. In fact, grain yield was significantly lower in trait-based selection than in yield-based selection in 2010DS. Among all 29 tested genotypes, maximum yield was produced by yield-based selection and minimum yield came from trait-based selection in all three seasons. Therefore, genotypes with ideal plant traits did not express higher yield under the optimal crop management conditions of this study. Yield-based selection was more effective in increasing grain yield than trait-based selection in breeding.
引文
1.鲍士旦.土壤农化分析.北京:中国农业出版社,2000:42-56,265-266
    2.曹显祖,朱庆森.水稻品种间的库源特征及其类型划分的研究.作物学报,1987,13(4):265-272
    3.曹明龙,吕孝林,刘传光.理想株型在超级稻育种研究中的应用现状及展望. 安徽农业科学,2005,33(7):1269-1270
    4.蔡昆争,骆世明.不同生育期遮光对水稻生长发育和产量形成的影响.应用生态学报,1999,10(2):193-196
    5.陈清泉.杂交水稻早中熟高产新组合的生理生化特点.湖南农业科学,1984,(4):12-15
    6.陈温福,徐正进,张龙步.水稻理想株型的研究.沈阳农业大学学报,1989,20(4):417-420
    7.陈温福,徐正进,张龙步,等.不同株型粳稻品种的冠层特征和物质生产关系的研究.中国水稻科学,1991,5(2):67-71
    8.陈温福,徐正进,张龙步.水稻超高产育种生理基础.辽宁科学技术出版社,1995
    9.陈温福,徐正进,张龙步,等.水稻超高产育种研究进展与前景.沈阳农业大学学报,1998,29(2):101-105
    10.陈友订.广东省超级稻育种研究进展与展望.广东农业科学,2005,(1):12-15
    11.陈书涛,黄耀,郑循华,陈玉泉.轮作制度对农田氧化亚氮排放的影响及驱动因子.中国农业科学,2005,38(10):2053-2060.
    12.程式华,曹立勇,陈深广,等.后期功能型超级杂交稻的概念及生物学意义.中国水稻科学.2005,19(3):280-284
    13.村田吉男.农林技术研究所报告.1961,11:1-69
    14.大川泰一郎,石原邦.日本作物学会纪事.1992,61(3):419-425
    15.邓强辉,潘晓华,吴建富,石庆华.稻鸭共育生态效应及经济效益.生态学杂志,2007,26(4):582-586.
    16.段俊,梁承邺,黄毓文,等.杂交水稻灌浆过程中籽粒充实的生理研究.植物生理学通讯,1995,31(2):91-95
    17.段俊,梁承邺,黄毓文,等.不同类型水稻品种(组合)籽粒灌浆特性及库源关系的比较研究.中国农业科学,1996,29(3):66-73
    18.段俊,田长思,梁承邺.水稻结实过程中谷壳的作用及生理变化.作物学报,2000, 26(1):71-76
    19.杜永林.水稻抽穗期源库质量与产量关系及其影响因素的研究.[扬州人学农学院硕士论文],扬州:扬州大学图书馆,1998
    20.冯惟珠,苏祖芳,杜永林,等.水稻灌浆期源质量与产量关系及氮素调控的研究.中国水稻科学,2000,14(1):24-30
    21.韩春雷,魏树和,刘宪平,等.水稻高产群体的冠层特征及其与产量关系的研究.辽宁农业科学,1996,(3):24-27
    22.黑岩澄雄.叶群的总光合与叶角的关系.见:王天铎,光合作用与作物生产译丛.北京:农业出版社,1980:1-68
    23.黄见良.水稻氮素营养特性、氮肥利用率与实时实地氮肥管理的研究.[博士学位论文].长沙:湖南农业大学图书馆,2003
    24.黄庭旭,谢从寿,水稻超高产育种问题初探.福建稻麦科技,1998,16(2):3-5
    25.姜延波,李荣田,崔成焕,李春禄.水稻穗型构成性状的相关与通经分析.东北农业大学学报,1995,26(4):330-335
    26.江立庚,曹卫星.水稻高效利用氮素的生理机制及有效途径.中国水稻科学,2002,16(3):261-264
    27.江立庚,曹卫星,甘秀芹,等.不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响.中国农业科学,2004,37(4):490-496
    28.蒋开锋,郑家奎,文宏灿.杂交早稻主要性状分析及高产育种探索.四川农业大学学报,1996,14(2):162-166
    29.蒋彭炎,洪晓富.水稻等蘖穗定向栽培的生物学根据及主要技术环节.浙江农业大学,1997,5:201-204
    30.蒋彭炎.科学种稻新技术.北京:金盾出版社,1998,123-130
    31.角田重三郎.水稻生理生态译丛.北京:中国农业出版社,1992,108-109
    32.李日志,姜文正,汪新民.水稻早粕品种遗传参数的研究.遗传,1980,2(1):13-16.
    33.李荣田,姜延波,秋太权,等.水稻倒伏对产量的影响及倒伏和株高关系的研究.黑龙江农业科学,1996,(1):13-17
    34.李容田,崔成焕,姜延波,等.水稻品种分蘖特性对产量影响分析.东北农业大学学报,1996,27(1):9-14
    35.李云峰,方玉春,单平义,等.水稻产量因素的遗传特性及对产量影响.吉林农业科学,2005,30(1):16-17
    36.梁建生,曹显祖,张海燕,等.水稻籽粒灌浆期间茎鞘贮藏物质含量变化及其影响因素研究.中国水稻科学,1994,8(3):151-156
    37.凌启鸿,龚荐,朱庆森.中稻各叶片对产量形成作用的研究.江苏农学院学报,1982,3(2):9-19
    38.凌启鸿.IR24大面积高产栽培技术途径.江苏农业科学,1982,(9):1-10
    39.凌启鸿,杨建昌.水稻群体“粒叶比”与高产栽培途径的研究.中国农业科学,1986,3:1-8
    40.凌启鸿.水稻叶龄模式的应用.江苏科技出版社,1991
    41.凌启鸿.水稻高产群体质量及其优化控制初论.南京:江苏省农林厅,江苏农学会,1991
    42.凌启鸿,张洪程,蔡建中,等.水稻高产群体产量及其优化控制探讨.中国农业科学,1993,26(6):1-11
    43.凌启鸿,张洪程,苏祖芳,等.水稻高产群体质量及其优化控制技术探讨.中国农业科学,1993,6:1-12
    44.凌启鸿.水稻群体质量的理论与实践.北京:农业出版社,1994
    45.凌启鸿,张洪程,苏祖芳,等.稻作新理论-水稻叶龄模式.北京科学出版社,1994
    46.凌启鸿主编.作物群体质量.上海:上海科技出版社,2000
    47.刘贞琦.不同株型水稻光合特性的研究.中国农业科学,1980,3(6):6-10
    48.刘振业,刘贞琦.光合作用的遗传与育种.贵州人民出版社.1984,169-249
    49.刘建丰,罗越华.两系法品种间和亚种间杂种优势的比较研究.杂交水稻,1996,2: 19-22
    50.李木英,潘晓华,石庆华,等.两系杂交稻结实期茎鞘物质运转特性及其对籽粒灌浆影响的初步研究.江西农业大学学报,1998,20(3):297-302
    51.刘军,余铁桥.大穗型水稻超高产产量形成特点及物质生产分析.湖南农业大学学报,1998,24(1):1-7
    52.刘立军,王志琴,桑大志,等.氮肥运筹对水稻产量及稻米品质的影响.扬州大学学报(农业与自然科学版),2002,23(3):46-50
    53.刘立军,桑大志,刘翠莲,等.实时实地氮肥管理对水稻产量和氮素利用率的影 响.中国农业科学,2003,36(12):1456-1461
    54.刘军,江栾群,高去,等.华南广适性超级常规稻株型特点初探.广东农业科学,2005,1:23-24
    55.刘建丰,袁隆平,邓启云,等.超高产杂交稻的光合特性研究.中国农业科学,2005,38(2):258-264
    56.李艳大,汤亮,张玉屏,等.水稻冠层光截获与叶面积和产量的关系.中国农业科学,2010,43(16):329-305
    57.林巴翠.水稻的大维管束数与穗的形成关系的研究.日本作物学会纪事,1976,45(2):322-327
    58.林文雄,吴志强,梁义元等.杂交水稻高产栽培技术体系的研究Ⅱ.晚季汕优63高产栽培的数学模型分析.福建农学院学报,1989,18(3):269-274
    59. 林文雄,吴志强,梁义元.气候条件对杂交水稻籽粒灌浆的影响.中国农业气象,1992,13(2):4-8
    60.马国辉,邓启云.两系法杂交早稻栽培技术与籽粒物质积累理论的初步研究.湖南农业科学,1991,(2):15-17
    61.马景勇,邹信康,邢桂玲,等.水稻数量性状的相关和单株产量的选择指数.吉林农业科学,1993,(4):21-24
    62.马国辉.粕型水稻两段灌浆理论的研究.中国水稻科学,1996,10(3):153-158
    63.马骏南,吴建富,邓强辉,等.水稻籽粒灌浆的研究进展.安徽农业科学,2007,35(27):8424-8426,8429
    64.莫永生.高大韧稻育种论及其新品种和应用技术.南宁:广西民族出版社,2004,11:1-10
    65.吕川根,谷福林,邹江石,等.水稻理想株型品种的生产潜力及相关特性研究.中国农业科学,1991,24(5):15-22
    66.吕川根,邹江石,胡凝,等.水稻叶片形态对冠层特性和光合有效辐射传输的影响.江苏农业学报,2007,23(6):501-508
    67.戚昌瀚.水稻品种的库源关系与调节对策简论.江西农业大学学报,1993,15(1):1-5
    68.钱前,何平,腾胜.水稻分蘖角度的QTLS分析.遗传学报,2001,28:29-32
    69.青先国,王学华.超级稻研究的背景与进展.农业现代化研究,2001,22(2):99-102
    70.潘瑞炽主编.水稻生理.科学出版社,1979
    71.彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略.中国农业科学,2002,35(9):1095-1103
    72.上海师范大学生物系主编.水稻栽培生理[C].上海科学技术出版社.1978
    73.石庆华.水稻根系性状与地上部的相关及根系性状的遗传研究.中国农业科学,1997,30(4):61-67
    74.孙旭初.粕稻主要经济性状在杂种后代F2-F5中相关性的研究.作物学报,1982,8(3):211-214
    75.孙旭初.水稻叶型的类别及其与光合作用的研究.中国农业科学,1985(4):49-55
    76.孙成明,苏祖芳, 徐乃霞,等.水稻有效分蘖叶龄期的株型特征及其与产量关系初探.江苏农业研究,2000,21(3):10-15
    77.松岛省三.水稻研究新技术[M].肖连成译.吉林人民出版社,1973
    78.苏祖芳.水稻单茎鞘重与产量形成关系及其高产栽培途径的探讨.江苏农学院学报,1993,14(1):1-10
    79.苏祖芳,郭宏文,李永丰,等.水稻群体叶面积动态类型的研究.中国农业科学,1994,27(4):23-30
    80.苏祖芳.水稻高产群体质量理论与技术.耕作与栽培,1996,5:21-25
    81.苏祖芳.水稻群体茎蘖动态与成穗率和产量形成的研究.江苏农学院学报,1997,18(1):36-40
    82.苏祖芳,郭宏文,李永林,等.水稻生育中期群体质量与产量形成关系的研究.中国农业科学,1998,31(5):19-25
    83.陶爱林,周文华.籼粳亚种间杂交稻研究现状与展望.中国水稻科学,1997,11(2):107-112
    84.田光明,何云峰,李勇先.水肥管理对稻田甲烷和氧化亚氮排放的影响.土壤与环境,2002,11(3):294-298.
    85.屠乃美,官春云。光周期对水稻源库关系的影响。作物学报,1999,25(5):596-601
    86.王余龙,姚友礼,徐家宽,等.稻穗不同部位籽粒的结实能力.作物学报,1995,21(1):29-37
    87.王家玉,王胜佳.稻田土壤中氮素淋失的研究.土壤学报,1996,33(1):28-35
    88.王志琴,杨建昌,朱庆森,等.水稻抽穗期茎鞘中贮藏的可用性糖与籽粒充实的关系.江苏农学院学报,1997,18(4):13-17
    89.王夫玉,黄王生.水稻群体源库特征及高产栽培策略研究.中国农业科学,1997,30(5): 26-33
    90.王余龙,蔡建中,何杰升等.水稻颖花根活量与籽粒灌浆结实的关系.作物学报,1992,18(2):82-89
    91.王英典,黑田平喜,平野贡,等.日本作物学会纪事,1998,67(4):549-554
    92.王志琴,李国生,杨建昌,等.江苏现用主要粳稻品种对氮素的反应.江苏农业研究,2000,21(4):22-26
    93.王光火,张奇春.提高水稻氮肥利用率、控制氮肥污染的新途径-SSNM.浙江大学学报(农业与生命科学版),2003,29(1):67-70
    94.王凤华,王贵学,黄俊丽,等.水稻株型的研究进展.中国农学通报,2004,20(6): 131-135.
    95.王建林,徐正进.穗型和行距对水稻冠层受光态势的影响.中国水稻科学,2005,19(5):422-426
    96.王玉英,石岩.植物生长调节剂Z-S对高产旱稻花后光合及产量的影响.干旱地区农业研究,2006,24(1):131-132
    97.王华,黄璜.湿地稻田养鱼、鸭复合生态系统生态经济效益分析.中国农学通报,2002,18(1):71-75.
    98.王缨.稻田种养模式生态效益研究.生态学报,2000,20(2):311-316.
    99.王华,黄璜,杨志辉,廖晓兰.湿地稻-鸭复合生态系统综合效益研究.农村生态环境,2003,3:45-48.
    100.王雪仁,梁康迳,黄荣华等.籼型三系杂交水稻穗颖花数和茎杆特性的遗传分析.福建农林大学学报,2001,30(1):9-26
    101.汪金平,曹凑贵,王昌付,刘丰颢.稻鸭共生对稻田水体水生生物群落的影响.中国农业科学,2006,39(10):2001-2008.
    102.翁仁宪,武田友四郎,县和一,等.日本作物学会纪事,1982,51(4):500-509
    103.吴光南.水稻栽培理论与技术.北京:农业出版社,1981
    104.吴文革,张洪程,钱银飞,等.超级杂交中釉水稻物质生产特性分析.中国水稻科学,2007,21(3):287-293
    105.吴文革,张洪程,吴桂成,等.超级稻群体籽粒库容特征的初步研究.中国农业科学杂志,2007,40(2):250-257
    106.吴志强,林文雄,梁义元.杂交水稻的高产栽培技术体系研究Ⅰ.杂交早稻高产栽 培的数学模型分析.福建农学院学报,1989,18(1):19-24
    107.星川清亲.稻的生长.上海:上海科技出版社,1981
    108.向平安,黄璜,黄梅,甘德欣,周燕,付志强.稻-鸭生态种养技术减排甲烷的研究及经济评价.中国农业科学,2006,39(5):968-975.
    109.肖玉,谢高地,鲁春霞,丁贤忠,吕耀.稻田生态系统气体调节功能及其价值.自然资源学报,2004,19(5):617-623.
    110.熊正琴,邢光熹,鹤田治雄,施书莲,沈光裕,杜丽娟,钱薇.种植夏季豆科作物对旱地氧化亚氮排放贡献的研究.中国农业科学,2002,35(9):1104-1108.
    111.熊振民,朱旭东,孔繁林,等.水稻着粒密度的遗传分析.中国水稻科学,1987,1(2):101-106
    112.徐正进.水稻不同穗型群体冠层光分布的比较研究.中国农业科学,1990,4(4):10-17
    113.徐正进,陈温福,张龙步,等.不同穗型水稻群体冠层光分布的比较研究.中国农业科学,1990,23(4):6-10
    114.徐正进,张龙步,陈温福,等.从日本超高产品种(系)的选育看粳稻高产的方向.沈阳农业大学学报,1991,22:27-33
    115.徐秋生,李卓吾.亚种间杂交稻谷粒灌浆特性与籽粒充实度的研究.杂交水稻,1994,(2):26-29
    116.徐仁胜,陶龙兴,俞美玉,等.亚种间杂交水稻协优413开花灌浆特性的比较研究.中国水稻科学,1996,10(3):147-152
    117.薛正平,杨星卫.我国稻谷总产量及粮食政策调整对上海粳米价格走势的影响.上海农业学报,2000,16(2):14-16
    118.谢立勇,徐正进,贺明慧.沈阳地区水稻光合生产潜力的估算.辽宁农业科学,2003,(4):4-6
    119.谢立勇,徐正进,刘宏光,等.不同穗型水稻生育后期群体光合有效辐射的分布状况.吉林农业大学学报,2004,26(5):416-419
    120.谢成林,张祖建,潘美红,等.超级杂交水稻的物质生产特性及其与产量表现的关系.中国农学通报,2007,23(9):74-79
    121.徐正进,陈温福,韩勇,等.辽宁水稻穗型分类及其与产量和品质的关系.作物学报,2007,33(9):1411-1418
    122.徐正进,陈温福,张文忠,等.水稻冠层垂直反射率的品种间差异及其影响因素初步分析.中国农业科学,2008,41(9):2868-2872
    123.殷宏章.水稻田的群体结构与光能利用.稻麦群体研究论文集.上海科学技术出版社,1961,34-39.
    124.颜振德.杂交水稻高产群体的干物质生产与分配的研究.作物学报,1981,7(1):11-17
    125.颜振德.杂交水稻高产群体干物质生产与分配的研究.作物学报,1981,(1):11-18
    126.杨守仁.水稻超高产育种新动向-理想株型与有利优势相结合.沈阳农业大学学报,1987,18(1):1-5
    127.杨守仁.水稻理想株型育种的理论和方法再论.中国水稻科学,1987,1(3):144-153
    128.杨学举.小麦株高与早衰及倒伏关系的研究.北京农业科学,1990,8(1):17-18
    129.杨建昌,朱庆森,曹显祖.水稻群体冠层结构与光合特性对产量形成作用的研究.中国农业科学,1992,25(4):7-14
    130.夭野高久,朱庆森,王余龙.日本作物学会纪事,1993,62(2):275-281
    131.杨建昌,王志琴,朱庆森.水稻产量源库关系的研究.江苏农学学报.1993,14(3):47-53
    132. 杨建昌,朱庆森,王志琴等.水稻籽粒中内源多胺及其与籽粒充实和粒重的关系.作物学报,1997,23(4):385-392
    133.杨守仁,张龙步,陈温福,等.水稻超高产育种的理论与方法.中国水稻科学,1996,10(2):115-120
    134.杨仁崔.国际水稻研究所的超级稻育种.世界农业,1996(2):25-27
    135.杨建昌,朱庆森,王志琴,等.亚种间杂交稻光合特性及物质积累与运转的研究.作物学报,1997,23(1):82-87
    136.杨仁崔,杨惠杰.国际水稻研究所新株型稻研究进展.杂交水稻,1998,13(5):29-31
    137.杨从党,周能,袁平荣,等.水稻结实率和若干生理因素的品种间差异及其相关研究.中国水稻科学,1998,12(3):144-148
    138.姚克敏,胡雪琼,顾显跃,等.两系法杂交稻两优培九和65396的光合特性与株型优势.江苏农业科学,2000,1:8-12
    139.叶新福.水稻理想株型的性状研究.福建稻麦科技,1998,16(2):3-5
    140.叶永印,张时龙.水稻生长中期群体结构对产量及构成因素的影响.安徽农业科学,2003,31(1),87-89
    141.杨惠杰,李义珍,黄育民,等.超高产水稻的产量构成和库源结构.福建农业学报,1999,1(1):1-5
    142.杨仁崔.IRRI超级稻研究进展.世界农业,2000,(1):26-27
    143.杨建昌,徐国伟,仇明,等.新株型水稻生育特性及产量形成特点的研究.扬州大学学报(农业生命科学版),2002,23(1):45-50
    144.杨建昌,陈忠辉,杜永.水稻超高产群体特征及其栽培技术.中国农业科技导报,2004,6(4):37-41
    145.严定春,朱艳,曹卫星,等.水稻群体生长指标动态的知识模型研究.中国农业科学,2005,38(1):38-44
    146.严进明,翟虎渠,张荣铣,等.直穗型杂交稻光合和光合产物运转特性研究.作物学报,2001,27(2):261-266
    147.杨建昌,常二华,刘立军,等.中籼水稻品种产量与株型演进特征研究.见:全国第十一届水稻优质高产理论与技术研讨会交流论文.武汉,2005
    148.杨建昌,杜永,吴长付,等.超高产粳型水稻生长发育特性的研究.中国农业科学,2006,39(7):1336-1345
    149.袁隆平.杂交水稻超高产育种.杂交水稻,1997,12(6):1-3
    150.袁立新,张宝金.谷子理想株形的形态特性.作物杂志,2000,(2):23-24
    151.袁隆平.超级杂交稻的现状和展望.粮食科技与经济,2003,(1):1-3
    152.袁隆平,马国辉.超级杂交稻亩产800kg关键技术.中国三峡出版社,2006
    153.殷宏章.稻麦群体研究论文集:水稻田的群体结构与光能利用.上海:上海科学技术出版社,1961,4-50
    154.曾世雄.水稻品种间性状优势强度关联性的初步分析.作物学报,1983,9(2):73-78
    155.曾建敏.水稻氮效率评价系统的建立与氮高效形成机理的研究.[博士学位论文].武汉:华中农业大学图书馆,2006
    156.张云桥,吴荣生,蒋宁,等.水稻的氮素利用效率与品种类型的关系.植物生理学通讯,1989,(2):45-47
    157.张洪程,严宏生,苏祖芳,等.稻麦研究新进展.东南大学出版社,1991:99-106
    158. 张祖建,朱庆森,王志琴等.水稻品种源库特性与胚乳细胞增殖和充实的关系.作物学报,1998,24(1):21-27
    159.张声函,雷雪方,朱普年.水稻穗重高产育种的效应研究.江西农业大学学报,1995,17(4):386-389
    160.张忠旭,陈温福,杨振玉,等.水稻抗倒伏能力与茎秆物理性状的关系及其对产量的影响.沈阳农业大学学报,1999,30(2):81-85
    161.张运林,秦伯强.太湖地区光合有效辐射(PAR)的基本特征及其气候学计算.太阳能学报,2002,23(1):118-120
    162.张林青,苏祖芳弘,张亚洁,等.水稻拔节期群体茎蘖结构与叶面积指数及产量关系的研究.扬州大学学报(农业与生命科学版),2004,25(1):55-58
    163.张启发.绿色超级稻培育的设想.分子植物育种,2005,3(5):601-602
    164.张运波.超级杂交稻辐射利用效率的研究.[湖南农业大学硕士论文].长沙:湖南农业大学图书馆,2008
    165.张远,齐家国,殷鸣放,吴嘉平.辽东湾沿海水稻田温室气体排放的时空动态模拟.中国农业科学,2007,40(10):2250-2258.
    166.赵正武,张甲,雷书凡.杂交水稻控蘖增粒高产原因分析.江西农业科技,1996,6: 12-14
    167.周开达,马玉清,刘清,等.杂交水稻亚种间重穗型组合的选育-杂交水稻超高产育种的理论与实践.四川农业大学学报,1995,13(4):403-407
    168.朱庆森,曹显祖,顾自奋.杂交水稻“南优3号”籽粒发育动态研究.中国农业科学,1981,(1):430-476
    169.朱庆森,曹显祖,骆安其.水稻籽粒灌浆的生长分析.作物学报,1988,14(3):184-193
    170.朱庆森,王志琴,张祖建,等.水稻籽粒充实度的指标研究.江苏农学院学报,1995,16(2):1-4
    171.朱庆森,张祖建,杨建昌.等.亚种间杂交稻产量源库特征.中国农业科学,1997,30(3):52-59
    172.朱兆良.我国氮肥的使用现状、问题和对策.中国农业持续发展中问题.南昌:江西出版社,1998
    173.朱兆良.农田中氮肥的损失与对策.土壤与环境,2000,9(1):1-6
    174.邹应斌,周上游,唐启源.中国超级杂交水稻超高产栽培研究的现状与展望.中 国农业科技导报,2003,5(1):31-35
    175. Acreche M M, Briceno-Felix G, Martin Sanchez J A, Slafer G A. Radiation interception and use efficiency as affected by breeding in Mediterranean wheat. Field Crops Res.,2009,110:91-97
    176. Andrade F H, Calvino P, Cirilo A, Barbieri P. Yield responses to narrow rows depends on increased radiation interception. Agron J,2002,94:975-980
    177. Austin R B, Bingham J, Blackwell R D, Evans L T, Ford M A, Morgan C L, Taylor M. Genetic improvement in winter wheat yields since 1900 and associated physiological changes. J. Agric. Sci.,1980,94:675-689
    178. Bhatia A, Pathak H, Jain N, Singh P K, Singh A K. Global warming potential of manure amended soils under rice-wheat system in the Indo-Gangetic plains. Atmospheric Environment,2005,39:6976-6984.
    179. Bremner KM, Mulvaney C S. Nitrogen-Total. (In):A.L.Page et al., (ed.) Methods of soil analysis. Part 2.2nd ed. Agron.Monogr.9. ASA and SSSA, Madison, WI.1982, 595-624
    180. Broadbent F E, Datta S K, Laureles E V. Measurement of nitrogen utilization efficiency in rice genotypes. Agron J,1987,79:786-791
    181. Bronson K F. Neue H U, Singh U. Abao E B. Automated chamber measurement of methane and nitrous oxide flux in a flooded rice soil:I. Residue, nitrogen, and water management. Soil Sci Soc Am J.1997,61:981-987.
    182. Carter M S. Contribution of nitrification and denitrification to N2O emissions from urine patches. Soil Biology and Biochemistry,2007,39:2091-2102.
    183. Cassman K G, Dobermann A, Walters D T, Yang H. Meeting cereal demand while protecting natural resources and improving environmental quality. Annu. Rev. Environ. Resources,2003,28:315-358
    184. Chen W, Xu Z, Zhang L, Zhang W, Yang S. Advances and prospects of rice breeding for super high yield. Chin. Eng. Sci.2002,4:31-35
    185. Cheng S H, Cao L Y, Zhuang J Y, Chen S G, Zhan X D, Fan Y Y, Zhu D F, Peng S B. Super hybrid rice breeding in China:Achievements and prospects. Journal of Integrative Plant Biology,2007a,49(6):805-810
    186. Cheng S H, Zhang J Y, Fan Y Y, Du J H, Cao L Y. Progress in research and development on hybrid rice:A super-domesticate in China. Annals of Botany,2007b, 100(5):959-966
    187. Chubachi T, Asano I, Oikawa T. The Diagnosis of Nitrogen Nutrition of Rice Plants (Sasanishiki) Using Chlorophyll-meter. Jpn J Soil Sci Plant Nutr,1986,57:190-193
    188. Chung G S, Heu M H. Status of japonica-indica hybridization in Korea. In:Innovative Approaches to Rice Breeding. International Rice Research Institute. Los Banos, Philippines.1980,135-152
    189. Dalling MJ. The physiological basis of nitrogen redistribution during filling in cereals [A]. In JE Harper et al. (ed.) Exploitation of physiological and genetic variability to enhance crop productivity [C]. Am. Soc. Of Plant Physiologists, Rockville, MD., 1985,55-71
    190. De Datta S K. Improving nitrogen fertilizer efficiency in lowlang rice in tropical Asia. In:De Datta S K, Patrick W H, Jr, eds. Nitrogen economy of flooded rice soils. Martinus Nijhoff/Dr. Junk Pub W, Dordrecht.1986,171-186
    191. Dingkuhn M. Penning de Vries FWT, De Datta SK. Concepts for a new plant type for direct seeded flooded tropical rice. Direct seeded flooded rice in the tropics. Int Rice Res Inst, Los Banos, Philippines,1991,17-38
    192. Dobermann A, Witt C, Dawe D eds. Increasing productivity of intensive rice systems through site-specific nitrient management. IRRI,2004
    193. Dobermann A, Witt C, Dawe D, Abdulrachman S, Gines H C, Nagarajan R, Satawathananont S, Son T T, Tan P S, Wang G H, Chen N V, Thoa V, Phung C V, Stalin P, Muthukrishnan P, Ravi V, Babu M, Chatuporn S, Sookthongsa J, Sun Q, Fu R, Simabahan G C, Adviento M A. Site-specific nitrient management for intensive rice cropping system in Asia. Field Crops Res.,2002,74:37-66
    194. Donald C M. The breeding of crop ideotypes. Euphytica 1968,17:385-403
    195. Dwyer L M, Tollenaar M, Houwing L. A Nondestructive Method to Monitor Leaf Greenness in Corn. Can J Plant Sci,1991,71:505-509
    196. Engledow F L. Report of the Proceeding of the Imperial Botanical Conference.1925, 31-40
    197. Evans L T. Crop Evolution, Adaptation and Yield. Cambridge University Press, Cambridge, UK,1993,498 p
    198. Fang X.Z. Rice-Fish Culture in China, Aquaculture Asia Magazine,2003, October-December,44-46.
    199. Falconer D S. Introduction to Quantitative Genetics.2nd ed. Longman, New York, 1981,165-207
    200. Fanizza G, Della Gatta C, Bagnulo C. A Nondestructive Determination of Leaf Chlorophyll in Vitis vinifera. Ann. Appl. Bio.1991,119:203-205
    201. Frei M, Becker K. Integrated rice-fish production and methane emission under greenhouse conditions. Agriculture, Ecosystems and Environment,2005,107:51-56.
    202. Flinn J C, de Datta S K, Labadan E. An analysis of long-term rice yields in wetland soil. Field Crops Research,1982,5:201-216
    203. Gardner F P, Pearce R B, Mitchell R L. Physiology of Crop Plants. Lowa:Iowa State University Press,1985,31-46
    204. Gravois K A, McNew R W. Genetic relationships among and selection for rice yield and yield components. Crop Sci.1993,33:249-252
    205. Gogoi N, Baruah K K, Gogoi B, Gupta P K. Methane emission characteristics and its relations with plant and soil parameters under irrigated rice ecosystem of northeast India. Chemosphere,2005,59:1677-1684.
    206. Huang S H, Pant H K, Jun L. Effects of water regimes on nitrous oxide emission from soils. Ecological Engineering,2007,31:9-15.
    207. Huang Y, Wang H, Huang H, Feng Z W, Yang Z H, Luo Y C. Characteristics of methane emission from wetland rice-duck complex ecosystem. Agriculture, Ecosystems & Environment,2005,105:181-193.
    208. Huang Y. Rice ideotype breeding of Guangdong Academy of Agricultural Sciences in retrospect. Guangdong Agric. Sci.2001,3:2-6
    209. Hussain F, Bronson K F, Singh Y, Singh B, Peng S B. Use of chlorophyll meter sufficiency indices for nitrogen management of irrigated rice in Asia. Agron. J.,2000, 92:875-879
    210. Inthapanya P, Sipaseuth, Sihavong P, Sihathep V, Chanphengsay M, Fukaie S, Basnayake J. Genotype differences in nutrient uptake and utilization for grain yield production of rainfed lowland rice under fertilized and non-fertilised conditions. Field Crops Res.,2000,65:57-68
    211. Jiang X X, Vergara B S. Chlorophyll Meter (SPAD-501) to Quantify Relative Cold Tolerance in Rice. Inter Rice Res Newsletter,1986,11:10-11
    212. Katsura K, Maeda S, Horie T, Shiraiwa T. Analysis of rice attributes and crop physiological traits of Liangyoupeijiu, a hybrid rice recently bred in China. Field Crops Res.,2007,103:170-177
    213. Katsura K, Maeda S, Lubis I, Horie T, Cao W, Shiraiwa T. The high yield of irrigated rice in Yunnan, China:a cross-location analysis. Field Crops Res.,2008,101:1-11
    214. Khush G S. Rice breeding:past, present and future. J. Genet.,1987,66:195-216
    215. Khush G S. Breaking the yield frontier of rice. GeoJournal,1995,35:329-332
    216. Khush G S. Prospects of and approaches to increasing the genetic yield potential of rice. Rice research in Asia, progress and priorities, CAB International and IRRI,1996: 59-71
    217. Khush G S, Peng S Breaking the yield frontier of rice. In MP Reynolds, S Rajaram, S McNab, eds, Increasing Yield Potential in Wheat:Breaking the Barriers. International Center for Development of Maize and Wheat (CIMMYT), Mexico City,1996,11-19
    218. Khush G S, Coffman W R, Beachell H M, The history of rice breeding:IRRI's contribution. In:Rockwood, W.G. (Ed.), Rice Research and Production in the 21st Century:Symposium Honoring Robert F. Chandler, Jr., International Rice Research Institute, Los Banos, Philippines,2001,117-135
    219. Kim J K, Vergara B S. A low tillering ideotype of rice plant for increasing grain yield potential. Korean Journal of Crop Science,1991,36:134-142
    220. Kiniry R J G, McCauley Y, Xie J G, Arnolda. Rice Parameters Describing Crop Performance of Four U.S. Cultivars [J]. Agronomy Journal,2001,93:1354-1361
    221. Koutroubas S D, Ntanos D A. Genotypic differences for grain yield and nitrogen utilization in Indica and Japonica rice.Field Crops Res.,2003,83:251-260
    222. Kreye C, Dittert K, Zheng X H, Zhang X, Lin S, Tao H B, Sattelmacher B. Fluxes of methane and nitrous oxide in water-saving rice production in north China. Nutrient Cycling in agroecosystems,2007,77:293-304.
    223. Kreye C, Dittert K, Zheng X H. Fluxes of methane and nitrous oxide in water-saving rice production in north China. Nutrient Cycling Agroecosyst,2007,77:293-304
    224. Kumar J, Bahl P N. Direct and indirect selection for yield in chickpea. Euphytica.1992, 60:197-199
    225. Kushibuchi K. Historical changes in rice cultivars. In:Matsuo. T., Futsuhara. Y., Kikuchi, F., Yamaguchi, H. (Eds.). Science of the Rice Plant, vol.3.Genetics Food and Agriculture Policy Research Center, Tokyo,1997,837-875
    226. Ladha J K, Kirk G J G, Benett S, Peng S B, Reddy C K, Reddy P M, Singh U. Opportunities for increase of nitrogen-use efficiency from improved lowland rice germplasm. Field Crops Res.,1998,56:41-72
    227. Li Q Q, Chen Y H, Liu M Y, Zhou X B, Yu S L, Dong B D. Effect of irrigation and planting patterns on radiation use efficiency and yield of winter wheat in north China. Agricultural Water Management,2008,95:469-476
    228. Li C, Frolking S, Xiao X, Moore B, Boles S, Qiu J, Huang Y, Salas W, Sass R, Modeling impacts of farming management alternatives on CO2, CH4 and N2O emissions:a case study for water management of rice agriculture of China. Global Biogeochemical Cycles,2005,19(3):GB3010.
    229. Li C, Qiu J, Frolking S, Xiao X, Salas W, Moore B, Boles S, Huang Y, Sass R, Reduced methane emissions from large-scale changes in water management in China's rice paddies during 1980-2000. Geophysical Research Letters,2002,29 (20): 1972.
    230. Loomis R S. Wllilams W A. Crop Sci.,1963,3:67-72
    231. Lu J, Li X. Review of rice-fish-farming systems in China-One of the Globally Important Ingenious Agricultural Heritage Systems (GISHS). Aquaculture,2006, 260:106-113.
    232. Mae T, Ohira K. The remobilization of nitrogen related to leaf growth and senescence in rice plants (Oryza Sativa L.). Plant Cell Physio,1981,22(6):1067-1074
    233. Mae T, Makino A, Ohira K. Changes in the amount of ribulose bisphosphate carborylase synthesized and degraded during the life span of rice leaf (Oryza Sativa L.,). Plant Cell physiol,1983,24(6):1079-1086
    234. Mae T. Physiological nitrogen efficiency in rice:nitrogen utilization, photosynthesis, and yield potential. Plant Soil,1997,196:201-210
    235. Maljanen M, Martikkala, Koponen H T, Virkajarvi P, Martikainen P J. Fluxes of nitrous oxide and nitric oxide from experimental excreta patches in boreal agricultural soil. Soil Biology & Biochemistry,2007,39:914-920.
    236. Matsushima S. Method for Maximinizing Rice Yield through Idealplants. Y open-do, Tokyo,1973
    237. McNeal F H, Qualset C O, Baldridge D E, Stewart V R. Selection for yield and yield components in wheat. Crop Sci.1978,18:795-799
    238. Miah M N H, Yoshida T, Yamamoto Y, Nitta Y. Characteristics of dry matter production and partitioning of dry matter in high yielding semi-dwarf indica and japonica-indica hybrid rice varieties. Jpn. J. Crop. Sci.1996,65:672-685
    239. Mitchell L P, Sheehy J E, Woodward F I. Potential yields and the efficiency of radiation use in rice. IRRI Discussion Paper Series,1998,32:1-62
    240. Murata Y. Studies on the photosynthesis of rice plant and culture significance. Bull. Nati. Inst. Agri. Sci.1961,1-169
    241. Murata Y. Photosynthesis, respiration, and nitrogen response. In:The mineral nutrition of the rice plant. Proceedings of a symposium at the International Rice Research Institute. Feb.1964. IRRI.385-400
    242. Murata T. Riceln:Evansed.Crop Physiology. CambridgeUniv.Press,1977,30(5):26-33
    243. Norman R J, Guindo D, Wells B R, Wilson Jr C E. Seasonal accumulation and partitioning of nitrogen-15 in rice. Soil Sci Soc Am J,1992,56:1521-1527
    244. Normile, D.,2008. Reinventing rice to feed the world. Science 321,330-333.
    245. Novoa T, Loomis R S. Nitrogen and plant production. Plant and Soil,1981, 58:177-204
    246. Ntanos D A, Koutroubas S D. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions. Field Crops Res.,2002,74, 93-101
    247. OECD (2000) Environmental indicators for agriculture methods and results. Executive Summary 2000. Paris.
    248. Ohnishi M, Horie T, Homma K, Supapoj N, Takano H, Yamamoto S. Nitrogen management and cultivar effects on rice yield and nitrogen use efficiency in Northeast Thailand [J]. Field Crops Res.,1999,64:109-120
    249. Otegui M E, Slafer G A. Increasing cereal yield potential by modifying developmental traits. Paper presented at the Proceedings of the 4th International Crop Science Congress,26 September-1 October 2004, Brisbane, Australia,2004,1-11
    250. Peng S, Garcia F V, Laza R C. Adjustment for specific leaf weight improves chlorophyll meter's estimate of rice leaf nitrogen concentration. Agron J,1993,85: 987-990
    251. Peng S, Khush G S, Cassman K G. Evaluation of a new plant ideotype for increased yield potential. In:Cassman, K.G. (Ed.). Breaking the Yield Barrier:Proceedings of a Workshop on Rice Yield Potential in Favourable Environments. International Rice Research Institute, Los Banos, Philippines,1994,5-20
    252. Peng S B, Laza R C, Garcia F V, Cassman K G. Chlorophyll meter estimates leaf area-based nitrogen concentration of rice. Communication in Soil Science and Plant Analysis,1995,26(5-6):927-935
    253. Peng S, Cassman K G, Kropff M J. Relationship between Leaf photosynthesis and Nitrogen Content of Field-grown Rice in the Tropics. Crop Sci.,1995,35:1627-1630
    254. Peng S B, Garcia F V, Laza R C,Sanico A L, Visperas R M, Cassman K G. Increased N-use efficiency using a chlorophyll meter on high yielding irrigated rice. Field Crops Res.,1996,47:243-252
    255. Peng S, Cassman K G, Virmani S S, Sheehy J E, Khush G S. Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Sci.,1999,39,1552-1559
    256. Peng S B, Huang J L, Zhong X H, Yang J C, Wang G H, Zou Y B, Zhu Q S, Roland Buresh, and Christian Witt. Challenge and opportunity in improving fertilizer-nitrogen use efficiency of irrigated rice in China. China Agricul Sci.,2002, 1(7):776-785
    257. Peng S B, Yang J C. Current status of the research on high-yielding and high efficiency in resource use and improving grain quality in rice. Chinese Journal Rice Science, 2003,17(3):275-280
    258. Peng S. Huang J. Sheehy J E. Laza R C,Visperas R M, Zhong X, Centeno G S, Khush G S, Cassman KG. Rice yields decline with higher night temperature from global warming. Proc. Natl. Acad. Sci. USA.2004,101:9971-9975
    259. Peng S, Khush G S, Virk P, Tang Q, Zou Y. Progress in ideotype breeding to increase rice yield potential. Field Crops Res.,2008,108:32-38
    260. Pinthus M J. AdvancesinAgron.,1973,25:209-263
    261. Qin X B, Li Y E, Liu KY, Wan Y F. Methane and nitrous oxide emission from paddy field under different fertilization treatments. Transactions of the CSAE,2006,7(22): 143-148.
    262. Raun W R, Johnson G V. Improving nitrogen use efficiency for cereal production. Agronomy J,1991,91(3):357-363
    263. Reynolds M P, Singh R P, Ibrahim A, Ageeb O A A, Larque-Saavedra A, Quick J S, Evaluating physiological traits to complement empirical yield selection for wheat in warm environments. Euphytica,1998,100:85-94
    264. Reta-Sanchez D G, Fowler J L. Canopy light environment and yield of narrow-row cotton as affected by canopy architecture. Agronomy Journal,2002,94:1317-1323
    265. Richards R A. Selectable traits to increase crop photosynthesis and yield of grain crops. J. Exp. Bot.,2000,51:447-458
    266. Rosegrant M V, Sombilla M A, Perez N. Global food projections to 2020:implications for investment. Food, Agriculture and the Environment Discussion Paper No.5. IFPRI, Washington, DC,1995
    267. Saadalla M M. Response to early-generation selection for yield and yield components in wheat. Cereal Res. Commun.1994,22:187-193
    268. Samonte S O B P, Wilson L T, Medley J C, Pinson S R M, Mc-Clung A M, Lales J S. Nitrogen utilization efficiency:relationship with grain yield, grain protein, and yield-related traits in rice. Agronomy J.,2006,98:168-176
    269. San-oh Y, Mano Y, Ockawa T, Hirasawa T. Comparison of dry matter production and associated characteristics between direct-sown and transplanted rice plants in a submerged paddy field and relationships to planting patterns. Field Crops Res.,2004, 87:43-58
    270. SAS Institute, SAS Version 9.1.2.2002-2003. SAS Institute, Inc, Cary, NC.2003
    271. Sharma-Natu P, Ghildiyal M C. Potential targets for improving photosynthesis and crop yield. Current Sci.2005,88:1918-1928
    272. Sinclair T R, Muchow R C. Radiation use efficiency. Advances in Agronomy,1999, 65:215-266
    273. Sinclair T R, Horie T. Leaf nitrogen, photosynthesis, and crop radiation use efficiency: a review. Crop Sci.1989,29:90-98
    274. Singh U, Ladha J K, Castillo E G, Punzalan G, Tirol-Padre A, Duqueza M. Genotypic variation in nitrogen use efficiency in medium-and long-duration rice. Field Crops Res.,1998,58:35-53
    275. Singh T, Balyan H S. Relative efficiency of various single plant selection criteria and F3 generation yield testing in wheat (Triticum aestivum L.). Indian J. Genet.2003,63, 24-29
    276. Stewart D W, Costa C, Dwyer L M, Smith D L, Hamilton R I, Ma B L. Canopy structure, light interception, and photosynthesis in maize. Agron J.,2003, 95:1465-1474
    277. Takeda K, Frey K J. Contribution of vegetative growth rate and harvest index to grain yield of progenies from. Avena stativa×A. sterilis crosses. Crop Sci.,1976,16,817-821
    278. Tirol-Padre A, Ladha J K, Singh U, Laureles E, Punzalan G, Akita S. Grain yield performance of rice genotypes at sub-optimal levels of soil N as affected by N uptake and utilization efficiency. Field Crops Res.,1996,46:127-142
    279. Totok A D H, Shon T, Yoshida T. Effects of selection for yield components on grain yield in pearl millet (Pennisetum typhoideum Rich.). Plant Prod. Sci.,1998,1:52-55
    280. Towprayoon S, Smakgahn K, Poonkaew S. Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields. Chemosphere,2005,59:1547-1556.
    281. Turner F T, Jund M F. Chlorophyll Meter to Predict Nitrogen topdress Requirement for Semidwarf Rice. Agron J.,1991,83:926-928
    282. Wang Y, Kuroda E, Hirano M, Murata T. Analysis of high yielding mechanism of rice varieties belonging to different plant types. I. Comparison of growth and yield characteristics and dry matter production. Jpn. J. Crop Sci.,1997,66:293-299
    283. Watanable S, Hatanaka Y, Inada K. Development of a Digital Chlorophyllometer. I. Structure and Performance. Jpn J Crop Sci,1980,49(special issue):89-90
    284. Wilson C E, Jr Bollich P K, Norman R J. Nitrogen application timing effects on nitrogen efficiency of dry-seeded rice. Soil Sci Soc Am J,1998,62(4):959-964
    285. Wu P, Tao Q N. Genotypic response and selection pressure on nitrogen-use efficiency in rice under different nitrogen regimes. J Plant Nutrition,1995,18(3):487-500
    286. Xiong Z Q, Xing G X, Zhu Z L. Nitrous oxide and methane emissions as affected by water, soil and nitrogen. Pedosphere,2007,17(2):146-155.
    287. Yadava U L. A Rapid and Non-destructive Method to Determine Chlorophyll in Intact Leaves. Hort Science,1986,21:1449-1450
    288. Yamamoto H, Iways K, Takasu, Y. Comparisons of efficiency of solar energy utilization and efficiency of solar energy conversion in high-yielding rice canopies. J Agric Meteorol,2003,59(1):1-11
    289. Ying J F, Peng S B, Yang G Q, Zhou N, Visperas R M, Cassman K G. Comparison of high-yield rice in tropical and subtropical environments. Ⅱ. Nitrogen accumulation and utilization efficiency. Field Crops Res.,1998,57:85-93
    290. Yoshida S, Coronel V. Nitrogen Nutrition, Leaf Resistance, and Leaf Photosynthetic Rate of the Rice Plant. Soil Sci. Plant Nutr.,1976,22:207-211
    291. Yoshida S, Navasero S A, Ramivez E A. Effects of silica and nitrogen supply on some leaf characters of the rice plant. Plant Soil,1969,31:48-56
    292. Yoshida S. Physiological Aspect of Grain Yield. Ann. Rev. Plant Physiology,1972, 23:437-64
    293. Yuan L, Yang Z, Yang J. Hybrid rice in China. In:Virmani, S.S. (Ed.), Hybrid Rice Technology:New Developments and Future Prospects. International Rice Research Instistute, Los Banos, Philippines,1994,143-147
    294. Yuan L P. Super hybrid rice. Chinese Rice Research News Letter,2000,8(1):13-15
    295. Yuan L P. Breeding of super hybrid rice. In:Peng, S., Hardy, B. (Eds.), Rice Research for Food Security and Poverty Alleviation. International Rice Research Institute, Los Banos, Philippines,2001,143-149
    296. Zebrowski J. Dynamic behaviour of inflorescence-bearing Triticale and Triticum stems. Planta,1999,207:410-417
    297. Zhang Y B, Tang Q Y, Zou Y B, Li D Q, Qin J Q, Yang SH, Chen L J, Xia B, Peng S B. Yield potential and radiation use efficiency of "super" hybrid rice grown under subtropical conditions. Field Crops Res.,2009,114:91-98
    298. Zhang J E, Ouang Y, Huang Z X. Characterization of Nitrous Oxide Emission from a Rice-Duck Farming System in South China. Arch Environ Contam Toxicol.Dio 10.1007/s00244-007-9014-4
    299. Zou J, Huang Y, Jiang J, Zheng X, Sass R L. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China:effects of water regime, crop residue, and fertilizer application. Global Biogeochemical Cycles,2005,19(2): GB2021

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700