用户名: 密码: 验证码:
滇西“三江”地区微陆块板内火山岩地球化学特征及其构造意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三江造山带由多个缝合带和镶嵌其间的微陆块构成。这些微陆块内部发育着不同时代不用规模的板内火山岩,它们规模虽不及活动带内的火山岩,却具有重要的研究意义,是研究岩石圈深部的“探针”,也是“丈量”陆块之间差异性的“标尺”。
     保山微陆块发育晚石炭世低钛拉斑玄武岩,岩石具有富集LREE、LILE、亏损Nb、Ta的微量元素特征,高Sr、Pb低Nd的同位素特征,岩石经历了一定程度的中、下地壳混染。构造环境具有WPE+MORB的特点,为典型大陆裂谷岩浆作用的产物,其地球化学特征与峨眉山玄武岩具有系统差异,而与印度德干、Panjal玄武岩具有可比性,体现出保山微陆块具有“亲冈瓦纳”的属性
     中咱微陆块波格西、冈达概晚二叠世火山岩以高钛碱性玄武岩为主,岩石具有富集LREE、HFSE、LILE的OIB型微量元素特征,源区同时含有OIB源区和岩石圈源区的特征,与扬子板块峨眉山玄武岩具有一致的地幔源区特征,岩石具有板内的构造环境,晚二叠世中咱微陆块处于拉张的构造背景下,岩石圈发生伸展减薄,具有“亲扬子”属性的岩石圈地幔发生低度部分熔融形成原生岩浆,在经历分离结晶后产生本地区具有典型OIB特征的玄武岩。
     思茅微陆块普洱通关地区新生代钾质玄武岩,具有高Ti、Al、K等特征,微量元素所表现出的强烈富集LREE、LILE等特征与其低Sr高Nd的亏损同位素表现不相符。形成时代和地球化学特征均与新生代晚期岩浆活动特征相符,其源区为软流圈发生部分熔融并释放熔体交代上覆岩石圈地幔,形成具有富K、大离子亲石元素以及高场强元素的交代岩石圈地幔。其岩石圈减薄机制与青藏高原软流圈物质沿红河哀牢山断裂带发生流动挤出相关。
     昌都微陆块内部发育两组具有岛弧性质(TNT异常明显)的火山岩,是金沙江向西消减不同阶段的产物,其中二叠纪玄武质安山岩为陆缘弧火山岩,锆石U-Pb年代学研究,获得269.4~270.7Ma年龄,从而对古金沙江消减的时间提供了有效的限定。三叠纪粗面安山岩岩是产于后碰撞环境的超钾质岩石。两者的源区都具有EMII端元特征,与古特提斯俯冲带含水俯冲流体/熔体的交代作用相关。
Sanjiang Orogenic Belt is consisted of many suture zone and microcontients. Thewithin-plate volcanic rocks formed in these microcontinents has great significance forgeological reaserch. It can be used to detective the deep structure of lithosphere as‘electronic probes’ and to distinguish the differences between microcontinents as a‘rule’.
     The Late Carboniferous low-Ti tholiitic basalts in Baoshan microcontinents, withvarying grade of Crustal contamination, is enriched in LREE, LILE and depleted inNb, Ta. The Sr, Pb isotopic content is relatively high compared with the Nd isotopiccontent. The structural setting shows a combination of WPB and MORB, whichsuggests the typical products of magmatism under continental-rift setting. Thegeochemical characteristics shows the signs of “Gondwana type” of Baoshanmicrocontinent is totally different with the Emeishan basalts, but is affinity with theDeccan and Panjal basalts in India.
     The Late Permian high-Ti basalts in Zhongza microcontinents is mainlydistributed in Bogexi and Gangdagai area. The typical OIB-type trace elementscharacter of these basalts, enriched in LREE, LILE, HFSE and Sr isotope, indicatedthat the mantle source maybe consisted of the mixture of asthenosphere andlithospheric mantle, which is exactly same with the Emeishan high-Ti basalts. Thewithin-plate structural setting is proved in these rocks, indicated that the lithospherethinning of Zhongza microcontinent during Permian. The primary magma wasproduced through low degree partial melting of the ‘Yangtze type’ lithospheric mantle,and then formed the OIB-type basalts of Zhongza microontient.
     The Cenozoic potassic alkali basalt in Simao microcontinents is mainlydistributed in Puer and Tonguan area. The trace elements character of these basalts,enriched in Ti, Al, k, LREE, LILE and HFSE, contradict with depleted isotopicevidence (high-Sr and low-Nd). Both the forming age and geochemical characteristicspointed out that the alkali basalts in Simao microcontinents is belong to the late periodCenozoic magmatism in Sanjiang area. The mantle source, enrich in K, LREE, LILE and HFSE, is a lithospheric mantle modified by metasomatic fluids extracting fromthe asthenosphere partial melting process. Lithospheric mantle with. The lithosphericthinning may associated with the lateral movement of the Tibet asthenosphere flowalong the Red River-Ailaoshan fault zone
     Two groups of arc-type (Nb, Ta, Ti negative anomaly) volcanic rocks discoveredin Changdu microcontinent. They may represents the products of Jinshajiangsubduction during different stage. The zircon U-Pb age of Permian basaltandesite(269.4~270.7Ma) offer a well constraint on the end time of Jinshajiang subduction.The Late Triassic trachyandesite is ultra-potassic rocks formed under thepost-collisional setting. The mantle source of these two groups rocks are characterizedby EMII-type end member which is modified by metasomatic fluids/melts formedduring the subduction of Paleo-Tethys
引文
Aldanmaz E, Pearce J A, Thirlwall M F,et al. Petrogenetic evolution of late Cenozoic,post-collision volcanism in western Anatolia, Turkey. J. Volcan. Geotherm. Res,2000,102:67-95
    Allegre C J, Minster J F. Quantitative models of trace element behavior in magmaticprocesses.Earth Planetary Sci,1978,38:1-5
    Ali J R, Thompson G M, Song X Y, et al. Emeishan Basalts (SW China) and theend-Guadalupiancrisis: magnetobiostratigraphic constraints. Journal of the GeologicalSociety (London),2002,159:21-29
    Ali J R, Thompson G M, Zhou MmF et al. Emeishan large igneous province, SW China. Lithos,2005,79:475-489
    Arculus R J, Powell R. Source Component Mixing in The Regions of Arc Magma Generation: JGeophys Res,1986,91:5913-5926
    Arth J G. Behavior of Trace Elements during Magmatic Processes-A Summary of TheoreticalModels and Their Applications. Journal of Research of the U.S. Geological Survey,1976,4:41-47
    Asimow P D, Dixon J E,Langmuir C H. A hydrous melting and fractionation model for mid-oceanridge basalts: Application to the Mid-Atlantic Ridge near the Azores: Geochem. Geophys.Geosyst,2004,5: Q01E16
    Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basalticcrust. Nature,1993,362:144-146
    Bergantz G W, Dawes R. Aspects of Magma Generation and Ascent in Continental Lithosphere, inMichael P R, ed, International Geophysics,1994,57:291-317
    Bernard-Griffiths J, Fourcade S, Dupuy C. Isotopic study(Sr, Nd, O and C) of lamprophyres andassociated dykes from Tamazert (Moroco): Crustal contamination processes and sourcecharacteristics. Earth and Planetary Science Letters,1991,103:190-199
    Bienvenu P, Bougault H., Joron M, et al. MORB alteration: rare-earth element/non-rare earthhygromagmaphile element fractionation. Chemical Geology,1990,82:1-14
    Boynton W V. Cosmochemistry of the rare earth elements: meteorite studies. In: Henderson, P.(Ed.), Rare Earth Element Geochemistry. Elsevier, Amsterdam,1984:63-114
    Class C, Altherr R, Volker F, et al. Geochemistry of Pliocene to Quaternary alkali basalts from theHuri Hills, northern Kenya. Chemical Geology,1994,113(1-2):1-22
    Campbell I H. Testing the plume theory. Chemical Geology,2007,241(3-4):153-176
    Chandrasekharam D, Mahoney J, Sheth H, et al. Elemental and Nd–Sr–Pb isotope geochemistryof flows and dikes from the Tapi rift, Deccan flood basalt province, India. Journal ofVolcanology and Geothermal Research,1999,93(1-2),111-123
    Chauvet F, Lapierre H, Bosch D, et al. Geochemistry of the Panjal Traps basalts (NW Himalaya):Records of the Pangea Permian break-up: Bulletin de la Société Géologique de France,2008,179:383-395
    Chen H H, Dobson J, Heller F, et al. Paleomagnetic evidence for colockwise rotation of the Simaoregion since Cretaceous: a consequence of India-Asia collision. Earth Planet Sci Lett,1995,134:203-217
    Chung S L, Lee T Y, Lo C H, et al. Intraplate extension prior to continental extrusion along theAilao shan-Red River shear zone. Geology,1997,25:311-314
    Chung S L, Lo C H, Lee T Y, et al. Diachronous uplift of the Tibetan plateau starting40Myr ago.Nature,1998,394:769-773
    Chung S L, Jahn B M, Chen S J, et al. Miocene basalts in northwestern Taiwan: evidence forEm-typemantle sources in the continental lithosphere. Geochim. Cosmochim.Acta,1995,59:549-555
    Chung S L, Lo C H, Lee T Y, et al. Diachronous uplift of the Tibetan plateau starting40Myr ago.Nature,1998,394:769-773
    Condie K C. Plate tectonics and crustal evolution (3rd edition). Pergamon Press, New York,1982:1-476
    Condie K C. Plate Tectonics and Crustal Evolution. Pergamon, New York,1976:1-282
    Courtillot V. Evolutionary Catast rophes: The Sciences of Mass Extinctions. Cambrige: CambrigeUniversity Press,1999
    Deniel C. Geochemical and isotopic (Sr, Nd, Pb) evidence for plume-lithosphere interactions inthe genesis of Grande Comore magmas (Indian Ocean). Chem Geol,1998,144(3-4):281-303
    DePaolo D J. Trace element and isotopic effects of combined wallrock assimilation and fractionalcrystallization: Earth and Planetary Science Letters,1981,53(2):189-202
    Dickinson W R, W C Luth. A model for the plate tectonic evolution of mantle layers. Science.1965,174:400-404
    Ding L, Kapp P, Zhong D, et al. Cenozoic volcanism in Tibet: Evidence for a transition fromoceanic to continental subduction. Journal of Petrology,2003,44(10):1833-1865
    Donnelly K E, Goldstein S L, Langmuir C H,et al. Origin of enriched ocean ridge basalts andimplications for mantle dynamics. Earth and Planetary Science Letters,2004,226:347-366
    Elburg M A, Bergen M V, Hoogewerff J, et al. Geochemical trends across an arc-continentcollision zone: magma sources and slab-wedge transfer processes below the Pantar Straitvolcanoes, Indonesia. Geochemica et Cosmochimica Acta66,2002,2771-2789
    Fan W M, Wang Y J, Zhang A, et al. Permian arc–back-arc Basin development along theAilaoshan tectonic zone: Geochemical, isotopic and geochronological evidence from theMojiang volcanic rocks, Southwest China. Lithos,2010,119:553-568
    Fan W, Zhang C, Wang Y, et al. Geochronology and geochemistry of Permian basalts in westernGuangxi Province, Southwest China: Evidence for plume-lithosphere interaction. Lithos,2008,102(1-2):218-236
    Frey F A, Green D H,Roy S D. Integrated Models of Basalt Petrogenesis: A Study of QuartzTholeiites to Olivine Melilitites from South Eastern Australia Utilizing Geochemical andExperimental Petrological Data: Journal of Petrology,1978,19(3):463-513
    Furman T, Graham D. Erosion of lithospheric mantle beneath the East African Rift system:Geochemical evidence from the Kivu volcanic province. Lithos,1999,48:237-262
    Francis D, Ludden J. The signature of amphibole in mafic alkaline lavas, a study in the NorthernCanadian Cordillera. Journal of Petrology,1995,36(5):1171-1191
    Foley S F, Wheller G E. Parallels in the origin of the geochemical signatures of island arcvolcanics and continental potassic igneous rocks: The role of residual titanates. ChemicalGeology,1990,85:1-18
    Foley S F, Venturelli G, Green D H,et al. The ultrapotassic rocks: characteristics, classificationand constraints for petrogenetic models. Earth-Science Review,1987,24:81-134
    Frey F A,Garcia M O,Wise W S,et al.The evolution of Mauna Kea volcano, Hawaii: petrogenesistholeiitic and alkali basalts.J Geophys Res,1993,96(14):347-375
    Frey F A, Weis D, Borisova A, et al. Involvement of continental crust in the formation of theCretaceous Kerguelen Plateau: new perspectives from ODP Leg120sites. Journal ofPetrology,2002,43:1207-1239
    Furman T, Graham D. Erosion of lithospheric mantle beneath the East African Rift system:Geochemical evidence from the Kivu volcanic province. Lithos,1999,48:237-262
    Gao S, Liu X M,Yuan H L,et al. Determ Ination of Forty-two Major and Trace Elements in USGSand NIST SRM Glasses by Laser Ablation-inductively Coupled Plasma-mass SpectrometryGeostandards Newsletter-Journal of Geostandards and Geoanalysis,2002,26:181-196
    Graham I J, Gulson B L, Hedenquist J W,et al. Petrogenesis of Late Cenozoic volcanic rocks fromthe Taupo Volcanic Zone, New Zealand, in the light of new lead isotope data: Geochimica EtCosmochimica Acta,1992,56(7):2797-2819
    Greenough J D. Minor phases in the Earth's mantle: Evidence from trace-and minor-elementpatterns in primitive alkaline magmas: Chemical Geology,1988,69(3–4):177-192
    Gorton M P, Schandl E S. From continents to island arcs: a geochemical index of tectonic settingfor arc-related and within-plate felsic to intermediate volcanic rocks. The CanadianMineralogist38,2000,1065-1073
    Guo Z, Wilson M, Liu J, et al. Post-collisional, potassic and ultrapotassic magmatism of thenorthern Tibetan plateau: Constraints on characteristics of the mantle source, geodynamicsetting and uplift mechanisms. Journal of Petrology,2006,47(6):1177-1220
    Guo Z F, Hertogen J, Liu J Q, et al. Potassic magmatism in Western Sichuan and Yunnanprovinces, SE Tibet, China: petrological and geochemical constraints on petrogenesis. Journalof Petrology,2005,46:33-78
    Gurenko A A, Hoernle K A, Hauff F, et al. Major, trace element and Nd–Sr–Pb–O–He–Ar isotopesignatures of shield stage lavas from the central and western Canary Islands: Insights intomantle and crustal processes. Chemical Geology,2006,233:75-112
    Hall P S, Kincaid C. Melting,dehydration,and the geochemistry of off-axis plume-ridge interaction.Geochemistry Geophysics Geosystems,2004,5:12-18
    Harris P G. Zone refining and the origin of potassic basalts. Geochimica et Cosmochimica Acta,1957,12:195-208
    Hastie A R, Kerr A C, Pearce J A, et al. Classification of altered volcanic island arc rocks usingimmobile trace elements: Development of the Th-Co discrimination diagram. Journal ofPetrology,2007,48:2341-2357
    Halliday A N, Lee D C, Tommasini S, et al. Incompatible trace elements in OIB and MORB andsource enrichment in the sub-oceanic mantle. Earth Planet. Sci. Lett,1995,133:379-395
    Hamblin W K. The Earth's Dynamic Systems.Macmillan Publish Company. New York,1989,1-816
    Hamelin B., Allègre C J. Large-scale regional units in the depleted upper mantle revealed by anisotope study of the southwest Indian Ridge. Nature,1985,315:196–198
    Hart S R. A large-scale isotope anomaly in the southern hemisphere mantle. Nature,1984,309753-757.
    Hart S R. Heterogeneous mantle domains: signature, genesis and mixing chronologies. Earth andPlanetary Science Letters,1988,90:273-296
    Hart S R., Hauri E H, Oschmann L A, et al. Mantle plumes and entrainment: isotopic evidence.Science,1992,256:517-520
    Hart S R, Staudigel H. Isotopic characteristization and identification of recycled components. In:Guten L, Hart S R (Eds.), Crust/mantle recycling at convergence zones (NATO ASI Series).Reidel, Dordrecht,1989:15-28
    Hawkesworth C J, Rogers N W, van Calsteren P W C, et al. Mantle enrichment processes. Nature,1984,311(27):331-335
    Hawkesworth C J, Turner S P, McDermott F, et al. U–Th isotopes in arc magmas: implications forelement transfer from the subducted crust. Science,1997,276:551-555
    He B, Xu Y G, Chung S L, et al. Sedimentary evidence for doming prior to the eruption oftheEmeishan flood basalts. Earth and Planetary Science Letters,2003,213:391-405
    Herzberg C and Gazel E. Petrological evidence for secular cooling in mantle plumes: Nature,2009,458:619-622
    Hofmann A W, White W M. Ba, Rb and Cs in the Earth's mantle. Z. Naturforsch,1983,38a:256-266
    Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization ofprotolith igneous zircon. Journal of Metamorphic Geology,2000,18:423-439
    Hou T, Zhang Z, Kusky T, et al. A reappraisal of the high-Ti and low-Ti classification of basaltsand petrogenetic linkage between basalts and mafic–ultramafic intrusions in the EmeishanLarge Igneous Province, SW China. Ore Geology Reviews,2011,41(1):133-143
    Huang J, D Zhao. High-resolution mantle tomography of China and surrounding regions,2006, J.Geophys. Res.,111,B09305,doi:10.1029/2005JB004066
    Huang K N, Opdyke N D, Peng X, et al. Paleomagnetic result s from the upper Permian of theeastern Qiangtang terrane of Tibet and their tectonic implications. Earth and PlanetaryScience Letter s,1992,111:1-10
    Hou Z Q,Ma H W,Khin Z,Zhang Y Q,et al. The Himalayan Yulong porphyry copper belt:produced by large-scale strike-slip faulting at Eastern Tibet. Economic Geology,2003,98:125-145
    Hu Z C,Gao S,Liu Y S,et al. Signal enhancement in laser ablation ICP-MS by addition of nitrogenin the central channel gas. Journal of Analytical Atomic Spectrometry,2008,23:1093-1101
    Irvine T N, Baragar W R A. A guide to the chemical classification of the common volcanic rocks.Canad. J. Earth Sci,1971,8:523-548
    Jahn B M, Zhang Z Q. Archean granulite gneisses from eastern Hebei province, China: rare earthgeochemistry and tectonic implication.Contributions to Mineralogy and Petrology,1984,85:224-43
    Kay R W, Gast P W. The rare earth content and origin of alkali-rich basalts. The Journal ofGeology,1973,81:653-682
    Kimura J I, Yoshida T. Contributions of slab fluid, mantle wedge and crust to the origin ofquaternary lavas in the NE Japan arc. Journal of Petrology,2006,47:2185-2232
    Lee C T A, Luffi P,Le Roux V, et al. The redox state of arc mantle using Zn/Fe systematics: Nature,2010,468:681-685
    Leloup P H,Arnaud N,Lacassin R,et al. New constraints on the structure, thermochronology andtiming of the Ailao Shan–Red River shear zone. Journal of Geophysical Research,2001,106:6683-6732
    Leloup P H, Harrison T M,Ryerson F J, et al. Structural,petrological and thermal evolution of aTertiary ductile strike-slip shear zone, Diancang Shan, Yunnan. Journal of GeophysicalResearch,1993,98:6715-6743
    Leloup P H,Lacassin R,Tapponnier P,et al. The Ailao Shan-Red River shear zone (Yunnan,China),Tertiary transform boundary of Indochina. Tectonophysics,1995,251:3-84
    Le Maitre R W. Igneous Rocks: A Classification and Glossary of Terms. Cambridge: CambridgeUniversity Press,2002,33-39
    Le Maitre R W, Bateman P, Dudek A, et al. A Classification of Igneous Rocks and Glossary ofTerms. Oxford: Blackwell Scientific Publications,1989,193
    Le Roux A P. Geochemical correlation betweenSouthern African kimberlites and South Atlantichotspots.Nature324,1986,243-45
    Lin P N, Stern R J. Shoshonitic volcanism in the Northern Marianiaacr2, large ion lithophile andrare earth element abundance evidence for the source of incompatible element enrichments inintra-oceanic arc. Journal of Geophysical Research,1989,94(4):497-4515
    Liu Y S, Zong K Q,Kelemen P B, et al. Geochemistry and magmatic history of eclogites andultramafic rocks from the Chinese continental scientific drill hole: Subduction andultrahigh-pressure metamorphism of lower crustal cumulates. Chemical Geology,2008a,247:133-153
    Liu Y S,Hu Z C,Gao S,et al. In situ analysis of major and trace elements of anhydrous minerals byLA-ICP-MS without applying an internal standard. Chemical Geology,2008b,257:34-43
    Liu Y S,Gao S,Hu Z,et al. Continental and oceanic crust recycling-induced melt-peridotiteinteractions in the Trans-North China Orogen: U-Pb dating,Hf isotopes and trace elements inzircons of mantle xenoliths. Journal of Petrology,2010a,51:537-571
    Liu Y S, Hu Z C, Zong K Q,et al. Reappraisement and refinement of zircon U-Pb isotope and traceelement analyses by LA-ICP-MS. Chinese Science Bulletin,2010b,55(15):1535-1546
    Li X H, Li Z X, Zhou H W,et al. U-Pb zircon geochronology, geochemistry and Nd isotopic studyof Neoproterozoic bimodal volcanic rocks in the Kangdian Rift of south China: implicationsfor the initial rifting of Rodinia. Precambrian Research113,2002,135-154
    Lo C H, Chung S L, Lee T Y, et al. Age of the Emeishan flood magmatism and relations toPermian-Triassic boundary events. Earth Planet. Sci. Lett,2002,198:449~458
    Long X, Yigang X, Jifeng X, et al. Chemostratigraphy of Flood Basalts in the Garzê-LitangRegion and Zongza Block: Implications for Western Extension of the Emeishan LargeIgneous Province, SW China. Acta Geologica Sinica-English Edition,2004,78:61-67
    Luhr J F, Haldar D. Barren Island Volcano (NE Indian Ocean): island-arc high-alumina basaltsproduced by troctolite contamination. Journal of Volcanology and Geothermal Research,2006,149:177-212
    Ludden J N, Thompson G. Behavior of rare earth elements during submarine weathering oftholeiitic basalts. Nature274,1978,147-149
    Ludwig K R. ISOPLOT3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley:Berkeley Geochronology Center, California,2003
    Luo Z L, Jin Y Z, Zhao X K. The Emei Taphrogenesis of the upper Yangtze Platform in southChina. Geological Magazine,1990,127:393-405
    Mahoney J J, Coffin M F. Large Igneous Provinces. Geophys Monograph,1997,100:438
    Mahoney J, Sheth H. Geochemistry of flood basalts of the Toranmal section, northern DeccanTraps, India: implications for regional Deccan stratigraphy. Journal of Petrology,2000,41(7):1099-1120
    Maruyama S, Santosh M, Zhao D. Superplume, supercontinent, and post-perovskite: mantledynamics and anti-plate tectonics on the Core–Mantle Boundary. Gondwana Research11,2007,7-37
    McCoy-West A J, Baker J A, FaureK, et al. Petrogenesis and origins of Mid-Cretaceouscontinental intraplate volcanism in Marlborough, New Zealand: Implications for theLong-lived HIMU Magmatic Mega-province of the SW Pacific. Journal of Petrology,2010,51(10):2003-2045
    McKenzie D, O’Nions R K. Partial melt distribution from inversion of rare earth elementconcentrations. J. Petrol,1991,32:1021-1091
    Melluso L, Mahoney J J, Dallai L. Mantle sources and crustal input as recorded in high-MgDeccan Traps basalts of Gujarat (India). Lithos,2006,89(3-4),259-274
    Middlemost E A K. Naming materials in the magma/igneous rock system. Earth-Science Reviews,1994,37(3-4):215-224
    Miller C, Schuster R, Kl tzli U, et al. Post-Collisional Potassic and Ultrapotassic Magmatism inSW Tibet: Geochemical and Sr–Nd–Pb–O Isotopic Constraints for Mantle SourceCharacteristics and Petrogenesis. Journal of Petrology,1999,40(9):1399-1424
    Muller D, Rock N M S, Groves D I. Geochemical discrimination between shoshonitic and potassicvolcanic rocks in different tectonic settings: A pilot study: Mineralogy and Petrology,1992,46:259-289
    Neal C R, Mahoney J, Chazey W. Mantle sources and the highly variable role of continentallithosphere in basalt petrogenesis of the Kerguelen Plateau and Broken Ridge LIP: resultsfrom ODP Leg183. Journal of Petrology,2002,43:1177-1205
    Nelson D R, McCulloch M T,Sun S S. The origins of ultrapotassic rocks as inferred from Sr, Ndand Pb Isotopes. Geochimica et Cosmochimica Acta,1986,50:231-245
    Niu Y. Generation and evolution of basaltic magmas: Some basic concepts and a hypothesis forthe origin of the Mesozoic–Cenozoic volcanism in eastern China. Geol. J. China Univ,2005,11:9-46
    O’Hara M J, Yoder H S. Formation and fractionation of basic magmas at high pressures. ScottishJournal of Geology,1967,3:67-117
    Olafsson M, Eggler D H. Phase relations of amphibole, amphibole, amphibole-carbonate andphlogopite-carbonate peridotite: Petrological constrains on the asthenosphere. Earth andPlanetary Science Letters,1983,64:305-315
    Osborn E F. Role of oxygen pressure in the crystallization and differentiation of basaltic magma:Am J Sci,1959,257(9):609-647
    Pearce J A. Geochemical evidence for the genesis and eruptive setting of lavas from Tethyanophiolites. Proceedings of the International Ophiolite Symposium, Cyprus,1979:261-272
    Peng Z Z, Mahoney J J, Hooper P, et al. A role for lower continental crust in flood basaltgenesis-Isotopic and incompatible element study of the lower six formations of the westernDeccan traps [J]. Geochimet Cosmochim Acta,1994,58:267-288
    Pearce J A, Cann J R. Tectonic setting of basic volcanic rocks determined using trace elementanalyses. Earth Planet Sci Lett,1973,19:290-300
    Pearce J A, Norry M J. Petrogenetic implications of Ti, Zr, Y and Nb variations in volcanic rocksContributions to Mineralogy and Petrology,1979,69:33-47
    Pearce J A. Role of the sub-continental lithosphere in magma genesis at active continental margins,in Hawkesworth C J, Norry M J, et al. Continen-tal Basalts and Mantle Xenoliths: Nantwich,Shiva,1983:230-249
    Pearce J A. Trace elements characteristic of lavas from destructive plate boundaries, in Thorpe, RS.ed., Andesites: New York, Wiley,1982:525-548
    Presnall D,Hoover J. Composition and depth of origin of primary mid-ocean ridge basalts:Contributions to Mineralogy and Petrology,1984,87(2):170-178
    Ren Z Y, Ingle S,Takahashi E,et al. The chemical structure of the Hawaiian mantle plume: Nature,2005,436:837-840
    Reiners P W, Nelson B K.,Ghiorso M S, et al. Assimilation of felsic crust by basaltic magma:Thermal limits and extents of crustal contamination of mantle-derived magmas: Geology,1995,23(6):563-566
    Rickwood P C.Boundary lines within petrologic diagrams which use oxides of major and minorelements. Lithos,1989,22,247-263
    Ringwood A E. Composition and evolution of upper mantle, Amer. Geophys. Union Monog,1969,13:1-17
    Rock N M S. Iamprophyres: the global occurrence petrology, originand economic significance ofsome rocks of deep origin. Glasgow: Blackie&Sonslid,1990:1-285
    Romer R, F rster H J, Breitkreuz C et al. Intracontinental extensional magmatism with asubduction fingerprint: the late Carboniferous Halle Volcanic Complex (Germany):Contributions to Mineralogy and Petrology,2001,141(2):201-221
    Rudnick R L, Gao S. Composition of the continental crust. In: Rudnick RL.(ed.), The Crust.Treatise on Geochemistry,2003,3:1-64
    Seghedi I, Downes H, Pécskay Z, et al. Magma genesis in a subduction-related post-collisionalvolcanic arc segment: the Ukrainian Carpathians. Lithos,2001,57:237-262
    Sengor A M C. The cimmeride orogenic system and the tectonics of Eurasia [M] GeologicalSociety of America Special Paper195,1984:82
    Shellnutt J G, Zhou M F, Yan D P, et al. Longevity of the Permian Emeishan mantle plume (SWChina):1Ma,8Ma or18Ma? Geological Magzine,2008,145:373-388
    Song X Y, Zhou M F, Hou Z Q, et al. Geochemical constraints on the mantle source of the upperPermian Emeishan continental flood basalts, southwestern China. International GeologyReview,2001,43:213-225
    Song X, Zhou M., Cao Z. Late Permian rifting of the South China Craton caused by the Emeishanmantle plume? Journal of the Geological Society, London,2004,161,773-781
    Staudigel H, Plank T, White B, et al. In: Bebout, GE, Scholl SW, Kirby SH, Platt JP (Eds.),Geochemical Fluxes during Seafloor Alteration of the Basaltic Upper Oceanic Crust: DSDPSites417and418. American Geophysical Union, Washington, DC,1996:19–38
    Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: implications formantle composition and processes. In: Saunders A D and Norry M J (Eds) Magmatism in theOcean Basins. Geological Society, London, special Publications,1989,42:313-345
    Tapponnier P, Peltzer G, Armijo R, et al. Propagating extrusion tectonics in Asia: new insightsfrom simple experiments with plasticine. Geology,1982,10:611-616
    Tapponnier P, Xu Z,Roger F,et al. Oblique stepwise rise and growth of the Tibet plateau. Science,2001,294:1671-1677
    Thomas D N, Rolph T C, Shaw J, et al. Palaeointensity studies of a Late Permian lava successionfrom Guizhou Province, South China: implications for post-Kiaman dipole field behaviour.Geophysical Journal International,1998,134:856-866
    Thompson G M, Ali J R, Song X Y, et al. Emeishan Basalts, SW China: Reappraisal of theformations type area stratigraphy and a discussion of its significance as a large igneousprovince [J]. Journal of the Geological Society,2001,158(4):593-599
    Tatsumi Y, Sakuyama M, Fukuyama H, et al. Generation of Arc Basalt Magmas and ThermalStructure of the Mantle Wedge in Subduction Zones: J Geophys Res,1983,88(7):5815-5825
    Tatsumi Y,Hamilton D L, Nesbitt R W. Chemical characteristics of fluid phase released from asubducted lithosphere and origin of arc magmas: Evidence from high-pressure experimentsand natural rocks. Journal of Volcanology and Geothermal Research,1986,29:293-309
    Taylor S R, McLennan S M. The continental crust: composition and evolution. Boston: BlackwellScientific Publications,1985:209-30
    Turner S, Arnaud N, Liu J, et al. Post-collision, shoshonitic volcanism on the Tibetan Plateau:Implications for convective thinning of the lithosphere and the source of ocean island basalts.Journal of Petrology,1996,37(1):45-71
    Turner S, Hawkesworth C, Rogers N, et al.238U–230Th disequilibrium, magma petrogenesis, andflux rates beneath the depleted Tonga-Kermdec island arc. Geochemica et CosmochimicaActa,1997,61:4855-4884
    Thompson R N, Morrison M A, Hendry G L, et al. An assessment of the relative roles of crust andmantle in magma genesis: an elemental approach. Philosophical Transactions of the RoyalSociety of London, Series a,1984,310:549-590
    Vannay J C, Grasemann B. Inverted metamorphism in the High Himalaya of Himachal Pradesh(NW India): phase equilibria versus thermobarometry. Schweiz. Mineral. Petrogr. Mitt,1998,78(1),107-132
    Wang E Q, Burchfiel B C. Interpretation of Cenozoic tectonics in the right-lateral accommodationzone between the Ailao Shan shear zone and the Eastern Himalayan Syntaxis. InternationalGeology Review,1997,39:191-219
    Wang J H, Yin A, Harrison T M, et al. A tectonic model for Cenozoic igneous activities in theeastern Indo-Asian collision zone. Earth and Planetary Science Letters,2001,188:123-133
    Williams H M, Turner S P, Pearce J A, et al. Nature of the source regions for post-collisional,potassic magmatism in southern and northern Tibet from geochemical variations and inverseelement modeling. Journal of Petrology,2004,45:555-607
    Winchester J A, Floyd P A. Geochemical discrimination of different magma series and theirdifferentiation products using immobile elements. Chemical Geology,1977,20,325-342
    Wilson M, Downes H. Tertiary-Quaternary extension-related alkaline magmatism in western andcentral Europe. Journal of Petrology,1991,32(4):811-849
    Wood D A.The application of a Th-Hf-Ta diagram to problems of tectonomagmatic classificationand to establishing the nature of crustal contamination of basaltic lavas of the British Tertiaryvolcanic province. Earth Planet. Sci. Lett.50,1980,11-30
    Woodhead J D, Hergt J M, Davidson J P, et al. Hafnium isotope evidence for ‘conservative’element mobility during subduction zone processes. Earth and Planetary Science Letters,2001,192(3),331-346
    Xiao L, Xu Y G, Mei H J, et al. Distinct mantle sources of low-Ti and high-Ti basalts from thewestern Emeishan large igneous province, SW China: implications for plume–lithosphereinteraction. Earth and Planetary Science Letters,2004a,228(3-4),525-546
    Xiao L, Xu Y G, Xu J F, He B. and FRANCO, P. Chemostratigraphy of Flood Basalts in theGarzê-Litang Region and Zongza Block: Implications for Western Extension of the EmeishanLarge Igneous Province, SW China. Acta Geologica Sinica-English Edition,2004b,78:61-67
    Wu G Y. Collision tectonics in the central sector of the Sanjiang Indosinides bordering Xizang(Tibet), Sichuan and Yunnan, China. Proceedings of the International Conference onStratigraphy and Tectonic Evolution of Southeast Asia and the South Pacific, Bangkok:347-359
    Xu Y G, Chung S L, Jahn B M, et al. Petrologic and geochemical constraints on the petrogenesisofPermian–Triassic Emeishan flood basalts in southwestern China. Lithos,2001a,58(3-4):145-168
    Xu Y G, He B,Chung S L,et al. Geologic, geochemical, and geophysical consequences of plumeinvolvement in the Emeishan flood-basalt province. Geology,2004,32:917-920
    Xu Y G, He B, Huang X L, et al. Identification of mantle plumes in the Emeishan Large IgneousProvince. Episodes,2007,30:32-42
    Xu Y G, Luo Z Y, Huang X L, et al. Zircon U-Pb and Hf isotope constraints on crustal meltingassociated with the Emeishan mantle plume. Geochimica et Cosmochimica Acta,2008,72:3084-3104
    Xu Y G, Menzies M S, Thirlwall M F, et al. Exotic lithosphere mantle beneath the western Yangtzecraton: Petrogenetic links to Tibet using highly magnesian ultrapotassic rocks. Geology,2001b,29(9):863-866
    Yin A, Harrison T M. Geologic evolution of the Himalayan–Tibetan orogen. In: Jeanloz R, Albeean L and Burke K C. Annual review of earth and planetary sciences,2000,28:211-280
    Yu J C, Mo X X, Dong G C, et al. Geochemical characteristics and petrogenesis of Permianbasaltic rocks in Keping area, Western Tarim Basin: A record of plume-lithosphere interaction.Journal of Earth Science,2012,23:442-454
    Zhang B,Zhang J J,Zhong D L,et al. Strain and kinematic vorticity analysis: An indicator forsinistral transpressional strain-partitioning along the Lancangjiang shear zone, westernYunnan, China. Science in China Series D: Earth Sciences,2009,52(5):602-618
    Zhang H F, Gao S, Zhong Z Q, et al. Geochemical and Sr-Nd-Pb Isotopic Compositions ofCretaceous Granitoids Constraints on Tectonic Framework and Crustal Structure of theDabieshan Ultrahigh Pressure Metamorphic Belt, China. Chemical Geology,2002,186:281–299
    Zhang Z C, Mahoney J J, Mao J W, et al. Geochemistry of picritic and associated basalt flows ofthe western Emeishan flood basalt province, China. Journal of Petrology,2006,47(10):1997-2019
    Zhang Z C, Zhi X C, Chen L, et al. Re–Os isotopic compositions of picrites from the Emeishanflood basalt province, China, Earth and Planetary Science Letters,2008,276,1–2:30-39
    Zhao Z D,Mo X X,Dilek Y, et al. Geochemical and Sr-Nd-Pb isotopic compositions of thepost-collisional ultrapotassic magmatism in SW Tibet: Petrogenesis and implications forIndia intra-continental subduction beneath southern Tibet. Lithos,2009,113:190-212
    Zhu D C, Mo X X, Pan G T, et al. Petrogenesis of the earliest Early Cretaceous mafic rocks fromthe Cona area of the eastern Tethyan Himalaya in south Tibet: Interaction between theincubating Kerguelen plume and the eastern Greater India lithosphere? Lithos,2008,100:147–173
    Zhu D C, Pan G T, Mo X X, et al. Petrogenesis of volcanic rocks in the Sangxiu Formation,central segment of Tethyan Himalaya: A probable example of plume-lithosphere interaction.Journal of Asian Earth Sciences,2007,29:320-335
    Zindler A, Hart S. Chemical geodynamics. Annual reviewof earth and planetary sciences,1986,14:493-571
    从柏林,黄开年.攀西地区的大地构造演化—Ⅱ.海西晚期至印支期的裂谷作用.科学通报,
    1987,7:1321-1324
    陈建林,许继峰,康志强,等.青藏高原南部与北部新生代高镁钾质岩地球化学对比:南北
    地幔源区差异.岩石学报,2008,24(2):211-224
    迟效国,董春艳,刘建峰等.青藏高原高Mg#和低Mg#两类钾质-超钾质火山岩及其源区性
    质.岩石学报,2006,22(3):595-602
    迟效国,刘建峰,赵芝等.青藏高原新生代两类超钾质岩石的成因-实验岩石学和地球化学
    约束.地学前缘,2009,16(1):88-98
    邓晋福.原生玄武岩浆的起源及其识别标志.地质研究,1984,(2):18-27
    邓晋福.岩石相平衡与岩石成因.武汉:地质学院出版社,1987,1-198
    邓万明,钟大赉.壳-幔过渡带及其在岩石圈构造演化中的地质意义.科学通报,1997,42(23):2472-2482
    邓万明,黄萱,钟大赉.滇西新生代富碱斑岩的岩石特征及成因.地质科学,1998,33(4):412-425
    邓万明.青藏及邻区新生代火山活动及构造演化.地震地质,2003,25:51-61
    范蔚茗,王岳军,彭头平,等.桂西晚古生代玄武岩Ar-Ar和U-Pb年代学及其对峨眉山玄武岩省喷发时代的约束.科学通报,2004,49(18):1892-1900
    郭安林,张国伟,孙延贵,等.青藏高原东北缘多福屯第三纪钠质基性火山岩及构造启示:地学前缘,2007,14(3):73-83
    巩满福.保山地区晚石炭世火山岩及其构造环境.成都地质学院学报,1990,17(2):26-37
    何斌,徐义刚,肖龙,等.峨眉山大火成岩省的形成机制及空间展布:来自沉积地层学的新证据.地质学报,2003,77(2):194~202
    何斌,徐义刚,肖龙,等.峨眉山地幔柱上升的沉积响应及其地质意义.地质论评,2006,52(1):30-37
    黄行凯,莫宣学,喻学惠,李勇,和文言.滇东南马关和屏边地区新生代玄武岩地球化学特征及深部动力学意义.岩石学报,2013,04:1325-1337
    黄勇,郝家栩,邓贵标,等.滇西施甸地区二叠纪卧牛寺组大陆溢流玄武岩的发现.2012,31(2-3):314-320
    侯增谦,莫宣学,谭劲,等.三江-义敦岛弧带玄武岩喷发序列与裂谷-岛弧转化.中国地质科学院院报,1993,(1):49-67
    侯增谦,莫宣学,朱勤文,等.“三江"古特提斯地幔热柱—洋岛玄武岩证据.地球学报,1996,17(4):343~361
    侯增谦,王二七,莫宣学,等.青藏高原碰撞造山与成矿作用.北京:地质出版社,2008:1-982
    郝艳丽,张招崇,王福生,等.峨眉山大火成岩省“高钛玄武岩”和“低钛玄武岩”成因探讨.地质论评,2004,50(06):587-592
    寇林林,钟康惠,唐菊兴等.昌都—思茅构造带晚三叠世构造环境的火山岩地球化学判别.2009,42(1):79-87
    李杰,许继峰,何斌,等.青藏高原东南木里地区二叠纪苦橄岩的Os-Sr-Nd同位素地球化学研究.岩石学报,2008,24(02):337-347
    吕劲松,肖渊甫,邓江红,等.滇西北峨眉山玄武岩与冈达概组下段玄武岩对比研究.岩石矿物学杂志,2013,32(01):73-89
    吕劲松,肖渊甫,邓江红,等.香格里拉小中甸冈达概组下段岩石化学特征及构造背景分析.地质与勘探,2012,48(06):1214-1220
    刘清泉,高宇天.四川省经济地理.四川科学技术出版社,1985:1-878
    李曙光.蛇绿岩生成构造环境的Ba-Th-Nb-La判别图.岩石学报,1993:(01):(01)
    李文昌,潘桂棠,侯增谦,等.西南“三江”多岛弧盆-碰撞造山成矿理论与勘查技术[M].北京:地质出版社,2010:1-491
    李兴振,刘文均,王义昭,等.西南三江地区特提斯构造演化与成矿.北京:地质出版社,1999:1-276
    李永生.峨眉山大火成岩省岩浆作用过程的定量模拟.中国地质大学(北京),2012
    李勇,莫宣学,喻学惠,黄行凯,和文言.滇西“三江”地区高镁钾质火山岩地球化学特征及其地质意义.岩石学报,2011,09:2510-2518
    刘肇昌,李凡友,钟康惠.金沙江、澜沧江、怒江地区地体-裂谷构造与演化.有色金属矿产与勘查,1997,6(01):8-15
    赖绍聪.青藏高原可可西里及芒康岩区新生代火山岩中的长石及石榴子石巨晶.西北大学学报(自然科学版),1995,25(06):701-704
    赖绍聪.青藏高原新生代火山岩矿物化学及其岩石学意义─以玉门、可可西里及芒康岩区为例.矿物学报,1999,19(02):236-244
    刘增乾,李兴振,叶庆同,等.三江地区构造岩浆带的划分与矿产分布规律.北京:地质出版社,1993,1-246
    莫宣学,潘桂棠.从特提斯到青藏高原形成:构造-岩浆事件的约束.地学前缘,2006,13(6):43-51
    莫宣学.中国东部新生代玄武岩岩浆的起源.见池际尚.中国东部新生代玄武岩及上地幔研究.武汉:中国地质大学出版社,1988,108-125
    莫宣学,路凤香,沈上越,等.三江特提斯火山作用与成矿.北京:地质出版社,1993:1-267
    莫宣学,邓晋福,董方浏,等.西南三江造山带火山岩-构造组合及其意义.高校地质学报,2001,7(02):121-138
    莫宣学,赵志丹,喻学惠,等.青藏高原新生代碰撞—后碰撞火成岩.北京:地质出版社,2009,1-396
    莫宣学,赵志丹,邓晋福,等.青藏新生代钾质火山活动的时空迁移及向东部玄武岩省的过渡:壳幔深部物质流的暗示.现代地质,2007,21(2):255-264
    潘桂棠,徐强,侯增谦,等.西南三江多岛弧造山过程成矿系统与资源评价.北京:地质出版社,2003:1-419
    潘桂棠,朱弟成,王立全,等.班公湖—怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据.地学前缘,2004,11(4):371-382
    钱祥贵,吕伯西.滇西三江地区新生代碱性火山岩岩石学特征及成因.云南地质,2000,19(02):152-170
    孙晨光,赵志丹,莫宣学,等.青藏高原西南部赛利普超钾质火山岩富集地幔源区和岩石成因:锆石U-Pb年代学和Hf同位素制约.岩石学报,2008,24(02):249-264
    史仁灯,郝艳丽,黄启帅. Re-Os同位素对峨眉山大火成岩省成因制约的探讨.岩石学报,2008,24(11):2515~2523
    孙荣双,季建清,高克勤,等.辽西新台门白垩纪火山岩40Ar/39Ar定年及其对蝾螈化石层时代的约束:岩石学报,2010,26(11):3397-3410
    吴根耀,王晓鹏,钟大赉.川滇藏交界区二叠纪-早三叠纪世的两套弧火山岩.地质科学,2000,35(03):350-362
    王立全,李定谋,管士平,等.云南德钦鲁春一红坡牛场上叠裂谷盆地“双峰式”火山岩的Rb-Sr年龄值.沉积与特提斯地质,2002a,23(1):65-71
    王立全,侯增谦,莫宣学,等.金沙江造山带碰撞后地壳伸展背景一火山成因块状硫化物矿床的重要成矿环境.地质学报,2002b,76(4):541-556
    王建,李建平,王江海.滇西大理—剑川地区钾玄质岩浆作用:后碰撞走滑拉伸环境岛弧型岩浆作用的地球化学研究.岩石学报,2003,19(1),61-70
    魏启荣.青藏东缘新生代高钾岩系及其深源包体的研究—以云南马关和六合地区为例.武汉:中国地质大学出版社,2009:1-98
    魏启荣,李德威,郑建平,等.青藏东缘马关地幔岩包体的岩石学与矿物学研究.矿物岩石,2006,26(1):20-28
    汪云亮,李巨初,韩文喜,等.幔源岩浆岩源区成分判别原理及峨眉山玄武岩地幔源区性质.地质学报,1993,67(01):52-62
    汪云亮,侯增谦,修淑芝,等.峨眉火成岩省地幔热柱热异常初探.地质论评,1999,(S1):876-879
    汪云亮,张成江,修淑芝等.玄武岩类形成的大地构造环境的Th/Hf-Ta/Hf图解判别.岩石学报,2001,17(03):0413-0421
    肖龙,徐义刚,梅厚钧,等.云南金平晚二叠纪玄武岩特征及其与峨眉地幔柱关系—地球化学证据.岩石学报,2003,19(1):38-48
    夏林圻,夏祖春,徐学义,等.利用地球化学方法判别大陆玄武岩和岛弧玄武岩.岩石矿物学杂志,2007,26(01):77-89
    夏萍,徐义刚.滇东南马关地区新生代钾质玄武岩中幔源包体研究:深部物质组成与动力学过程探讨.地球化学,2006,35(1):27-40
    夏萍,徐义刚.滇西岩石圈地幔域分区和富集机制:新生代两类超钾质火山岩的对比研究.中国科学(D辑),2004,34(12):1118-1128
    徐受民.滇西北衙金矿床的成矿模式及与新生代富碱斑岩的关系.博士学位论文.北京:中国地质大学:1-115
    徐学义,夏林圻,夏祖春等.西南天山托云地区白垩纪—早第三纪玄武岩地球化学及其成因机制.地球化学,2003,32(6):551-560.
    徐义刚,钟孙霖.峨眉山大火成岩省:地幔柱活动的证据及其熔融条件.地球化学,2001,30(01):1-9
    徐义刚.拉张环境中的大陆玄武岩浆作用:性质及动力学过程.见郑永飞著,地球化学动力学.北京科学出版社,1999,119-167
    徐义刚.地幔柱构造、大火成岩省及其地质效应.地学前缘,2002,9(04):341-353
    杨开辉,莫宣学.滇西南晚古生代火山岩与裂谷作用及区域构造演化.岩石矿物学杂志,1993,12(04):297-311
    喻学惠,莫官予,赵欣.滇两“二江”地区新生代火山岩、富碱斑岩及深源岩石包体.见莫
    宣学,赵志丹,喻予惠等著.靑藏高原地质构造与人陆动力学研究丛书青藏高原中新生代构造岩浆作用.广州:广东将科技出版社,2008
    严再飞,黄智龙,陈觅,等.峨眉山溢流玄武岩省高钛玄武岩的两种不同地幔源特征.吉林大学学报(地球科学版),2010,40(6):1311-1322
    钟大赉.滇川西部古特提斯造山带.北京:地质出版社,1997:1-231
    钟大赉主编.滨川西部古特提斯造山带.北京科学出版社,1998:1-232
    钟大赉,丁林,刘福田,等.造山带岩石层多向层架构造及其对新生代岩浆活动制约-以三江及邻区为例.中国科学(D辑),2000,30(s1):1-8
    周晶,季建清,韩宝福,等.新疆北部基性岩脉40Ar/39Ar年代学研究.岩石学报,2008,24(5):997-1010
    钟康惠,唐菊兴,刘肇昌,等.青藏东缘昌都一思茅构造带中新生代陆内裂谷作用.地质学报,2001,80(9):1295-1311
    朱丽,张会化,王江海,等.西藏芒康盆地新生代高钾火山岩的主元素和同位素地球化学研究.大地构造与成矿学,2005,29(04):80-89
    张树明和王方正.玄武岩在研究岩石圈深部过程及构造背景中的应用.地球科学进展,2002,17(05):685-692
    张玉泉,谢应雯,涂光炽.哀牢山-金沙江富碱侵入岩及其与裂谷构造关系初步研究.岩石学报,1987,(1):17-25
    张招崇,王福生.峨眉山玄武岩Sr、 Pb同位素特Nd、征及其物源探讨.地球科学—中国地质大学学报,2003,28(4):431-439
    张招崇.关于峨眉山大火成岩省一些重要问题的讨论.中国地质,2009,36(03):634-646
    张招崇,王福生,范蔚茗,等.峨眉山玄武岩研究中的一些问题的讨论.岩石矿物学杂志,2001,20(03):239-246
    赵志丹,莫宣学,Nomade S,等.青藏高原拉萨地块碰撞后超钾质岩石的时空分布及其意义.岩石学报,2006,22(4):787-794
    朱志文,郝天珧,赵惠生.攀西及邻区印支2燕山期地块构造运动的古地磁考证.地球物理学报,1988,31:420-431
    朱弟成,王立全,潘桂棠,莫宣学,廖忠礼,江新胜,赵志丹.藏南特提斯喜马拉雅带中段中侏罗统遮拉组OIB型玄武岩浆的识别及其意义.地质科技情报,2004,03:15-24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700