用户名: 密码: 验证码:
噻唑烷酸提高肝组织谷胱甘肽含量及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人体不可避免的会受到不同毒物和药物的伤害,这些外源毒物和药物在体内经肝脏Ⅰ相和Ⅱ相代谢酶水解产生大量自由基和活性中间体。许多重要生命现象及疾病的发生都与活性中间体的产生有关,如机体的氧化与衰老、肝脏病变等。正常生理条件下,机体会产生相应机制来对抗活性中间体的损伤,使活性中间体和自由基在产生不断的同时也被不断的清除,维持机体平衡。但是,如果活性中间代谢物在体内过度积累,就会造成机体防御功能紊乱。肝脏是体内药物代谢的主要场所,更易受到活性代谢物的损伤。外源性药物、毒物是引发肝脏疾病的主要原因,因此备受重视。
     细胞内的谷胱甘肽(L-γ-glutamyl-L-cysteinylglycine, GSH)是一种特殊的低分子量含巯基化合物,在机体防御系统中发挥着重要作用。谷胱甘肽分为氧化型和还原型两种形式,在谷胱甘肽过氧化物酶和谷胱甘肽还原酶的作用下,两种形式之间可以互相转化。谷胱甘肽既可以通过直接释放巯基基团起到解毒的作用,也可以作为谷胱甘肽过氧化物酶(glutathione peroxidase, GPx)和谷胱甘肽-S转移酶(glutathione S-transferase, GST)的底物来间接地发挥作用。细胞内谷胱甘肽的过度消耗会引起多种连锁反应,如细胞凋亡,氧化还原状态改变,组织功能异常,甚至会诱发多种疾病,如心脏病,肝脏疾病,癌症等。如何维持谷胱甘肽含量稳定对于保护细胞免受外源药物损伤至关重要。
     研究表明,维持谷胱甘肽动态平衡有两种方式,包括从其组成氨基酸开始的从头合成途径和在GPx参与下的GSH代偿性合成途径。其中从头合成途径是细胞维持GSH含量稳定的主要途径。GSH的从头合成途径主要依靠两个酶的催化,谷氨酰-L-半胱氨酸连接酶(glutamyl-L-cysteine ligase GCL)和GSH合成酶,GCL是GSH合成的限速酶,GCL酶活的调节可在基因转录水平、转录后水平、翻译后水平等环节。目前,提高GSH水平主要是通过提高GSH相关酶活性或诱导GCL表达来实现的。研究表明,N-乙酰半胱氨酸氨基化合物,N-乙酰半胱氨酸,腺苷蛋氨酸,五味子素B,白藜芦醇,L-2-羰基-4-噻唑啉-羧化物等化合物都是通过这种方式来增加GSH含量的。但是由于多种原因,这些化合物的使用常常受到限制,比如在体内,L-半胱氨酸可以发生自氧化,产生的不溶物具有神经毒性,NAC经口服或静脉注射后易被酶解等。
     L-半胱氨酸前体分子被证明是一种提高体内GSH含量的关键化合物。本实验室以GlcNAc和L-半胱氨酸为底物合成了N-乙酰葡萄糖-噻唑啉-4-羧酸(N-acetyl-glucosamine-thiazolidine-4(R)-carboxylic acid, GlcNAcCys)。本课题组前期研究表明GlcNAcCys作为噻唑烷酸糖衍生物,具有重要的生物功能。GlcNAcCys能够作为L-半胱氨酸前体物,通过非酶开环水解反应释放L-半胱氨酸。GlcNAcCys具有较强的还原力和清除羟自由基、超氧阴离子自由基的能力,能够保护生物大分子(脱氧核糖,蛋白质的脂质)免受羟自由基的氧化损伤,提高APAP损伤小鼠肝脏内巯基含量。但是,GlcNAcCy提高巯基含量的机制尚不明确。
     本研究以APAP诱导的小鼠肝损伤进一步研究了GlcNAcCys提高肝脏巯基含量的时间-效应关系,并以BSO耗竭肝脏GSH为模型,研究了GlcNAcCys提高GSH含量的机理。结果表明,GlcNAcCys能够提高肝脏总巯基含量以及GSH含量,其作用存在时间-效应关系。在BSO模型中,GlcNAcCys能提高肝脏抗氧化酶的活性,如GPx, GST的活性,诱导GCLmRNA的表达。诱导GCLmRNA表达可能是GlcNAcCys提高肝脏GSH含量,进而提高抗氧化酶活性,发挥肝保护作用的潜在机制。
The human body is inevitably exposed to different toxins and drugs. Metabolisms of these exogenous toxins and drugs in liver by phaseⅠand phaseⅡenzymes will result in excessive productin of free radicals and reactive intermediates. Reactive intermediates can conjugate with important biological macromolecules and result in body damage, such as oxidation, aging, and liver diseases. Under normal physiological conditions, the body has evolved mechanisms to counteract the damage caused by reactive metabolites to keep the reactive intermediates in a steady, balanced and low level. However, accumulation of excessive toxic products in the body will induce tissue dysfunction. Liver, which is the main organ responsible for drug accumulation, biotransformation, and metabolism, is the first subject to the most of the exogenous toxins and drugs and is more susceptible to different diseases compared with other organs. Exogenous-induced liver damage has become the leading cause of liver diseases and is receiving more attentions.
     Glutathione (L-y-glutamyl-L-cysteinylglycine, GSH) is the ubiquitous low molecular weight cellular sulfhydryl and plays an important role in the body defense system. Glutathione exists in the reduced and the oxidized forms, which can be inter-converted by glutathione peroxidase (GPx) and glutathione reductase (GR). GSH also plays an important role in xenobiotic detoxification through direct sulfhydryl conjugation or indirectly as a co-factor of glutathione S-transferase (GST) and GPx. Excessive depletion of GSH has been shown to be related with apoptosis, redox imbalance, tissue dysfunctions, and diseases (such as cancer, liver disease, heart attack).Tissue GSH must be restored when it is depleted in order to protect cellular functions and integrity and to avoid further damages to other macromolecules.
     Evidences show that various ways are involved for maintenance of GSH homeostasis, including de novo synthesis and GPx mediated regeneration of GSH. The de novo synthesis of glutathione from constituent amino acids is via a two-step pathway catalyzed by glutamylcysteine ligase (GCL) and GSH synthase, with the former being the rate limiting step. The steady level of GSH can be modulated at any point by regulating GCL transcription, expression, post-translational modification. Many strategies have been reported for pharmacologically maintaining or increasing tissue GSH levels. These strategies can be ascribed to inducing GSH-related enzymes and/or increasing L-cysteine availability. Some compounds N-acetylcysteine amide, N-acetylcysteine, S-adenosyl methionine, Schisandrin B, resveratrol, L-2-oxo-4-thiazolidine carboxylate have been reported to induced enzyme expression and/or increasing tissue or intracellular GSH contents. However these compounds are not always applicable. For examples, L-cysteine can auto-oxidize to insoluble L-cystine and is reported to have neuro-toxicity. N-acetyl-L-cysteine can be administered orally or intravenously but must be enzymatically deacetylated in cells.
     We previously reported the preparation and characterization of a novel thiazolidine derivative N-acetyl-glucosamine-thiazolidine-4(R)-carboxylic acid (GlcNAcCys), which is cyclo-condensed from L-cysteine and N-acetyl-glucosamine. GlcNAc is the monosaccharide of chitin and shows many biological activities. GlcNAcCys can function as a L-cysteine prodrug to liberate free L-cysteine non-enzymatically in physiological pH in vitro and in vivo. With high reducing ability, GlcNAcCys can scavenge hydroxyl radicals and superoxide anion free radicals, protect biological macromolecules (deoxyribose, proteins and lipids) from free radical damage. In APAP induced liver damage, GlcNAcCys can increase liver sulfhydryl level. However, the mechanism underlying the increase in cellular sulfhydryl level by GlcNAcCys remains unclear.
     In the present study, we used APAP induced liver damage to further investigate the effect-time relationship by GlcNAcCys and use L-buthionine-[S,R]-sulfoximine (BSO, a specific inhibitor of GCL) induced liver GSH depletion mice model to further investigate the mechanism of GSH content improvement by GlcNAcCys. Our results demonstrated that GlcNAcCys could increase liver T-SH and GSH concentrations; induce the activities of hepatic antioxidant enzymes (GPx, GST). BSO increased c-fos, c-jun transcription but had no effect on mRNA level of GCL. GlcNAcCys treatment could induce the mRNA level of GCL. The augmented activities of hepatic antioxidant enzymes and increased expression of GCL appeared to be the predominant mechanism underlying GlcNAcCys mediated liver protection against chemically induced damages.
引文
[1]Stickel F, Patsenker E, Schuppan D.Herbal hepatotoxicity[J]. J Hepatol,2005,43(5):901-910
    [2]Watkins P B. Role of cytochromes p450 in drug metabolism and hepatotoxicity[J]. Semin Liver Dis,1990,10(4):235-250
    [3]Dickson R C. Glycyne cytoprotection durying lethal hepatocellular injury from adenosinetfiphate depletion[J]. Gastrenterol,2001,6(1):428-431
    [4]Kaplowitz N. Biochemical and cellularmechanisms of toxic liver injury[J]. Semin Liver Dis, 2002,22(2):137-14
    [5]Ju C. Immunologicalmechanisms of drug-induced liver injury[J]. Curr Opin Drug Discov Deve,2005,8 (1):38-43
    [6]Liu Z X, Kaplowitz N. Immune-mediated drug-induced liver disease[J]. Clin Liver Dis, 2002,6(3):467-486
    [7]Gunawan B, Kap L N. Clinical perspectives on xenobiotic-induced hepatotoxicity[J]. Drug Metab Rev,2004,36(2):3012-3121
    [8]缪晓辉.药物性肝损害的免疫机制[J].肝脏,2001,3(1):41
    [9]袁海鹏,李廷青.药物性肝病的发病机制及治疗[J].山东医药,2004,44(10):54-55
    [10]Steven A. Wrighton,Jeffrey C. Stevens. The Human Hepatic Cytochromes P450 Involved in Drug Metabolism[J]. Toxicology,1992,22(1):1-21
    [11]陈成伟,缪晓辉.细胞色素P450遗传多态性与药物性肝病[J].肝脏,2002,7(4):263
    [12]Evelyne J A, Stephane P, Lucas S, et al. Molecular genetics of cytochrome P450 IID: Anomalies of drug metabolism[J], Clinical Reviews in Allergy and Immunology,1995,13(3):211-221
    [13]闫明.药物性肝病的发病机制[J].中华肝脏病杂,2004,49(12):240
    [14]Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence?[J]. Lancet, 1994,344(8924):721-72
    [15]Kaufmann J A, Bickford P C, Taglialatela G. Free radical-dependent change in constitutive nuclear factor kappa B in the aged hippocampus[J]. Neuroreport,2002,13(15):1971-1928
    [16]张德莉,朱圣姬,罗光富,等.自由基与DNA氧化损伤的研究进展[J].三峡大学学报,2004,26(6):563-567
    [17]Denham Harman. Free radical theory of aging: Alzheimer's disease pathogenesis[J]. AGE,1995,18(3):97-119
    [18]许民辉.自由基与脑水肿.中国急救医学,1988;8(6):36-38
    [19]Calabrese V, Lodi R, Tonon C,et al. Oxidative stress,mitochondrial dysfunction and cellular stress response in Friedreich's ataxia[J]. J Neurol Sci, 2005,233(1-2):151-162
    [20]姜昕,张数庚,穆运转.自由基与多脏器衰竭相关性的研究[J].自由基生命科学进展,2004,(10):115-11
    [21]刘德良,鲁国平.氧自由基与其抗氧化剂研究进展.哈尔滨医药,1994,14(3):55-56
    [22]Ruth Grene Alscher,Neval Erturk,Lenwood S. Heath. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants[J]. Journal of Experimental Botany, 2002,53(372):1331-1341
    [23]Fridowich. Superoxide Radical and Superoxide Dismutases. Annual Review of Biochemistry.1995,64:61-69
    [24]Sheng H, Kudo M, Mackensen G B, et al. Mice overexpressing extracellular superoxide dismutase have increased resistance to global cerebral ischemia. Experimental Neurology, 2000,163:392-398
    [25]Frank V, Eva V, James F D, et al. The role of active oxygen species in plant signalwansduction. PlantScience, 2001,161:405-414
    [26]Faraji D. Inhibition of lipid by carnosion.JAOCS,1990,67(2):650
    [27]Aldini G P,Granata M,Carini.Detoxification of cytotoxic α,β-unsaturated aldehydes by carnosine:characterization of conjugated adducts by electrospray ionisation tandem mass spectrometry and detection by liquid chromatography/mass spectrometry in rat skeletal muscle.J. Mass Spectrometry,2002(37):1219-1228
    [28]谷利伟,翁新楚.食用天然抗氧化剂研究进展[J].中国油脂,1997,22(3):37-40
    [29]Zhang J, Cao E H. Influence of antioxidant functions of drugs on kinetics of DNA chemiluminescence. Photographic Science and Photochemistry,1997,15(2):114-119
    [30]Zhang K Q, Bao Y, Wu P. Antioxidative components of tanshen(Salvia miltiorrhiza Bunge)[J]. Agric Food Chem,1990,38(5):1194-1197
    [31]Gordon M. H, Weng X C. Antioxidant properties of extracts from tanshen(Salvia miltiorrhiza Bunge)[J]. Food Chem,1992,44(2):119-122
    [32]Zhang J, Cao E H, Qin J F. Study om mechanism of antioxidant protection against DNA damage. Acta Biophysica Aineca,1997; 13(1):123-127
    [33]Bendich A. The antioxidant role of vitamine[J]. CadvFree Biol Med,1986,(2):419
    [34]赵士豪,路新利,郭会灿.维生素E保健作用的研究进展[J].山西食品工业,2005,1,32-34
    [35]Ademuyiwa O, Adesanya O, Ajuwon OR. Vitamin C in CC14 hepatotoxic-a preliminary report[J]. Hum Exp Toxicol,1994,13(2):107
    [36]翟惠敏,李亚洁.氧自由基对脑损伤的作用和维生素的防护作用[J].南方护理学报,2001,8(1):18
    [37]Daide Z, Chenshi H, Feng Y. Teapolyphenols and quercetin preventing the heart, brain and liver from the injury by freeradicals in comparison with ascorbic acid[J]. Chin J Nat Med, 2004,2(4):223
    [38]Paiva S, Robert M. β-Carotene and Other Carotenoids as Antioxidants[J]. Am Coll Nutr, 1999,18(5):426-433
    [39]Kritchevsky S B. β-Carotene carotenoids and the prevention of coronary heart disease[J], J Nutr,1999,129:5-8
    [40]赵文恩,韩雅珊,王其顺.类胡萝卜素对亚油酸甲酯氧化的抑制作用[J].生物物理学报,2000,16(3):627-633
    [41]Lim B P, Nagao A, Terao J,et al. Antioxidant activity of xanthophylls on peroxyl radical-mediated phos-pholipid peroxidation[J]. Biochim Biophys Acta,1992,1126(2):178-184
    [42]Whanger P D. Selenoprotein W: a review[J]. Cellular and Molecular Life Sciences, 2000,57:13-14
    [43]廖鲁兴,李巧云,赖玉熔.硒与体内酶活性及其它元素分布的关系[J].国外医学地理学分册,1995,16(2):53
    [44]Gathwala D G, Yadav O P. Selenium in the neonate[J]. The Indian Journal of Pediatrics, 2002,69(5):443-446
    [45]张佩谨.羧乙基锗倍半氧化物(Ge-132)的药理作用[J].国外医学(合成药生化制剂分册),1991,(12):25
    [46]Nakada Y, Koxaka T, Kuwabara M, et al. Effects of 2-carboxyethyl germanium sesquioxide (Ge-132) as an immunological modifier of post-surgical immumosuppression in dogs[J]. J Vet Med Sci,1993,55(5):795-799
    [47]文振乾.有机锗抗癌临床研究进展.广西医学,1993,(3):200-201
    [48]李烽.郭振荣,赵霖.锌在机体代谢中的作用[J].国外医学医学地理分册,1999,20(3):103-106
    [49]周玫.自由基医学[M].北京:人民军医出版社.1991
    [50]催红梅,扬月欣,刘建宇.锌对·OH、O2-·所致红细胸膜氧化损伤的保护作用研究[J].营养学报,1999,21(2):186-190
    [51]程义勇,王冬兰,蒋与刚等.微量元素与健康研究,1998,15(1):1-2
    [52]Sullivan V K, Cousins R J. Competitive reverse transcriptase polymerase chain reaction shows that dietary zinc supplementation in humans increases monocyte metallothionein mRNA levels[J]. J Nutr,1997,127(5):694-698
    [53]Lyorm T J. Lipoprotdn glycatlon anditsmetabolic consequences[J]. Diabetes,1992,41(2):67
    [54]句海松.抗氧化剂研究进展[J].中国药学杂志,1999,25(12):712-715
    [55]Ozturk G, Erol D D, Uzbay T,et al. Synthesis of 4(1H)-pyridinone derivitives and investigation of analgesic and anti-inflammatory activities [J]. Farmaco,2001,56:251-256
    [56]Pu Hanlin, Xu Shibo. Anti-oxidation role of 6-phenylthio-2ethyl-3hydroxy-4(1h)-pyridinone. Chinese Pharmacological Bulletin,2001,17(3):313-315
    [57]L. Micheli, A. I. Fiaschi, G. Giorgil,et al. Effect of non-steroidal anti-inflammatory drugs on glutathione levels in various organs of rat[J], Inflammation Research, 1992,36(1):106-108
    [58]Bursell SE, George L King. The potential use of glutathionyl hemoglobin as a clinical marker of oxidative stress[J], Clin Chem,2000,46:145-146
    [59]Wulf Drog, Raoul Breitkreutz. Glutathione and immune function[J]. Proceedings of the Nutrition Society,2000,59,595-600
    [60]Adler V, Yin Z, Tew K D. Role of redox potential and reactive oxygen species in stress signaling[J]. Oncogene.1999,18:6104-6111
    [61]Droge W, Schulze-Osthoff K, Mihm S,et al. Function of glutathione and glutathione disulfide in immunology and immunopathology[J]. FASEB Journal,1994,8,1131-1138
    [62]Breitkreutz R, Pittak N, Nebe C T,et al. Improvement of immune functions in HIV infection by sulfur supplementation-two randomized trials[J]. Journal of Molecular Medicine 2000,78:55-62
    [63]Teresa Iantomasi, Fabio Favilli, Patrizia Marraccini, et al. Glutathione involvement on the intestinal Na+-dependent D-glucose active transporter[J]. Molecular and Cellular Biochemistry,1998,178(2):387-392
    [64]N.Tolosa de Talamoni, Marchionatti A, Baudino V, et al. Glutathione plays a role in the chick intestinal calcium absorption[J]. Comparative Biochemistry and Physiology Part A: Physiology,1996,115(2):127-132
    [65]Galloway D C, Shepherd A G, MeLellan L I. Regulation of human y-glutamylcysteine synthetase:coordinate induction of the catalytic and regulatory subunits in HepG2 cells[J]. Biochem J,1997,328:99-104
    [66]Yang H P, Jiao H W, Huang Z Z,et al. Cloning and charactization of the 5-flanking region of the rat glutamate-cysteine ligase catalytic subunit[J]. Biochem J,2001,357(2):447-455
    [67]Rahman I, MacNee W. Regulation of redox glutathione levels and gene transcription in lung inflammation:therapeutic approaches[J]. Free Radic Biol Med,2000,28:1405-1420
    [68]Liu R M, Gao L, Forman H J,et al. y-glutamylcysteine synthetase:mRNA stabilization and independent subunit transcription by 4-hydroxy-2-nonenal[J]. Am J Physiol, 1998,275:861-869
    [69]Iwanga M, Mori K, Iida T,et al. Nuclear factor κB dependent induction of y-glutamylcysteine synthetase by ioniaing radiation in T98G human glioblastoma cells[J]. Free Radic Bilo Med,1998,24:1256-1258
    [70]Michael Karin, Zheng-gang Liu, Ebrahim Zandi. AP-1 function and regulation[J]. Current Opinion in Cell Biology,1997,9(2):240-246
    [71]Wilhelm D, Bender K, Knebel A,et al. The level of intracellular glutathione is a key regulator for the induction of stress-activeted signal transduction pathways including Jun N-terminal protion kinases and P38 kinase by alkylating agents[J]. Mol Cell Biol, 1997,17:4792-4800
    [72]Mulcahy R T, Wartman M A, Beiley H H, et al. Constitutive and beta-naphthoflavone-induced expression of the human gamma-glutamylcysteine synthetase heavy subunit gene is regulated by a distal antioxidant response element/TRE sequence[J]. J Biol Chem,1997,272:7445-7454
    [73]Bannai S, Tateishi N. Role of membrane transport in metabolism and function of glutathione in mammals[J]. J Membrane Biol,1986,89:1-8
    [74]Olney J W, Hoo L, Rhee V. Cytotoxic effects of acidic and sulphur containing amino acids on the infant central nervous system[J]. Exp Brain Res,1971,14:61-76
    [75]Harper A E. Effects of ingestion of disproportionate amounts of amino acids[J]. Physiol.Rev,1970,50:428-558
    [76]Frances N S, Eugene G D, Nagasawa H T. Acetaminophen-induced suppression of hepatic AdoMet synthetase activity is attenuated by prodrugs of L-cysteine[J]. Toxicology Letters, 2002,132(1):1-8
    [77]Crankshaw D L, Berkeley L I, Cohen J F, et al. Double-prodrugs of L-cysteine:differential protection against acetaminophen-induced hepatotoxicity in mice[J]. Biochem molecular toxicology, 2002,16(5):235-244
    [78]Lenarczyk M, Ueno A, Vannais D.B. The "pro-drug" RibCys decreases the mutagenicity of high-LET radiation in cultured mammalian cells[J]. Radiation research,2003,160:579-583
    [79]Wilmore B H, Cassidy P B, Warters R L.Thiazolidine prodrugs as protective agents against gamma-radiation-induced toxicity and mutagenesis in V79 cells[J].2001,44(16):2661-2666
    [80]Jun Lia, Hong Wanga, Gary D,et al. Dietary supplementation with cysteine prodrugs selectively restores tissue glutathione levels and redox status in protein-malnourished mice[J]. The Journal of Nutritional Biochemistry,2002,13(10),625-633
    [81]Suryakant K. N, Chinavenmani S V, Quentin R S,et al. Increased expression of the MGMT repair protein mediated by cysteine prodrugs and chemopreventative natural products in human lymphocytes and tumor cell lines[J]. Carcinogenesis,2007,28(2):378-389
    [82]Jahadi H R., Aminlari M., Khalili M R. Prevention of Selenite-induced Cataract by L-Cysteine and Vitamin C in Rats[J]. Iranian Red Crescent Medical Journal, 2008,10(4):281-287
    [83]Helieh S O,Theresa S C, Herbert Nagasawa. Comparative efficacies of 2 cysteine prodrugs and a glutathione delivery agent in a colitis model[J]. Translational Research,2007,150(2):122-129
    [84]YangYan, Liu WanShun, Sun Hai-Zhou, Han Bao-Qin. Antioxidative properties of a newly synthesized 2-glucosamine-thiazolidine-4(R)-carboxylicacid (GlcNH2Cys) in mice[J]. Nutri Res,2006;26:369-77
    [85]Sedlak J, Lindsay RH. Estimation of total protein-bound and nonprotein sulfhydryl groups in tissue with Ellman's reagant[J]. Anal Biochem,1968;25:192-205
    [86]Bradford M. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry, 1976,72:248-254
    [87]Hissin P J,Hilf R. A fluorometric method for determination of oxidized and reduced glutathione in tissues[J]. Anal. Biochem,1979;74:214
    [88]Sen C K, Atalay M, Hanninen O. Exercise-induced oxidative stress:Glutathione supplementation and deficiency[J].J Appl Physiol,1994,77:2177-2181
    [89]Xia Yiming. Metabolism and function disorders under Selenium deficiency[J]. Foreign Medical Sciences(Section Hygiene).1980,7(1):44-47
    [90]Gyamfi MA, Wan YJ. The effect of ethanol, ethanol metabolizing enzyme inhibitors, and Vitamin E on regulating glutathione, glutathione S-transferase, and S-adenosylmethionine in mouse primary hepatocyte[J]. Hepatol Res,2006;35(1):53-61
    [91]Mao Lijuan, Xu Haowen.. Effect of Glutathione Depletion on Glutathione System in Myocadium of Rat[J]. Chin J Sports Med,2004,23(3):266-270
    [92]Rahman I, MacNee W. Regulation of redox glutathione levels and gene transcription in lung inflammation:therapeutic approaches[J]. Free Radic Biol Med,2000,28:1405-1420
    [93]Kitteringham NR, Powell H, Clement YN, et al. Hepatocellular response to chemical stress in CD-1 mice:induction of early genes and gamma-glutamylcyseine synthetase[J]. Hepatology,2000,32:321-333
    [94]Dikran Toroser, Connie S. Yarian, William C. Orr. Mechanisms of y-glutamylcysteine ligase regulation[J].Biochimica et Biophysica Acta,2006,1760:233-244
    [95]Huang CS, Chang LS, Anderson ME, et al. Catalytic and regulatory properties of the heavy subunit of rat kidney γ-glutamylcysteine synthetase[J]. J Biol Chem, 1993,268:19675-19680
    [96]Yao K, Godwin A K, Ozols R F, et al. Variable baseline y-glutamyl cysteine synthetase messanger RNA expression in peripheral mononuclear cells of cancer patients and its induction by buthionine sulfoximine treatment[J]. Cancer Res,1993,53:3662-3666
    [97]金慧萍,李中东,焦正.对乙酰氨基酚的不良反应与合理使用.药物不良反应,2004,1(27):1
    [98]Bernhard H, Lauterbury L. Early disturbance of calcium translocation across the plasma membrane in toxic liver injuny[J]. Hepatology,1987,7:179-1180
    [99]Forrest J A, Clements J A, Prescott L F. Clinical pharmacokinetics of paracetamol[J]. Clin Pharmacokinet,1982,7(2):93-107
    [100]Poli G. Liver damage due to free radicals[J]. BrMed Bull,1993,49(3):604-620
    [101]Corcoran G B, Mitchell J R, Vaishnav Y N,et al. Evidence that acetaminophen and N-hydroxyacetaminophen form a common arylating intermediate,N-acetyl-p-benzoquinoneimine[J].MolPharmacol,1980,18(3):536-542
    [102]YangYan, Liu Wanshun. Protective effects of chitosan oligosaccharide and its derivatives against carbon tetrachloride-induced liver damage in mice[J]. Hepatology Research, 2006,35:178-184
    [103]Chandrika Srinivasana, Walter M. Williamsa. Effects of 2(RS)-n-propylthiazolidine-4(R)-carboxylic acid on extrahepatic sulfhydryl levels in mice treated with acetaminophen[J]. Biochemical Pharmacology,2001;61:925-931
    [104]Li Y. W, Xue M, Zhang C.X,et al. Studies on relation between biological properties of medical silicone elastomer and character of the extract[J]. Chinese Biomedical Engineering Acta, 1994,13(2):283-285
    [105]鞠雷,顾宪锐.对乙酰氨基酚对大鼠原代肝细胞的影响[J].中国兽医杂志,2008,44(7):89-90
    [106]Sudharshan N.R, Hoover D.G, Knorr D. Antibacterial actionof chitosan[J].Food Biotechnol,1992,6(3):257-272
    [107]郑晓燕.国产碳纤维桩材料的生物学评价:[硕士学位论文].北京:首都医科大学口腔临床医学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700