用户名: 密码: 验证码:
地衣芽胞杆菌谷氨酸脱氢酶和聚γ-谷氨酸降解酶的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚Y-谷氨酸(poly-γ-glutamic acid,简称γ-PGA)是一种多功能的生物聚合物,具有可食用、无毒和可生物降解等特性。地衣芽胞杆菌WX-02是重要的聚Y-谷氨酸生产菌株,但菌体胞内谷氨酸合成能力较弱,在聚γ-谷氨酸发酵生产过程中需要添加大量谷氨酸,提高了发酵成本,不利于聚γ-谷氨酸的产业化开发。目前聚γ-谷氨酸代谢中的关键酶在地衣芽胞杆菌WX-02生物合成聚γ-谷氨酸中的作用仍不清楚。
     本研究通过分析胞内谷氨酸合成和聚γ-谷氨酸合成的代谢途径与关键步骤,并以此为基础,对地衣芽胞杆菌WX-02代谢途径中关键酶的酶学性质、胞内谷氨酸合成和聚γ-谷氨酸降解进行研究,同时利用HPLC、GC-MS和Q-RT-PCR等方法对所构建工程菌株的生理生化变化进行分析。
     主要结论如下:
     1.胞内谷氨酸的合成中,有三种酶参加反应:glnA基因编码的谷氨酰胺合成酶、gltAB基因编码的谷氨酸合成酶和分别由rocG和gudB基因编码的谷氨酸脱氢酶。本研究在Bacillus licheniformis WX-02(简称WX-02)中分别缺失rocG和gltA基因,替换rocG基因启动子,得到相关菌株WX-02△rocG、WX-02△gltA和WX-02P43rocG。经Q-RT-PCR分析发现,WX-02△rocG菌株中未检测到rocG基因转录,WX-02△gltA菌株中未检测到gltA基因转录,WX-02P43rocG菌株rocG基因转录量为WX-02菌株1.54倍。WX-02菌株中,未检测到gudB基因转录,WX-02△rocG中gudB基因转录量为WX-02△gltA菌株的4.72倍。在未添加外源谷氨酸的发酵培养基中,WX-02聚Y-谷氨酸产量为9.82g/L,WX-02△rocG和WX-02P43rocG的聚γ-谷氨酸产量分别为WX-02的54.7%和105%,WX-02△gltA的聚γ-谷氨酸产量与WX-02相比差异不显著。说明在WX-02中,负责胞内谷氨酸合成的酶为谷氨酸脱氢酶(RocG)。
     2.以WX-02基因组为模板扩增谷氨酸脱氢酶RocG编码基因,克隆至pET-28(+)表达载体后,转化大肠杆菌BL21(DE3),获得含有重组质粒pET-28b(+)-rocG的重组大肠杆菌菌株,对其进行诱导表达和Ni柱亲和纯化,得到具有均一电泳条带的谷氨酸脱氢酶RocG蛋白。RocG的酶学性质结果表明:该酶的最适反应温度为40℃,最适反应pH值为8.0,温度低于40℃、pH值6.0-8.5稳定性较好。α-酮戊二酸、NADPH和谷氨酸的米氏常数Km分别为4.727mmol/L、0.111mmol/L和23.296mmol/L,α-酮戊二酸、NADPH和谷氨酸的Kcat/Km分别为1.923mmol-1?L?min-1、100.09mmol-1?L?min-1和0.159mmol-1?L?min-1。说明谷氨酸脱氢酶RocG合成谷氨酸催化反应效率比分解谷氨酸高,本研究从体外实验证明了地衣芽胞杆菌WX-02谷氨酸脱氢酶(RocG)主要起生物合成谷氨酸的功能。
     3.乙醛酸循环可以部分回补TCA循环从而增强胞内谷氨酸合成。aceA基因编码的异柠檬酸裂解酶和aceB基因编码的苹果酸合成酶为乙醛酸循环中关键酶。本研究以WX-02为原始菌株,分别缺失aceA基因和替换aceA基因原有启动子后得到菌株WX-02△aceA和WX-02P43aceA。经Q-RT-PCR检测后发现,WK-02△aceA菌株中未检测到aceA基因转录,WX-02P43aceA菌株中aceA和aceB基因转录量分别提高了3.6和2.8倍。在未添加外源谷氨酸的培养基中,WX-02P43aceA和WX-02△aceA的聚γ-谷氨酸产量为WX-02的115%和66.8%,说明胞内谷氨酸合成需要乙醛酸循环的回补作用,增强乙醛酸循环可以提高聚γ-谷氨酸产量。培养基中分别添加乙醛酸循环抑制剂苹果酸和琥珀酸后,WX-02中aceA基因转录量下降了14%和28%,聚γ-谷氨酸产量分别提升了13.4%和16.5%。分析原因为添加苹果酸和琥珀酸虽然抑制了乙醛酸循环途径,但由于添加物属于TCA循环中间代谢产物,增强了Ⅸ-酮戊二酸向谷氨酸合成的代谢,从而提高了聚γ-谷氨酸合成产量。
     4.聚γ一谷氨酸降解酶可以降解菌株合成的聚γ-谷氨酸,使其分子量减小。本研究构建了聚Y-谷氨酸降解酶基因pgdS缺失菌株WX-02△pgdS,并以pHY300PLK质粒为基础构建了对照菌株WX-02/pHY菌株和pgdS基因过表达菌株WX-02/pHYpgdS。使用GPC检测WX-02、WX-02/pHY、WK-02△pgdS和WX-02/pKYpgdS生物合成的γ-PGA相对分子量后发现,WX-02△pgdS相对分子量最大,WX-02/pHYpgdS相对分子量最小,WX-02/pHY和WX-02相对分子量一致,说明聚γ-谷氨酸降解酶PgdS可以降低B. licheniformis WX-02生物合成的γ-PGA分子量。在外源添加谷氨酸的培养基中,WX-02和WX-02/pHY聚Y-谷氨酸产量差异不显著,WX-02△pgdS聚γ-谷氨酸产量下降为WX-02的83%,WX-02/pHYpgdS与对照菌株WX-02/pHY相比,聚γ-谷氨酸产量提高54%。经Q-RT-PCR分析,WX-02△pgdS菌株中未检测到pgdS基因转录,谷氨酸转运蛋白基因gltT转录量下降为WX-02的86%,WX-02/pHYpgdS菌株pgdS和gltT基因转录相比WX-02/pHY分别提高了9.86和1.8倍。说明聚γ-谷氨酸降解酶PgdS影响外源谷氨酸向胞内转运,引起聚γ-谷氨酸合成前体物的胞内浓度变化,改变了聚γ-谷氨酸产量。
Poly-γ-glutamic acid (γ-PGA in short) is a multi-functional biopolymers, which is featured by its unique biological characteristics of edible、non-toxic and biodegradable. Bacillus licheniformis WX-02(WX-02in short) is a kind of poly-γ-glutamic acid producing strain relying on adding extracellular glutamate. In the process of producing poly-γ-glutamic acid, much glutamic acid is needed, which increases the cost of fermentation, and is not propitious to the industrial development of poly-γ-glutamic acid. At present,the function of the essential enzymeofpoly-γ-glutamic acidbiosynthesisin WX-02remains unknown.
     Based on the metabolic pathways,the characterization of key enzyme, intracellular glutamic acidbiosynthesisand γ-PGA degradationof Bacillus licheniformis WX-02were analyzied. Besides, HPLC, GC-MS, and Q-RT-PCR are also applied to the constructed engineering strains to examine their specific physiological and biochemical changes.
     The major findings of this research are listed as follows:
     1.Three enzymes, Glutamine synthetase, glutamate synthase and glutamate dehydrogenase (encoded by glnA, gltAB and rocG or gudB genes), are involved in intracellular glutamic acid biosynthesis. The WX-02ΔrocG and WK-02ΔgltA strains were obtained through knockout of rocG and gltA gene respectively. And the WX-02P43rocG was obtained by enhancing rocG gene in WX-02. Transcription of rocG and gltA were not detected in WX-02ΔrocG, WK-02ΔgltA respectively. Transcription of orcocG was1.54times higher in WX-02P43rocG than that in WX-02through Q-RT-PCR. Transcription of gudB was not detected in WX-02. Transcription of gudB was4.72times higher in WX-02ΔrocGthan that in WX-02ΔgltA. The γ-PGA yield was9.82g/L of WX-02in culture without external glutamate added. The γ-PGA productivity of WX-02ArocG and WX-02P43rocG were54.70%and105%, compared with WX-02. The difference between γ-PGA yield of WX-02ΔgltA and WX-02was not significant. It was implied that glutamate dehydrogenase was the major enzyme which was responsible for glutamic acid biosynthesis.
     2.The rocG gene was cloned based on B. licheniformis WX-02genome and was inserted into pET-28(+) vector. Recombination vector pET-28b(+)-rocG was transformed into E. coli BL21(DE3). The RocG was obtained after inducing by IPTG and purificating. Optimal conditions for activity were pH8.0and a temperature of40℃and RocG was stable in buffers ranging from pH6.0to8.5and a temperature below40℃. Km for substrate a-ketoglutarate, NADPH and glutamate were4.727mmol/L,0.111mmol/L, and23.296mmol/L. The Kcat/Km of a-ketoglutarate, NADPH and glutamate were1.923mmol-1?L?min-l,100.09mmol-1?L?min-1, and0.159mmol-1?L?min-1. It was noteworthy that catalytic reaction efficiency of glutamate synthesis was higher than that in reverse reaction. It was certified that glutamate dehydrogenase was responsible for glutamic acid biosynthesis in vitro.
     3.Glyoxylate cycle can partly complement TCA and thus increase intracellular glutamic acid biosynthesis. There were two key enzymes of isocitrate lyase encoded by aceA gene and malate synthase encoded aceB gene in glyoxylate cycle. WX-02AaceA and WX-02P43aceA were obtained through knockout and enhancing aceA gene based on WX-02respectively. Transcription of aceA was not detected in WX-02AaceA. Transcription of aceA and aceB were3.6and2.8times higher than that in WX-02. The y-PGA yield of WX-02PA3aceA and WX-02AaceA were115%and66.8%of WX-02respectively. It was implied that the complement of glyoxylate cycle was required in intracellular glutamic acid biosynthesis and y-PGA productivity can be improved through enhancing glyoxylate cycle. Transcription of aceA decreased by14%and28%after glyoxylate cycle inhibiter malic acid or succinate added, whereas culture without external glutamate and y-PGA yield increased by13.4%and16.5%respectively. It was noted that the metabolism from a-ketoglutarate to glutamic acid was enhanced to improve y-PGA production, although malic acid or succinate inhibit glyoxylate cycle inhibiter were added, which is due to the increasing additive of the intermediate of TCA.
     4.The molecular weight of poly-γ-glutamic acid can be decreased through degradation of poly-γ-glutamic acid hydrolase. WX-02ΔpgdS was constructed by knockout of pgdS gene based on WX-02and WX-02/pHYpgdS, which was obtained through enhancing pgdS gene with WX-02/pHY as CK. The relative molecular weight of WX-02ΔpgdS was the highest with GPC detection. The relative molecular weight of WX-02/pHYpgdS was lower than WX-02/pHY with same results compared with WX-02. It was implied that molecular weight of poly-γ-glutamic acid can be decreased by poly-γ-glutamic acid hydrolase. There was no difference of γ-PGA yield between WX-02and WX-02/pHY. The γ-PGA productivity of WX-02ApgdS decreased to83%in WX-02. However, the γ-PGA productivity from WX-02/pHYpgdS improved54%compared with WX-02/pHY. There was no transcription of pgdS in WX-02ΔpgdS and transcription of gltT decreased to86%compared with WX-02. The transcription of pgdS and gltT was 9.86and1.8times higher in WX-02/pHYpgdS than that in WX-02/pHY. It was certified that there was certain connection between PgdS and GltT which changed intracellular glutamic acid concentration and γ-PGA yield.
引文
1. 党天慧.不同相对分子质量聚γ-谷氨酸对植物生长的影响[硕士论文].武汉:华中农业大学,2012
    2. 惠明,齐东梅,马晓娜,牛天贵.碳氮源对Bacillus sP.B53发酵产聚谷氨酸的影响.食品与发酵工业,2005,3:70-73
    3. 金映虹,刘静,刘莉,邓飞,陶剑,宋存江.利用Bacillus licheniformis NK-03合成聚谷氨酸及其合成酶基因pgsBCA的克隆.南开大学学报:自然科学版,2008,41:57-63
    4. 罗楚翔.柠檬酸促进地衣芽胞杆菌WX-02合成聚γ-谷氨酸机理的初探[硕士论文].武汉:华中农业大学,2013
    5. 王建平,王晓丽,王昌军,冀志霞,陈守文,喻子牛.聚γ-谷氨酸对烟草种子萌发及苗期生长的影响.华中农业大学学报,2007,26:340-343
    6. 熊欢,魏雪团,冀志霞,孙明,陈守文.透明颤菌血红蛋白在产聚γ-谷氨酸地衣芽胞杆菌WX-02中的表达.微生物学通报,2008,35:1703-1707
    7. AsakuraY, KimuraE, UsudaY, KawaharaY, MatsuiK, OsumiT, NakamatsuT. Altered metabolic flux due to deletion of odhA causes L-glutamate overproduction in Corynebacterium glutamicum. Appl Environ Microb, 2007,73: 1308-1319
    8. Ashiuchi M, Kamei T, Baek DH, Shin SY, Sung MH, Soda K, Yagi T, Misono H. Isolation of Bacillus subtilis (chungkookjang), a poly-y-glutamate producer with high genetic competence. Appl Environ Microbiol, 2001a,57: 764-769
    9. Ashiuchi M, Nakamura H, Yamamoto M. Novel poly-y-glutamate-processing enzyme catalyzing y-glutamyl DD-amidohydrolysis. J Biosci Bioeng,2006a, 102: 60-65
    10. Ashiuchi M, Nawa C, Kamei T, Song J, Hong S, Sung M, Soda K, Yagi T, Misono H. Physiological and biochemical characteristics of poly-y-glutamate synthetase complex of Bacillus subtilis. Eur J Biochem, 2001b, 268: 5321-5328
    11. Ashiuchi M, Shimanouchi K, Nakamura H, Kamei T, Soda K, Park C, Sung M, Misono H. Enzymatic synthesis of high-molecular-mass poly-y-glutamate and regulation of its stereochemistry. Appl Environ Microbiol,2004, 70:4249-4255
    12. Ashiuchi M, Shimanouchi, Horiuchi T, Kamei T, Misono H. Genetically engineered poly-g-glutamate producer from Bacillus subtilis ISW1214. Biosci Biotechnol Biochem,2006b,70:1794-1797
    13. Ashiuchi M, Soda K, Misono H. A Poly-γ-glutamate Synthetic System of Bacillus subtilis IFO 3336:Gene Cloning and Biochemical Analysis of Poly-γ-glutamate Produced by Escherichia coli Clone Cells. Biochem Biophys Res Commun, 1999, 263:6-12
    14. Bajaj I, Singhal R. Poly (glutamic acid)-an emerging biopolymer of commercial interest. Bioresource Technol,2011, 102:5551-5561
    15. Bajaj IB, Lele SS, Singhal RS. A statistical approach to optimization of fermentative production of poly (gamma-glutamic acid) from Bacillus licheniformis NCIM 2324. Bioresour Technol,2009, 100:826-832
    16. Bajaj IB, Singhal R. Effect of aeration and agitation on synthesis of poly (γ-glutamic acid) in batch cultures of Bacillus licheniformis NCIM 2324. Biotech Biopro Engineer,2010, 15:635-640
    17. Baker P, Britton K, Engel P, Farrants G, Lilley K, Rice D, Stillman T. Subunit assembly and active site location in the structure of glutamate dehydrogenase. Proteins,1992,12:75-86
    18. Belitsky BR, Sonenshein AL. Modulation of activity of Bacillus subtilis regulatory proteins GltC and TnrA by glutamate dehydrogenase. J Bacteriol, 2004, 186: 3399-3407
    19. Belitsky BR, Wray LV, Fisher SH, Bohannon DE, Sonenshein AL. Role of TnrA in nitrogen source-dependent repression of Bacillus subtilis glutamate synthase gene expression. J Bacteriol, 2000,182:5939-5947
    20. Belitsky BR, Kim HJ, Sonenshein AL. CcpA-dependent regulation of Bacillus subtilis glutamate dehydrogenase gene expression. J Bacterial, 2004, 186: 3392-3398
    21. Belitsky BR, Sonenshein AL. An enhancer element located downstream of the major glutamate dehydrogenase gene of Bacillus subtilis. Proc Natl Acade Sci, 1999, 96:10290-10295
    22. Belitsky BR, Sonenshein AL. Role and regulation of Bacillus subtilis glutamate dehydrogenase genes. JBacteriol, 1998,180:6298-6305
    23. Bender RA. A NAC for regulating metabolism: the nitrogen assimilation control protein (NAC) from Klebsiella pneumoniae. J Bacteriol, 2010,192:4801-4811
    24. Bendt AK, Beckers G, Silberbach M, Wittmann A, Burkovski A. Utilization of creatinine as an alternative nitrogen source in Corynebacterium glutamicum. Arch Microbiol,2004,181:443-450
    25. Bennett PM, Holms WH. Reversible inactivation of the isocitrate dehydrogenase of Escherichia coli ML308 during growth on acetate. J Gen Microbiol,1975,87: 37-51
    26. Birrer GA, Cromwick AM, Gross RA. γ-Poly(glutamic acid) formation by Bacillus licheniformis 9945A:physiological and biochemical studies. Int J Biol Macromol, 1994, 16: 265-275
    27. Boogerd FC, Ma H, Bruggeman FJ, Heeswijk WC, Garcia-Contreras R, Molenaar D, Westerhoff HV. AmtB-mediated NH 3 transport in prokaryotes must be active and as a consequence regulation of transport by GlnK is mandatory to limit futile cycling of. FEBSLett,2011, 585: 23-28
    28. Camardella L, Di Fraia R, Antignani A, Ciardiello M, Prisco G, Coleman, Russell N.. The Antarctic Psychrobacter sp. TAD1 has two cold-active glutamate dehydrogenases with different cofactor specificities. Characterisation of the NAD+-dependent enzyme. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 2002, 131: 559-567
    29. Candela T, Fouet A. Bacillus anthracis CapD, belonging to the gamma-glutamyl transpeptidase family, is required for the covalent anchoring of capsule to peptidoglycan. Mol Microbiol, 2005, 57: 717-726
    30. Candela T, Fouet A. Poly-gamma-glutamate in bacteria. Mol Microbiol, 2006, 60:1092-1098
    31. Candela T, Mock M, Fouet A. CapE, a 47-amino-acid peptide, is necessary for Bacillus anthracis polyglutamate capsule synthesis. J Bacteriol, 2005,187: 7765-7772
    32. Cao M, Geng W, Liu L, Song C, Xie H, Guo W, Jin Y, Wang S. Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgs BCA genes. Bioresour Technol, 2011,102:4251-4257
    33. Cao M, Geng W, Zhang W, Sun J, Wang S, Feng J, Zheng P, Jiang A, Song C. Engineering of recombinant Escherichia coli cells co-expressing poly-γ-glutamic acid (γ-PGA) synthetase and glutamate racemase for differential yielding of γ-PGA. Microb Biotechnol,2013,6:675-684
    34. Chell RM, Sundaram TK, Wilkinson AE. Isolation and characterization of isocitrate lyase from a thermophilic Bacillus sp. Biochem J, 1978, 173:165-177
    35. Cheng C, Asada Y, Aida T. Production of y-polyglutamic acid by Bacillus licheniformis A35 under denitrifying conditions. Agric Biol Chem, 1989, 53: 2369-2375
    36. Choi SK, Saier MH. Regulation of sigL expression by the catabolite control protein CcpA involves a roadblock mechanism in Bacillus subtilis: potential connection between carbon and nitrogen metabolism. J Bacteriol, 2005, 187:6856-6861
    37. Chunhachart O, Hanayama T, Hidesaki M. Structure of the hydrolyzed product (F-2) released from γ-polyglutamic acid by γ-glutamyl hydrolase YwtD of Bacillus subtilis. Biosci Biotechnol Biochem,2006, 70: 2289-2291
    38. Commichau FM, Herzberg C, Tripal P, Valerius O, Stulke J. A regulatory protein-protein interaction governs glutamate biosynthesis in Bacillus subtilis:the glutamate dehydrogenase RocG moonlights in controlling the transcription factor GltC. Mol Microbiol, 2007a, 65:642-654
    39. Commichau FM, Forchhammer K, Stiilke J. Regulatory links between carbon and nitrogen metabolism. Curr Opin Microbiol, 2006,9: 167-172
    40. Commichau FM, Stulke J. Trigger enzymes:bifunctional proteins active in metabolism and in controlling gene expression. Mol Microbiol,2008, 67:692-702
    41. CommichauFM, Wackerl, SchleiderJ, Blencke HM, ReifI, TripalP, StulkeJ.Characterization of Bacillus subtilis mutants "with carbon source-independent glutamate biosynthesis. J Mol Microb Biotech, 2007b, 12, 106-113
    42. Consalvi V, Chiaraluce R, Politi L, Pasquo A, De Rosa M, Scandurra R. Glutamate dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus: studies on thermal and guanidine-dependent inactivation. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology, 1993, 1202: 207-215
    43. Cozzone AJ, El-Mansi M. Control of isocitrate dehydrogenase catalytic activity by protein phosphorylation in Escherichia coli. J Mol Microbiol Biotechnol, 2006, 9: 132-146
    44. Cromwick AM, Birrer GA, Gross RA. Effects of pH and aeration on γ-poly (glutamic acid) formation by Bacillus licheniformis in controlled batch fermentor cultures. Biotechnol Bioeng, 1996, 50: 222-227
    45. Cromwick AM, Gross RA. Effects of manganese (Ⅱ) on Bacillus licheniformis ATCC 9945A physiology and γ-poly (glutamic acid) formation. Int J Biol Macromol, 1995,17:259-267
    46. Debarbouille M, Martin-Verstraete I, Kunst F, Rapoport G The Bacillus subtilis sigL gene encodes an equivalent of sigma 54 from gram-negative bacteria. Proc Natl Acade Sci, 1991,88: 9092-9096
    47. Detsch C, Stiilke J. Ammonium utilization in Bacillus subtilis: transport and regulatory functions of NrgA and NrgB. Microbiology, 2003,149:3289-3297
    48. Do T, Suzuki Y, Abe N, Kaneko J, Itoh Y, Kimura K. Mutations suppressing the loss of DegQ function in Bacillus subtilis (natto) poly-γ-glutamate synthesis. Appl Environ Microbiol, 2011, 77:8249-8258
    49. Du G, Yang G, Qu Y, Chen J, Lun S. Effects of glycerol on the production of poly (γ-glutamic acid) by Bacillus licheniformis. Process Biochem, 2005, 40:2143-2147
    50. Durand A, Merrick M. In vitro analysis of the Escherichia coli AmtB-GlnK complex reveals a stoichiometric interaction and sensitivity to ATP and 2-oxoglutarate. J Biol Chem,2006,281: 29558-29567
    51. Eikmanns BJ, Rittmann D, Sahm H. Cloning, sequence analysis, expression, and inactivation of the Corynebacterium glutamicum icd gene encoding isocitrate dehydrogenase and biochemical characterization of the enzyme. J Bacteriol, 1995, 177:774-782
    52. Eikmanns BJ, Thum-Schmitz N, Eggeling L, Ludtke KU, Sahm H. Nucleotide sequence, expression and transcriptional analysis of the Corynebacterium glutamicum gltA gene encoding citrate synthase. Microbiology, 1994, 140: 1817-1828
    53. Eisenberg D, Gill H S, Pfluegl G M, Rotstein S H. Structure-function relationships of glutamine synthetases. Biochim Biophys Acta,2000,1477: 122-145
    54. Eveland SS, Pompliano DL, Anderson MS. Conditionally lethal Escherichia coli murein mutants contain point defects that map to regions conserved among murein and folyl poly-γ-glutamate ligases: identification of a ligase superfamily. Biochemistry,1997,36:6223-6229
    55. Fisher SH, Wray LV. Bacillus subtilis glutamine synthetase regulates its own synthesis by acting as a chaperone to stabilize GlnR-DNA complexes. P Natl Acad Sci, 2008,105:1014-1019
    56. Fisher SH. Regulation of nitrogen metabolism in Bacillus subtilis:vive la difference. Mol Microbiol,1999,32:223-232
    57. FlorezLA, GunkaK, PolaniaR, TholenS,StulkeJ.SPABBATS:A pathway-discovery method based on Boolean satisfiability that facilitates the characterization of suppressor mutants. BMC Syst Biol,2011,5:5
    58. Forchhammer K. PⅡ signal transducers:novel functional and structural insights. Trends Biotechnol, 2008,16:65-72
    59. FukushimaT, AfkhamA, KurosawaSI, TanabeT, YamamotoH, SekiguchiJ. A new D,L-endopeptidase gene product, YojL (renamed CwlS), plays a role in cell separation with LytE and LytF in Bacillus subtilis. J Bacterial, 2006,188: 5541-5550
    60. Gardan R, Rapoport G, Debarbouille M. Role of the transcriptional activator RocR in the arginine-degradation pathway of Bacillus subtilis. Mol Microbiol, 1997, 24: 825-837
    61. Goto A, Kunioka M. Biosynthesis and hydrolysis of poly (y-glutafnic acid) from Bacillus subtilis IFO3335. Biosci Biotechnol Biochem,1992,56: 1031-1035
    62. Grantham WC, Brown AT. Ammonia utilization by a proposed bacterial pathogen in human periodontal disease, Capnocytophaga ochracea. Arch Oral Biol, 1983, 28: 327-338
    63. Gruswitz F, O'Connell J, Stroud RM. Inhibitory complex of the. transmembrane ammonia channel, AmtB, and the cytosolic regulatory protein, GlnK, at 1.96 A. Proc Natl Acade Sci,2007, 104: 42-47
    64. Gunka K, Newman JA, Commichau FM, Herzberg C, Rodrigues C, Hewitt L, Stulke J. Functional Dissection of a Trigger Enzyme:Mutations of the Bacillus subtilis Glutamate Dehydrogenase RocG That Affect Differentially Its Catalytic Activity and Regulatory Properties. J Mol Biol, 2010, 400:815-827
    65. Gunka K, Tholen S, Gerwig J, Herzberg C, Stulke J, Commichau FM. A high-frequency mutation in Bacillus subtilis: requirements for the decryptification of the gudB glutamate dehydrogenase gene. JBacteriol, 2012,194: 1036-1044
    66. Hanβler E, Muller T, Palumbo K, Patek M, Brocker M, Kramer R, Burkovski A. A game with many players:Control of gdh transcription in Corynebacterium glutamicum. J Bacteriol,2009,142:114-122
    67. Hara T, Nagatomo S, Ogata S, Ueda S. The DNA sequence of y-glutamyltranspeptidase gene of Bacillus subtilis (natto) plasmid pUHl. Appl Environ Microbiol, 1992, 37:211-215
    68. Harper CJ, Hayward D, Kidd M, Wiid I, Van Helden P. Glutamate dehydrogenase and glutamine synthetase are regulated in response to nitrogen availability in Myocbacterium smegmatis. BMC microbiology, 2010, 10:138
    69. Helling RB. Why doesEscherichia coli have two primary pathways for synthesis of glutamate. JBacteriol, 1994, 176:4664-4668
    70. HemmingsBA. Reactivation of the Phospho Form of the NAD-Dependent Glutamate Dehydrogenase by a Yeast Protein Phosphatase. Eur J Biochem, 1981, 116:47-50
    71. Hezayen F, Rehm B, Eberhardt R, Steinbuchel A. Polymer production by two newly isolated extremely halophilic archaea: application of a novel corrosion-resistant bioreactor. Appl Microbiol Biotechnol, 2000, 54:319-325
    72. Hezayen FF, Rehm BHA, Tindall BJ, Steinbii chel A. Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp. nov. and description of Natrialba aegyptiaca sp. nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly (glutamic acid). Int J Syst Evol Microbiol, 2001,51: 1133-1142
    73. Hidetoshi K, Toshio M, Kazumichi U. Production of Poly (γ-glutamic acid) by Bacillus subtilis F-2-01. Biosci Biotechnol Biochem,1993,57:1212-1213
    74. Hirose I, Sano K, Shioda I, Kumano M, Nakamura K, Yamane K. Proteome analysis of Bacillus subtilis extracellular proteins:a two-dimensional protein electrophoretic study. Microbiology,2000, 146:65-75
    75. Hu P, Leighton T, Ishkhanova G, Kustu S. Sensing of nitrogen limitation by Bacillus subtilis:comparison to enteric bacteria. JBacteriol,1999,181:5042-5050
    76. Huang B, Qin P, Xu Z, Zhu R, Meng Y. Effects of CaCl2 on viscosity of culture broth, and on activities of enzymes around the 2-oxoglutarate branch, in Bacillus subtilis CGMCC2108 producing poly-(γ-glutamic acid). Bioresou Technol, 2011, 102: 3595-3598
    77. Ishwar B, Rekha S. Enhanced production of poly (γ-glutamic acid) from Bacillus licheniformis NCIM 2324 by using metabolic precursors. Appl Biochem Biotechnol, 2008,8:1-9
    78. Ito Y, Tanaka T, Ohmachi T, Asada Y. Glutamic acid independent production of poly (γ-glutamic acid) by Bacillus subtilis TAM-4. Biosci Biotechnol Biochem, 1996, 60: 1239-1242
    79. Jakoby M, Nolden L, Meier-Wagner J, Kramer R, Burkovski A. AmtR, a global repressor in the nitrogen regulation system of Corynebacterium glutamicum. Mol Microbiol, 2000,37:964-977
    80. Jakoby M, Tesch M, Sahm H, Kramer R, Burkovski A. Isolation of the Corynebacterium glutamicumglnA gene encoding glutamine synthetase I. FEMS Microbiol Lett, 1997,154: 81-88
    81. Jeong J, Kim J, Wee Y, Ryu H. The statistically optimized production of poly (y-glutamic acid) by batch fermentation of a newly isolated Bacillus subtilis RKY3. Bioresour Technol,2010,101: 4533-4539
    82. Ji L, Long Q, Yang D, Xie J. Identification of mannich base as a novel inhibitor of Mycobacterium tuberculosis isocitrate by high-throughput screening Int J Biol Sci, 2011,7: 376-382
    83. Jiang F, Qi G, Ji Z, Zhang S, Liu J, Ma X, Chen S. Expression of glr gene encoding glutamate racemase in Bacillus licheniformis WX-02 and its regulatory effects on synthesis of poly-γ-glutamic acid. Biotechnol Lett, 2011, 33: 1837-1840
    84. Jin S, Levin PA, Matsuno K, Grossman AD, Sonenshein AL. Deletion of the Bacillus subtilis isocitrate dehydrogenase gene causes a block at stage I of sporulation. JBacteriol, 1997, 179: 4725-4732
    85. Jin S, Sonenshein A L. Identification of two distinct Bacillus subtilis citrate synthase genes. JBacteriol, 1994a, 176: 4669-4679
    86. Jin S, Sonenshein A L. Transcriptional regulation of Bacillus subtilis citrate synthase genes. JBacteriol, 1994b, 176: 4680-4690
    87. Kabisch J, Pratzka I, Meyer H, Albrecht D, Lalk M, Ehrenreich A, Schweder T. Metabolic engineering of Bacillus subtilis for growth on overflow metabolites. Micob Cell Fact, 2013,12:72
    88. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Tauch A. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of 1-aspartate-derived amino acids and vitamins. J Bacteriol, 2003,104: 5-25
    89. Kambourova M, Tangney M, Priest FG. Regulation of polyglutamic acid synthesis by glutamate in Bacillus licheniformis and Bacillus subtilis. Appl Environ Microbiol, 2001,67: 1004-1007
    90. Kandler O, Konig H, Wiegel J, Claus D. Occurrence of Poly-y-D-Glutamic Acid and Poly-a-L-Glutamine in the Genera Xanthobacter, Flexithrix, Sporosarcina and Planococcus. Syst Appl Microbiol, 1983, 4: 34-41
    91. Kawakami R, Sakuraba H, Ohshima T. Gene cloning and characterization of the very large NAD-dependent 1-glutamate dehydrogenase from the psychrophile Janthinobacterium lividum, isolated from cold soil. J Bacteriol, 2007, 189: 5626-5633
    92. Khademi S, Stroud R M. The Amt/MEP/Rh family: structure of AmtB and the mechanism of ammonia gas conduction. Physiology, 2006,21: 419-429
    93. Kimura E. Metabolic engineering of glutamate production Microbial Production of 1-Amino Acids. Springer Berlin Heidelberg,2003, 37-57
    94. Kimura K, Fujimoto Z. Enzymatic degradation of poly-gamma-glutamic acid Amino-Acid Homopolymers Occurring in Nature. Springer Berlin Heidelberg, 2010: 95-117
    95. Kimura K, Itoh Y. Characterization of poly-y-glutamate hydrolase encoded by a Bacteriophage Genome:possible role in phage infection of Bacillus subtilis encapsulated with poly-y-glutamate. Appl Environ Microb, 2003, 69: 2491-2497
    96. Kimura K, Tran L, Do T, Itoh Y. Expression of the pgsB encoding the poly-gamma-DL-glutamate synthetase of Bacillus subtilis (natto). Biosci Biotechnol Biochem, 2009, 73:1149
    97. Kimura K, Tran LSP, Funane K. Loss of poly-y-glutamic Acid Synthesis of Bacillus subtilis (natto) Due to IS4Bsul Translocation to swrA Gene. Food Sci Technol, 2011, 17:447-451
    98. Kimura K, Tran LSP, Itoh Y. Roles and regulation of the glutamate racemase isogenes, racE and yrpC, in Bacillus subtilis. Microbiology, 2004a, 150:2911-2920
    99. Kimura K, Tran LSP, Uchida I, Itoh Y. Characterization of Bacillus subtilis y-glutamyltransferase and its involvement in the degradation of capsule poly-y-glutamate. Microbiology, 2004b, 150:4115-4123
    100. King EC, Blacker AJ, Bugg TDH. Enzymatic breakdown of poly-y-glutamic acid in Bacillus licheniformis:identification of a polyglutamyl y-hydrolase enzyme. Biomacromolecules,2000,1:75-83
    101. Kleiner D. Bacterial ammonium transport. FEMSMicrobiol Lett, 1985, 32:87-100
    102. Kloosterman TG, Hendriksen WT, Bijlsma JJ, Bootsma HJ, van Hijum SA, Kok J, Kuipers OP. Regulation of glutamine and glutamate metabolism by GlnR and GlnA in Streptococcus pneumoniae. JBiol Chem, 2006, 281:25097-25109
    103. Ko YH, Gross RA. Effects of glucose and glycerol on γ-poly (glutamic acid) formation by Bacillus licheniformis ATCC 9945a. Biotechnol Bioeng, 1998, 57: 430-437
    104. Kronemeyer W, Peekhaus N, Kramer R, Sahm H, Eggeling L. Structure of the gluABCD cluster encoding the glutamate uptake system of Corynebacterium glutamicum. J Bacteriol, 1995,177:1152-1158
    105. Kubota H, Matsunobu T, Uotani K, Takebe H, Satoh A, Tanaka T, Taniguchi M. Production of poly (γ-glutamic acid) by Bacillus subtilis F-2-01. Biosci Biotechnol Biochem,1993,57:1212-1213
    106. Kunioka M, Goto A. Biosynthesis of poly (y-glutamic acid) from L-glutamic acid, citric acid, and ammonium sulfate in Bacillus subtilis IFO3335. Appl Microbiol Biotechnol, 1994,40:867-872
    107. Kunioka M. Biodegradable water absorbent synthesized from bacterial poly (amino acid)s. Macromol Biosci, 2004,4: 324-329
    108. Kunioka M. Biosynthesis and chemical reactions of poly(amino acid)s from microorganisms. Appl Microbiol Biotechnol, 1997, 47:469-475
    109. Kunioka M. Biosynthesis of poly (y-glutamic acid) from L-glutamine, citric acid and ammonium sulfate in Bacillus subtilis IFO3335. Appl Microbiol Biotechnol, 1995,44:501-506
    110. Kunst F, Ogasawara N, Moszer I. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature, 1997, 390:249-256
    111. LaPorte DC, Thorsness PE, Koshland DE. Compensatory phosphorylation of isocitrate dehydrogenase. A mechanism for adaptation to the intracellular environment. JBiol Chem,1985,260:10563-10568
    112. Laporte DC. The isocitrate dehydrogenase phosphorylation cycle:regulation and enzymology. J Cell Biochem, 1993,51:14-18
    113. Lee YH, Kingston AW, Helmann JD. Glutamate dehydrogenase affects resistance to cell wall antibiotics in Bacillus subtilis. J Bacteriol, 2012,194:993-1001
    114. Leigh JA, Dodsworth JA. Nitrogen regulation in bacteria and archaea. Annu Rev Microbiol, 2007,61: 349-377
    115. Lu CD, Abdelal AT. The gdhB Gene of Pseudomonas aeruginosa Encodes an Arginine-Inducible NAD+ -Dependent Glutamate Dehydrogenase Which Is Subject to Allosteric Regulation. JBacteriol,2001,183:490-499
    116. Makino S, Uchida I, Terakado N, Sasakawa C, Yoshikawa M. Molecular characterization and protein analysis of the cap region, which is essential for encapsulation in Bacillus anthracis. JBacteriol,1989,171:722-730
    117. Matsuno K, Blais T, Serio AW, Conway T, Henkin TM, Sonenshein AL. Metabolic imbalance and sporulation in an isocitrate dehydrogenase mutant of Bacillus subtilis. JBacteriol,1999,181:3382-3391
    118. McLean RJ, Beauchemin D, Clapham L, Beveridge TJ. Metal-binding characteristics of the gamma-glutamyl capsular polymer of Bacillus licheniformis ATCC 9945. Appl Environ Microbiol,1990,56:3671-3677
    119. Meier-Wagner J, Nolden L, Jakoby M, Siewe R, Kramer R, Burkovski A. Multiplicity of ammonium uptake systems in Corynebacterium glutamicum:role of Amt and AmiB. Microbiology,2001,147:135-143
    120. Miethke M, Westers H, Blom EJ, Kuipers OP, Marahiel MA. Iron starvation triggers the stringent response and induces amino acid biosynthesis for bacillibactin production in Bacillus subtilis. J Bacteriology,2006,188:8655-8657
    121. Minambres B, Olivera E, Jensen R. A New Class of Glutamate Dehydrogenases (GDH). Biochemical and genetic characterization of the first member, the AMP-requiring NAD-specific GDH of Streptomyces clavuligerus. J Biol Chem, 2000,275:39529-39542
    122. Mitsui N, Murasawa H, Sekiguchi J. Disruption of the cell wall lytic enzyme CwlO affects the amount and molecular size of poly-y-glutamic acid produced by Bacillus subtilis (natto). J Gen Appl Microbiol, 2011,57:35-43
    123. Nagai T, Koguchi K, Itoh Y. Chemical analysis of poly-gamma-glutamic acid produced by plasmid-free Bacillus subtilis (natto):Evidence that plasmids are not involved in poly-gamma-glutamic acid production. J Gen Appl Microbiol, 1997,43: 139-143
    124. Niemetz R, Karcher U, Kandler O, Tindall BJ, Konig H. The cell wall polymer of the extremely halophilic archaeon Natronococcus occultus. Eur J Biochem, 1997, 249:905-911
    125. Nolden L, Ngouoto-Nkili CE, Bendt AK, Kramer R, Burkovski A. Sensing nitrogen limitation in Corynebacterium glutamicum:the role of glnK and glnD. Mol Microbiol, 2001,42:1281-1295
    126. O'Hare H, Duran R, Cervenansky C, Bellinzoni M, Wehenkel A, Pritsch O, Obal G, Baumgartner J, Vialaret J, Johnsson K. Regulation of glutamate metabolism by protein kinases in mycobacteria. Mol Microbiol, 2008, 70: 1408-1423
    127. Ohsawa T, Tsukahara K, Ogura M. Bacillus subtilis response regulator DegU is a direct activator of pgsB transcription involved in gamma-poly-glutamic acid synthesis. Biosci Biotechnol Biochem,2009, 73:2096-2102
    128. Osera C, Amati G, Calvio C, Galizzi A. SwrAA activates poly-y-glutamate synthesis in addition to swarming in Bacillus subtilis. Microbiology, 2009, 155:2282-2287
    129. Pechter KB, Meyer FM, Serio AW, Stulke J, Sonenshein AL. Two roles for aconitase in the regulation of tricarboxylic acid branch gene expression in Bacillus subtilis. JBacteriol, 2013,195:1525-1537
    130. Peterson PE, Smith TJ. The structure of bovine glutamate dehydrogenase provides insights into the mechanism of allostery. Structure, 1999,7:769-782
    131. Picossi S, Belitsky BR, Sonenshein AL. Molecular Mechanism of the Regulation of Bacillus subtilis gltAB Expression by GltC. JMol Biol,2007,365:1298-1313
    132. Prunkard D, Bascomb N, Molin W, Schmidt R. Effect of different carbon sources on the ammonium induction of different forms of NADP-spejcific glutamate dehydrogenase in Chlorella sorokiniana cells cultured in the light and dark. Plant Physiol, 1986,81:413-422
    133. Rehm BH. Bacterial polymers:biosynthesis, modifications and applications. Nat Rev Microbiol, 2010, 8:578-592
    134. Rehm N, Burkovski A. Engineering of nitrogen metabolism and its regulation in Corynebacterium glutamicum:influence on amino acid pools and production. Appl Microbiol Biotechnol, 2011,89:239-248
    135. Reinscheid DJ, Eikmanns BJ, Sahm H. Characterization of the isocitrate lyase gene from Corynebacterium glutamicum and biochemical analysis of the enzyme. J Bacteriol,1994,176:3474-3483
    136. Reitzer L. Nitrogen assimilation and global regulation in Escherichia coli. Annu Rev Microbiol,2003,57:155-176
    137. Richard A, Margaritis A. Optimization of cell growth and poly (glutamic acid) production in batch fermentation by Bacillus subtilis. Biotechnol Lett,2003,25: 465-468
    138. Rodriguez-Garcia A, Sola-Landa A, Apel K, Santos-Beneit F, Martin JF. Phosphate control over nitrogen metabolism in Streptomyces coelicolor: direct and indirect negative control of glnR, glnA, glnll and amtB expression by the response regulator PhoP. Nucleic Acids Res,2009,37:3230-3242
    139. Schreier HJ, Brown SW, Hirschi KD, Nomellini JF, Sonenshein AL. Regulation of Bacillus subtilis glutamine synthetase gene expression by the product of the glnR gene. J Mol Biol,1989,210:51-63
    140. Schultz C, Niebisch A, Gebel L, Bott M. Glutamate production by Corynebacterium glutamicum:dependence on the oxoglutarate dehydrogenase inhibitor protein OdhI and protein kinase PknG. Appl Microbiol Biotechnol,2007,76:691-700
    141. Scoffone V, Dondi D, Biino G, Borghese G, Pasini D, Galizzi A, Calvio C. Knockout of pgdS and ggt genes improves y-PGA yield in B. subtilis. Biotechnol Bioeng,2013,110:2006-2012
    142. Shi F, Xu Z, Cen P. Efficient production of poly-y-glutamic acid by Bacillus subtilis ZJU-7. Appl Biochem Biotechnol, 2006, 133:271-281
    143. Shi F, Xu Z, Cen P. Microbial production of natural poly amino acid. Sci China Ser B,2007,50:291-303
    144. Shih IL, Wu PJ, Shieh CJ. Microbial production of a poly (γ-glutamic acid) derivative by Bacillus subtilis. Process Biochem,2005,40:2827-2832
    145. Shiio I, Ozaki H, Ujigawa K. Regulation of citrate synthase in Brevibacterium flavum, a glutamate-producing bacterium. JBiochem,1977,82:395-405
    146. Shimizu H, Tanaka H, Nakato A, Nagahisa K, Kimura E, Shioya S. Effects of the changes in enzyme activities on metabolic flux redistribution around the 2-oxoglutarate branch in glutamate production by Corynebacterium glutamicum. Bioprocess Eng,2003,25:291-298
    147. Smith E, Austen B, Blumenthal K, Nyc J. Glutamate Dehydrogenases. The enzymes, 1975,11:293-367
    148. Smith TJ, Peterson PE, Schmidt T, Fang J, Stanley CA. Structures of bovine glutamate dehydrogenase complexes elucidate the mechanism of purine regulation. J Mol Biol,2001,307:707-720
    149. Smith TJ, Schmidt T, Fang J, Wu J, Siuzdak G, Stanley CA. The structure of apo human glutamate dehydrogenase details subunit communication and allostery. J MolBiol,2002,318:765-777
    150. Sonenshein AL. Control of key metabolic intersections in Bacillus subtilis. Nat Rev Microbiol,2007,5:917-927
    151. Stanley NR, Lazazzera BA. Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-y-DL-glutamic acid production and biofilm formation. Mol Microbiol,2005,57:1143-1158
    152. Stillman TJ, Baker PJ, Britton KL, Rice DW. Conformational flexibility in glutamate dehydrogenase: role of water in substrate recognition and catalysis. JMol Biol,1993,234:1131-1139
    153. Su Y, Li X, Liu Q, Hou Z, Zhu X, Guo X, Ling P. Improved poly-γ-glutamic acid production by chromosomal integration of the Vitreoscilla hemoglobin gene (vgb) in Bacillus subtilis. Bioresour Technol,2010,101:4733-4736
    154. Suzuki T, Tahara Y. Characterization of the Bacillus subtilisywtD gene, whose product is involved in y-polyglutamic acid degradation. J Bacteriol, 2003, 185: 2379-2382
    155. Tesch M, Eikmanns BJ, de Graaf AA, Sahm H. Ammonia assimilation in Corynebacterium glutamicum and a glutamate dehydrogenase-deficient mutant. Biotechnol Lett,1998,20:953-957
    156. Thomas G, Coutts G, Merrick M. The glnKamtB operon: a conserved gene pair in prokaryotes. Trends Genet,2000,16:11-14
    157. Thorne CB, Gomez CG, Noyes HE. Production of glutamyl polypeptide by Bacillus subtilis. J Bacteriol,1954,68:307-315
    158. Tian G, Fu J, Wei X, Ji Z, Ma X, Qi G, Chen S. Enhanced expression of pgdS gene for high production of poly-γ-glutamic aicd with lower molecular weight in Bacillus licheniformis WX-02. J Chem Technol Biotechnol: 2013, DOI 10.1002/jctb.4261
    159. Tiffert Y, Supra P, Wurm R, Wohlleben W, Wagner R, Reuther J. The Streptomyces coelicolor GlnR regulon: identification of new GlnR targets and evidence for a central role of GlnR in nitrogen metabolism in actinomycetes. Mol Microbiol,2008, 67:861-880
    160. Tomita T, Miyazaki T, Miyazaki J, Kuzuyama T, Nishiyama M. Hetero-oligomeric glutamate dehydrogenase from Thermus thermophilus. Microbiology, 2010, 156: 3801-3813
    161. Trotschel C, Kandirali S, Diaz-Achirica P, Meinhardt A, Morbach S, Kramer R, Burkovski A. GltS, the sodium-coupled L-glutamate uptake system of Corynebacterium glutamicum:identification of the corresponding gene and impact on L-glutamate production. Appl Microbiol Biotechnol, 2003,60:738-742
    162. Troy FA. Chemistry and biosynthesis of the poly (D-glutamyl) capsule in Bacillus licheniformis. I. Properties of the membrane-mediated biosynthetic reaction. J Biol Chem,1973,248:305-315
    163. Uchida I, Makino S, Sawamura C. Identification of a novel gene, dep, associated with depolymerization of the capsular polymer in Bacillus anthracis. Mol Microbiol, 1993,9:487-496
    164. Uno, Isao K, Matsumoto, Kayoko A, Tatsuo I. Regulation of NAD-dependent glutamate dehydrogenase by protein kinases in Saccharomyces cerevisiae. J Biol Chem,1984,2:1288-1293
    165. Urushibata Y, Tokuyama S, Tahara Y. Characterization of the Bacillus subtilisywsC gene, involved in γ-polyglutamic acid production. JBacteriol, 2002, 184: 337-343
    166. Vater J, Mallow N, Gerhardt S, Gadow A, Kleinkauf H. Gramicidin S synthetase. Temperature dependence and thermodynamic parameters of substrate amino acid activation reactions. Biochemistry,1985,24: 2022-2027
    167. Veronese, Francesco M, Joseph F, Nyc, Yair D, Douglas M, Brown, Emil L, Smith. Nicotinamide Adenine Dinucleotide-specific Glutamate Dehydrogenase of Neurospora I. PURIFICATION AND MOLECULAR PROPERTIES. J Biol Chem, 1974, 24: 7922-7928
    168. Vollmer W, Joris B, Charlier P, Foster S. Bacterial peptidoglycan (murein) hydrolases. FEMS Microbiol Rev, 2008, 32: 259-286
    169. Wei X, Ji Z, Chen S. Isolation of halotolerant Bacillus licheniformis WX-02 and regulatory effects of sodium chloride on yield and molecular sizes of poly-gamma-glutamic acid. Appl Biochem Biotechnol,2010,160:1332-1340
    170. Wei X, Tian G, Ji Z, Chen S. A new strategy for enhancement of poly-y-glutamic acid production by multiple physicochemical stresses in Bacillus licheniformis. 2014, DOI 10.1002/jctb.4362
    171. WendischVF, SpiesM, ReinscheidDJ, SchnickeS, SahmH, EikmannsB J.Regulation of acetate metabolism in Corynebacterium glutamicum: transcriptional control of the isocitrate lyase and malate synthase genes. Arch Microbiol, 1997, 168:262-269
    172. Wray Jr LV, Fisher SH. The Streptomyces coelicolor glnR gene encodes a protein similar to other bacterial response regulators. Gene, 1993,130: 145-150
    173. Wray LV, Ferson AE, Rohrer K, Fisher SH. TnrA, a transcription factor required for global nitrogen regulation in Bacillus subtilis. Proc Natl Acade Sci, 1996, 93: 8841-8845
    174. Wu Q, Xu H, Shi N, Yao J, Li S, Ouyang, P. Improvement of poly (y-glutamic acid) biosynthesis and redistribution of metabolic flux with the presence of different additives in Bacillus subtilis CGMCC 0833. Appl Microbiol Biotechnol, 2008, 79: 527-535
    175. Wu Q, Xu H, Ying H, Ouyang P. Kinetic analysis and pH-shift control strategy for poly (γ-glutamic acid) production with Bacillus subtilis CGMCC 0833. Biochem Engineer J,2010,50:24-28
    176. Wu Q, Xu H, Zhang D, Ouyang P. A Novel Glutamate Transport System in Poly (γ-Glutamic Acid)-Producing Strain Bacillus subtilis CGMCC 0833. Appl Biochem Biotechnol, 2011,164: 1431-1443
    177. Xu H, Jiang M, Li H, Lu D, Ouyang P. Efficient production of poly (y-glutamic acid) by newly isolated Bacillus subtilis NX-2. Process Biochem, 2005, 40:519-523
    178. Yangtse, W, Zhou Y, Lei Y, Qiu Y, Wei X, Ji Z, Chen S. Genome sequence of Bacillus licheniformis WX-02. JBacteriol, 2012, 194:3561-3562
    179. Yao J, Jing J, Xu H, Liang J, Wu Q, Feng X, Ouyang P. Investigation on enzymatic degradation of y-polyglutamic acid from Bacillus subtilis NX-2. J Mol Catal B: Enzym,2009, 56: 158-164
    180. Yeh C, Wang J, Lo S, Chan W, Lin M. Chromosomal integration of a synthetic expression control sequence achieves poly-y-glutamate production in a Bacillus subtilis strain. Biotechnol Progr, 2010,26: 1001-1007
    181. Yip KSP, Stillman TJ, Britton KL, Artymiuk PJ, Baker PJ, Sedelnikova SE, Engel PC, Pasquo A, Chiaraluce R, Consalvi V. The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures. Structure, 1995, 3: 1147-1158
    182. Yoshida KI, Yamaguchi H, Kinehara M, Ohki YH, Nakaura Y, Fujita Y. Identification of additional TnrA-regulated genes of Bacillus subtilis associated with a TnrA box. Mol Microbiol, 2003,49:157-165
    183. Yoshimoto A, Nomura S, Hongo M. γ-Polyglutamic acid depolymerase induced by infections of natto and subtilis phages and its further properties. Agr Biol Chem, 1973,7:83-90
    184. Zalieckas J M, Wray L V, Fisher S H. Cross-regulation of the Bacillus subtilisglnRA and tnrA genes provides evidence for DNA binding site discrimination by GlnR and TnrA. J Bacteriol, 2006,188:2578-2585
    185. Zhang D, Feng X, Li S, Chen F, Xu H. Effects of oxygen vectors on the synthesis and molecular weight of poly (γ-glutamic acid) and the metabolic characterization of Bacillus subtilis NX-2. Proc Biochem,2012a, 18:108-113
    186. Zhang D, Xu Z, Xu H, Feng X, Li S, Cai H, Wei Y, Ouyang PK. Improvement of poly (γ-glutamic acid) biosynthesis and quantitative metabolic flux analysis of a two-stage strategy for agitation speed control in the culture of Bacillus subtilis NX-2. Biotechnol Biopro Engineer, 2011,16:1144-1151
    187. Zhang H, Zhu J, Zhu X, Cai J, Zhang A, Hong Y, Huang J, Huang L, Xu Z. High-level exogenous glutamic acid-independent production of poly-(γ-glutamic acid) with organic acid addition in a new isolated Bacillus subtilis C10. Bioresou technol, 2012b, 50:24-28
    188. Zhang W, Xie H, He Y, Feng J, Gao W, Gu Y, Wang S, Song C. Chromosome integration of the Vitreoscilla hemoglobin gene (vgb) mediated by temperature-sensitive plasmid enhances γ-PGA production in Bacillus amyloliquefaciens. FEMSMicrobiol Lett, 2013,343:127-134
    189. Zimmer DP, Soupene E, Lee HL, Wendisch V, Khodursky A, Peter B, Bender R, Kustu S. Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. Proc Natl Acade Sci, 2000,97: 14674-14679

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700