用户名: 密码: 验证码:
基因工程方法构建高效抗氧化酶
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
谷胱甘肽过氧化酶(Glutathione peroxidase,GPx)是机体内重要的抗氧化蛋白酶,它能清除过量的氢过氧化物以保持机体内活性氧(ROS)代谢平衡,从而保护机体免遭氧化损伤。因此,GPx作为抗氧化剂具有巨大的药用价值。但天然GPx异源表达困难、酶水解以及半衰期短等缺点限制了它的生物医学应用,因而设计合成高效GPx抗氧化酶模拟物受到学术界广泛关注。GPx的催化基团是被称为第21种氨基酸的硒代半胱氨酸(SeCys),其三联体密码子为终止密码子UGA,故很难利用传统的基因工程方法表达。因此本论文采用大肠杆菌半胱氨酸营养缺陷型表达体系,从GPx的本质出发,在充分考虑底物结合和分子内催化这两个重要因素的基础上,设计并制备针对不同底物的催化位点明确的高效GPx模拟物。
     1.构建碲代谷胱甘肽硫转移酶模拟GPx谷胱甘肽硫转移酶(GST)和谷胱甘肽过氧化物酶(GPx)同属于硫氧还蛋白超家族,两者对于共同底物谷胱甘肽(GSH)的结合部位结构基本相同,且催化中心的相对位置相似。与GPx的催化中心硒代半胱氨酸(SeCys)相比,碲代半胱氨酸(TeCys)的氧化还原电势更低:TeCys(-850mV versus Ag/AgCl) vs.SeCys (-640 mV versus Ag/AgCl)。因此,含有TeCys残基的蛋白质必将具有更加优异的氧化还原性能,从而更好的发挥生物学功能。为此,我们以Lucilia cuprina GST为骨架,利用其天然存在的GSH结合部位,采用大肠杆菌半胱氨酸营养缺陷型表达体系首次将催化基团TeCys引入活性中心,获得首例利用基因工程法制备的含碲GPx模拟酶,该含碲酶显示出极高的催化活性,其以GSH为底物的GPx活力可与天然酶相媲美。含碲模拟酶的催化机制为顺序机制,很多酶学性质同天然GPx近似。它的成功还为GPx与GST在进化上具有共同祖先这一假说提供了证据,同时又一次证明了新酶活力进化的主导因素是化学选择性而不是结合专一性。这种普适的含碲GPx模拟物制备方法可以被推广到更多蛋白模型中,从而为研究蛋白质中碲化学以及结构与功能之间关系提供强有力的手段,同时作为抗氧化药物具有一定的应用前景。
     2.构建硒代谷胱甘肽硫转移酶模拟GPx谷胱甘肽硫转移酶(GST)可催化GSH的亲电芳环取代反应,其中最具代表性的便是催化GSH与1-氯-2,4二硝基苯(CDNB)的反应。GST除了具有GSH特异性结合部位(G-site),还具有与其比邻的可结合另一底物的H-Site。考虑到CDNB同3-羧基-4-硝基苯硫酚(CNBSH)结构上的相似性,以GST中对于CDNB有非特异性识别的H-Site为识别部位构筑硒酶GPx催化中心。采用大肠杆菌半胱氨酸营养缺陷型表达体系成功将催化基团SeCys引入到H-Site适当位置。通过尿素梯度葡聚糖凝胶柱方法对包涵体复性,得到含硒GPx模拟酶。该酶具有以CNBSH为底物的GPx活力,且对多种过氧化物都显示出催化效率,其中对枯烯过氧化氢(CUOOH)表现出最高活力。稳态动力学表明其催化机制可能为顺序机制。实验再次证实,底物结合及其与酶的催化官能团在空间上的正确定位对获得高效模拟酶至关重要。
Enzymes are proteins with special function, which can catalyze certain chemistry reaction specificly in mild conditions. Because of the unique supramolecular interaction between enzyme and its substrate, it becomes the first choice when studying the bionic system. Artificial simulation of the molecule recognition and catalysis of enzyme is significant for understanding its intrinsic biological evolution process and relationship between the structure and function. Design and synthesis of simulative enzyme with highly efficient stereoselectivities and thorough comprehension of the catalysis mechanism is a goal the scientists are pursuing all along.
     Organism obtain energy by reducing O_2 in natural physiological condition, O_2~(-·)、·OH and H_2O_2 engendered in the metabolism are irreversible production, they are called Reactive Oxygen Species(ROS) together with the unstable intermediate of lipid peroxide. Under normal conditions, there is a balance between the production and destruction of ROS. In certain pathogenic states, the balance is broken and the accumulated ROS harm various biomacromolecules including RNA, DNA, protein, sugars and lipids, which lead to cell dysfunction. Therefore these result in ROS-mediated diseases include Alzheimer s disease, cardiac muscle shock, atherosclerosis, immuno-deficiency, radiation damage, emphysema, cataract and other age-related diseases. In order to eliminate the excess ROS, the organism sets up a series of defensive system, including enzymatic and non-enzymatic antioxidant systems. The enzymatic antioxidant system consists of glutathione peroxidase(GPx), catalase(CAT) and superoxide dismutase(SOD). GPx is the important member of the enzymatic antioxidant system, which can catalyze the decomposition of H_2O_2 using GSH as the substrate. It can also interdict the second-class reaction of the radical which is produced by lipid peroxide. Thus, GPx could be a promising antioxidant drug. However, the disadvantage such as difficult heterogenous expression, solution instability, short half-lives and proteolytic digestion limited the pharmacological application of the naturally occurring enzymes. Enormous efforts have been made to simulate the highly efficient functions of GPx. Not only can it be important for elucidating the relationship between structure and function of enzyme, but also provide possibility for preparing efficient preventive and curative drug for ROS-mediated diseases.
     The 21st amino acid selenocysteine (SeCys) is the catalytic center of GPx. Its triplet coden UGA is usually a stop coden, and needs a special modulation mechanism when incorporated into protein. Therefore it is difficult to express SeCys by traditional recombinant DNA technology. Heretofore, most of the GPx mimics were prepared with chemical methods. The small molecules mimics thereinto generally demonstrated relatively low activity, due to the neglect of the substrate binding. While the activity of the macromolecules mimics (such as antibody enzyme and bio-imprinting enzyme) which were based on the substrate binding have been improved a lot. But the limitation of the methods used in the preparation made their structure difficult to characterize clearly, which blocked the further studies of catalytic mechanism and structure-function relationship.
     The E.coli. auxotrophic expression system is a new developed method recently, which is based on the following assumption: the aa-specific tRNA is aminoacylated with amino acid analogue by aa-tRNA ligase when the amino acid is omitted. The E.coli. cysteine auxotrophic expression system employed in this dissertation just take the point that the E.coli. strains of cysteine auxotrophic can not synthesize cysteine itself, so it can make full use of the selenocysteine or tellurocysteine abundant in the culture medium to express target protein. The advantage is the high selenocysteine or tellurocysteine incorporation rate. What is more, it will not change the conformation of the protein, thus will keep its character.
     In enzyme engineering, most of the novel function of enzyme were acquired by redesign of existing protein scaffolds: namely, the rational reconstruction of the enzyme structure to achieve the anticipated functional transformation. This enlightens us the redesign based on existing protein scaffolds to construct high efficient antioxidant enzyme. Therefore, we take the Lucilia cuprina glutathione transferases (LuGST1-1) as the protein scaffold, and make full use of the cooperation of substrate binding and catalysis to construct GPx mimic. Meanwhile, we study the structure-function relationship of the mimic to explore the principle of catalysis.
     1. Construction of GPx mimic by using telluro-LuGST1-1
     GSTs are important phase II detoxification enzymes found mainly in the cytosol. And both GST and GPx belong to thioredoxin superfamily due to the thioredoxin fold in their structure. They have the similar glutathione-binding domain; the orientation of the catalytic residues are the same though the functions are different. In addition, some class of GST were reported to have GPx activity towards organic peroxide.
     Tellurium follows selenium in group VI, so they have similar redox characteristic, and tellurol reduces peroxide more easily than selenol. The cyclic voltammograms approved that tellurocysteine (TeCys) has an intrinsically lower redox potential (-850 mV versus Ag/AgCl) than that of SeCys (the catalytic center of GPx; -640 mV versus Ag/AgCl). As a result, proteins containing TeCys residues can participate in unique and biologically fundamental redox reactions. The reduction of tellurocystine by GSH was confirmed by HPLC and UV/visible spectrometry. Though TeCys is toxic to cells, the aminoacylation of tRNA with TeCys clearly showed that CysRS can aminoacylate tRNAcys with TeCys effectively. All the above provided solid theoretical evidence for our idea: employing E.coli. cysteine auxotrophic expression system to introduce TeCys into the LuGST1-1 protein scaffold as catalytic center, making full use of the natural occurring GSH binding site, to get a more efficient GPx mimic than its SeCys analogue. The so-made telluro-LuGST1-1 is the first TeCys incorporated protein produced by genetic engineering. We improved the expression condition due to the toxicity of tellurium, the principle is: reducing the cellular toxicity of TeCys and making it fully used. The telluro-LuGST1-1 was well characterized.
     The GPx activity of the telluro-LuGST1-1 was improved further, its GPx activity towards GSH was at the same level as that of some natural GPxs. Its enzymology character was close to natural GPx, and exhibited good stability during the catalysis and preservation. The steady kinetics indicated a sequential mechanism. The kinetic constants k_(max)/K_(H_2O_2) for the telluro-LuGST1-1 was one magnitude lower than the natural GPx, while the k_(max)/K_(GSH) was even the same level as the natural GPx. Via structure comparison, we concluded that the high efficiency of telluro-LuGST1-1 were from the following aspects. The striking thioredoxin fold structural similarity between the specific glutathione-binding domain folds in LuGST1-1 and GPx; the similarity in the orientation of their catalytic center with vicinalβαβmotif; its catalytic center TeCys has an intrinsically lower redox potential than that of SeCys (the catalytic center of GPx). The results indicated that the specific substrate binding site and the exact orientation of the catalytic center are important for acquiring high efficient enzyme mimics.
     Successful engineering of LuGST1-1 into a high efficient GPx mimic provided a new proof for the previous assumption that both GPx and GST were evolved from a common ancestor. Meanwhile, it supports that the dominant factor in the evolution of new enzymatic function is chemistry selectivity instead of binding specificity. The viable general method for the synthesis of telluroenzymes with GPx activity can be extended to more proteins models. It will continue to open new avenues for further investigation of tellurium chemistry in proteins, not only for structure-function studies, but also for medical applications.
     2. Construction of GPx mimic by using seleno-LuGST1-1
     GST can catalyze the conjugation of electrophilic aryl substrates to glutathione (GSH), and the most mentioned is with 1-chloro-2,4-dinitrobenzene (CDNB). SeCys and TeCys had been introduced into subtilisin by chemical modification to achieve GPx activity using 3-carboxy-4-nitrobenzenethiol (CNBSH) as substrate. But the subtilisin is a hydrolase, and the structure of its natural substrate is different from CNBSH, so the GPx activity of selenosubtilisin and tellurosubtilisin towards CNBSH could be improved.
     With the instruction of computer simulation and former study, Tyr113 was selected as reconstruction target, which locates in the natural substrate CDNB binding site of LuGST1-1 and has no dominant effect on the protein structure. Similarly, we used E.coli. cysteine auxotrophic expression system to introduce SeCys into the LuGST1-1 protein scaffold as catalytic center. We explored the expression condition to obtain single objective protein which was beneficial for further purification, and renatured the inclusion body employed the gradient urea Sephadex column refolding method. The circular dichroism proved the successful renaturation. Three mutants were designed and the GPx activities were determined to investigate the role the residues played. The results confirmed the replacement of Tyr113 with SeCys was crucial for catalysis: not only can make use of the similarity of the CNBSH with CDNB (the natural substrate of LuGST1-1), but also can stabilize the anion. So the introduction of SeCys to this site as catalytic center can exert efficiency better. Seleno-LuGST1-1 demonstrated the highest activity towards CUOOH among the three peroxides because of the stereo-hindrance. Double-reciprocal plots of the initial velocity versus substrate concentration yielded a series of intersecting linear plots, which indicated a sequential mechanism. The results indicated once again that the substrate binding and the orientation of the catalytic center are important for acquiring high efficient enzyme mimics.
引文
[1] Lehn J. M. Supramolecular Chemistry-Concept and Perspectives. Germany:VCH, 1995, 1-9.
    [2] Steed J. W., Atwood J. L.赵耀鹏,孙震译,超分子化学,化学工业出版社, 7-5025-8697-0,O63/S811.
    [3]张希,沈家骢.超分子科学:认识物质世界的新层面.科学通报2003, 14: 1477-1478.
    [4] Yan D. Y., Zhou Y. F., Hou J. Supramolecular self-assembly of macroscopic tubes. Science 2004, 303: 65-67.
    [5] Freeman B. A., Crapo J. D. Biology of disease. Free radicals and tissue injury. Lab Invest 1982, 47: 412-426.
    [6] Turrens J. F., Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J. 1980, 191: 421-427.
    [7] Harman D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 1956, 11: 298-300.
    [8] Michiels C., Raes M., Toussaaint O., Remacle J. Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radical. Biol. Med. 1994, 17: 235-248.
    [9] Mills G. C. Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobinfrom oxidase breakdown. J. Biol. Chem. 1957, 229: 189-197.
    [10] Rotruck J. T., Pope A. L., Ganther H. E., Swanson A. B., Hafeman D. G., Hoekstra W. G. Selenium: Biochemical role as a component of glutathione peroxidase. Science 1973, 179: 588–590.
    [11] FlohéL., Günzler W. A., Schock H. H. Glutathione peroxidase: a selenoenzyme. FEBS Letts. 1973, 32: 132-134.
    [12] Luo G. M., Ren X. J., Liu J. Q., Mu Y., Shen J. C. Towards more efficient glutathione peroxidase mimics: substrate recognition and catalytic group assembly. Curr. Med. Chem. 2003, 10: 1151-1183.
    [13] Takebe G., Yarimizu J., Saito Y., Hayashi T., Nakamura H., Yodoi J., Nagasawa S., Takahashi K. A comparative study on the hydroperoxide and thiol specificity of the glutathione peroxidase family and selenoprotein P. J. Bio. Chem. 2002, 277: 41254-41258.
    [14] Jiang Z. H. The read-through efficiency of selenocysteine and expression of selenocysteine containing GST in Escherichia coli. PhD Thesis, Jilin University, 2005, p136.
    [15] Chu F. F., Doroshow J. H., Esworthy R. S. Expression, characterization, and tissue distribution of a new celluar selenium-dependent glutathione peroxidase, GSH-PX-GI. J. Biol. Chem. 1993, 268: 2571-2576.
    [16] Mork H., Lex B., Scheurlen M. Expression pattern of gastrointestinal selenoproteins-targets for selenium supplementation. Nutrition and Cancer 1998, 32: 64-65.
    [17] Yamamoto Y., Nagata Y., Niki E. Plasma glutathione peroxidase reduces phosphatidylcholine hydroperoxide. Biochem. Biophys. Res. Commun. 1993, 193: 133-138.
    [18] Ciappellano S., Testolin G., Porrini M. Effects of durum wheat dietary selenium on glutathione peroxidase activity and Se content in long-term-fed rats. Ann. Nutr. Metab. 1989, 33: 22-30.
    [19] Bellomo G., Maggi E., Palladini G. Endogenous and exogenous antioxidants and thegeneration of antigenic epitopes in oxidatively-modified LDL. Biofactors 1997, 6: 91-98.
    [20] Nakagawa Y., Imai H. Novel functions of mitochondrial phospholipids hydroperoxide glutathione peroxidase (PHGPx) as an anti-apoptotic factor. J. Health Sci. 2000, 46: 414–417.
    [21] Ursini F., Heim S., Kiess M., Maiorino M., Roveri A., Wissing J., FlohéL. Dual function of the selenoprotein PHGPx during sperm maturation. Science 1999, 285: 1393–1396.
    [22] Imai H., Suzuki K., Ishizaka K., Ichinose S., Oshima H., Okayasu I. Emotod K., Umedad M., Nakagawa Y. Failure of the expression of phospholipid hydroperoxide glutathione peroxidase in the spermatozoa of human infertile males. Biol Reprod. 2001, 64: 674-683.
    [23] Zini A., Schlegel P. N. Expression of glutathione peroxidases in the adult male rat reproductive tract. Fertil Steril 1997, 68: 689-695.
    [24] Esworthy R. S., Swiderek K. M., Ho Y. S., Chu F. F. Selenium-dependent glutathione peroxidase-gi is a major glutathione peroxidase activity in the mucosal epithelium of rodent intestine. Biochem. Biophys. Acta. 1998, 1381: 213-226.
    [25] Takahashi K., Avissar N., Whitin J., Cohen H. Purification and characterization of human plasma glutathione peroxidase: a selenoglycoprotein distinct from the known cellular enzyme. Arch. Biochem. Biophys. 1987, 256: 677-686.
    [26] Ursini F., Maiorino M., Gregolin C. The selenoenzyme phospholipid hydroperoxide glutathione peroxidase. Biochim. Biophys. Acta. 1985, 839: 62-70.
    [27] Thomas J. P., Maiorina M., Ursini F., Girotti A. W. Protective action of phospholipid hydroperoxide glutathione peroxidase against membrane-damaging lipid peroxidation.-in situ reduction of phospholipid and cholesterol hydroperoxides. J. Biol. Chem. 1990, 265: 454-461.
    [28] Epp O., Ladenstein R., Wendel A. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur. J. Biochem. 1983, 133: 51-69.
    [29] Ren B., Huang W., ?kesson B., Ladenstein R. The crystal structure of seleno-glutathione peroxidase from human plasma at 2.9 ? resolution. J. Mol. Biol. 1997, 268: 869-885.
    [30] FlohéL., Loschen G., Günzler W. A., Eichele E. Glutathione peroxidase, the kinetic mechanism. Hoppe-Seyler's Z Physiol. Chem. 1972, 353: 987-999.
    [31] Ursini F., Maiorini M., Gregolin C. Purification from pig liver of a protein which protects liposomes and biomembranes from peroxidative degradation and exhibits glutathione peroxidase activity on phosphatidylcholine hydroperoxides. Biochem. Biophys. Acta. 1982, 710: 197-211.
    [32] Ganther H. E., Kraus R. J. Oxidation states of glutathione peroxidase. Methods Enzymol. 1984, 107: 192-193.
    [33] FlohéL. Glutathione peroxidase. Basic. Life. Sci. 1988, 49: 663-668.
    [34] Dalziel K. The interpretation of kinetic data for enzyme-catalysed reactions involving three substrates. Biochem. J. 1969, 114: 547-556.
    [35] Dalziel K. Initial steady state velocities in the evaluation of enzyme-coenzyme-substrate reaction mechanisms. Acta. Chem. Scand. 1957, 11: 1706-1723.
    [36] Segel I. H. Enzyme kinetics. John Wiley and Sons, New York, 1975, p227.
    [37] Carsol M. A., Pouliquen-Sonaglia I., Lesgards G., Marchis-Mouren G., Puigserver A., Santimone M. A new kinetic model for the mode of action of soluble and membrane-immobilized glutathione peroxidase from bovine erythrocytes-effects ofselenium. Eur. J. Biochem. 1997, 247: 248-255.
    [38] Cleland W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products (nomenclature and rate equation). Biochim. Biophys. Acta. 1963, 67: 104-137.
    [39] Mugesh G., du Mont W. W., Sies H. Chemistry of biologically important synthetic organoselenium compounds. Chem. Rev. 2001, 101: 2125-2179.
    [40] Mugesh G., Singh H. B. Synthetic organoselenium compounds as antioxidants: glutathione peroxidase activity. Chem. Soc. Rev. 2000, 29: 347-357.
    [41] Mugesh G., du Mont W. W. Structure-activity correlation between natural glutathione peroxidase (GPx) and mimics: a biomimetic concept for the design and synthesis of more efficient GPx mimics. Chemistry-A European Journal. 2004, 7: 1365-1370.
    [42] Mugesh G., Singh H. B. Heteroatom-directed aromatic lithiation: a versatile route to the synthesis of organochalcogen (Se, Te) compounds. Acc. Chem. Res. 2002, 35: 226-236.
    [43] Prabhakar R., Vreven T., Morokuma K., Musaev D. G. Elucidation of the mechanism of selenoprotein glutathione peroxidase(GPx)-catalyzed hydrogen peroxide reduction by two glutathione molecules: a density functional study. Biochemistry 2005, 44: 11864-11871.
    [44] Gettins P., Crews B. C. 77Se NMR characterization of 77Se-labeled ovine erythrocyte glutathione peroxidase. J. Biol. Chem. 1991, 266: 4804-4809.
    [45] Wu R., Hernandez G., Odom J. D., Dunlap R. B., Silks L. Unusual N-H...Se bonding detected by HMQC 1H/77Se NMR spectroscopy. Chem. Commun. 1996, 1125-1126.
    [46] Rocher C., Lalanne J. L., Chaudiére J. Purification and properties of a recombinant sulfur analog of murine selenium-glutathione peroxidase. Eur. J. Biochem. 1992, 205: 955-960.
    [47] Sies H., Masumoto H. Ebselen as a glutathione peroxidase mimic and as a scavenger of peroxynitrite. Adv. Pharmacol. 1997, 38: 229-246.
    [48] Engman L., Stern D., Cotgrware I. A., Andersson C. M. Thiol peroxidase activity of diaryl ditellurides as determined by a 1H NMR method. J. Am. Chem. Soc. 1992, 114: 9737-9743.
    [49] Engman L., Stern D., Pelcman M., Andersson C. M. Thiol peroxidase activity of diorganyl tellurides. J. Org. Chem. 1994, 59: 1973-1979.
    [50] Kanda T., Engman L., Cotgreave I. A., Powis G. Novel water-soluble diorganyl tellurides with thiol peroxidase and antioxidant activity. J. Org. Chem. 1999, 64: 8161-8169.
    [51] Ahsan K., Drake M. D., Higgs D. E., Wojciechowski A. L., Tse B. N., Bateman M. A., You Y., Detty M. R. Dendrimeric organotelluride catalysts for the activation of hydrogen peroxide. Improved catalytic activity through statistical and stereoelectronic effects. Organometallics 2003, 22: 2883-2890.
    [52] Detty M. R., Friedman A. E., Oserof A. R. A mechanism for the oxidation of glutathione to glutathione disulfide with organotellurium (IV) and organoselenium (IV) compounds. A stepwise process with implications for photodynamic therapy and other oxidative chemotherapy. J. Org. Chem. 1994, 59: 8245-8250.
    [53] Liu J., Gao S., Luo G., Yan G., Shen J. Artificial imitation of glutathione peroxidase with 6-selenium-bridgedβ-cyclodextrin. Biochem. Biophys. Res. Commun. 1998, 247: 397-400.
    [54] Liu J., Luo G., Ren X., Mu Y., Bai Y., Shen, J. A bis-cyclodextrin diselenide with glutathione peroxidase-like activity. Biochim. Biophys. Acta. 2000, 1481: 222-228.
    [55] Ren X., Yang L., Liu J., Su D., You D., Liu C., Zhang K., Luo G., Mu Y., Yan G., Shen J. A novel glutathione peroxidase mimic with antioxidant activity. Arch. Biochem. Biophys. 2001, 387: 250-256.
    [56] Ren X., Liu J., Luo G., Zhang Y., Luo Y., Yan G., Shen J. A novel selenocystine-β-cyclodextrin conjugate that acts as a glutathione peroxidase mimic. Bioconjugate Chem. 2000, 11: 682-687.
    [57] Ren X., Xue Y., Liu J., Zhang K., Zheng J., Luo G., Guo C., Mu Y., Shen J. A novel cyclodextrin-derived tellurium compound with glutathione peroxidase activity. ChemBioChem. 2002, 3: 356-363.
    [58] Ren X., Xue Y., Zhang. K., Liu J., Luo G., Zheng J., Mu Y., Shen J. A novel dicyclodextrinyl ditelluride compound with antioxidant activity. FEBS Lett. 2001, 507: 377-380.
    [59] Wu Z. P., Hilvert D. Selenosubtilisin as a glutathione peroxidase mimic. J. Am. Chem. Soc. 1990, 112: 5647-5648.
    [60] House K. L., Dunlap R. B., Odom J. D., Wu Z. P., Hilvert D. Structural characterization of selenosubtilisin by selenium-77NMR spectroscopy. J. Am. Chem. Soc. 1992, 114: 8573-8579.
    [61] Syed R., Wu Z. P., Hogle J. M., Hilvert, D. Crystal structure of selenosubtilisin at 2.0- ? resolution. Biochemistry 1993, 32: 6157-6164.
    [62] Bell J. M., Fisher M. L., Wu Z. P., Hilvert, D. Kinetic studies on the peroxidase activity of selenosubtilisin. Biochemistry 1993, 32: 3754-3762.
    [63] Mao S. Z., Dong Z. Y, Liu J. Q., Li X. Q., Liu X. M., Luo G. M., Shen J. C. Semisynthetic tellurosubtilisin with glutathione peroxidase activity. J. Am. Chem. Soc. 2005, 127: 11588-11589.
    [64] Ren X., Jemth P., Board P. G., Luo G., Mannervik B., Liu J., Zhang K., Shen J. A semisynthetic glutathione peroxidase with high catalytic efficiency: selenoglutathione transferase. Chem. Biol. 2002, 9: 789-794.
    [65] Ding L., Liu Z., Zhu Z. Q., Luo G. M., Zhao D. Q., Ni J. Z. Biochemical characterization of selenium-containing catalytic antibody as a cytosolic glutathione peroxidase mimic. Biochem. J. 1998, 332: 251-255.
    [66] Luo G. M., Ding L., Liu Z., Yang T. S., Ni J. Z. A selenium-containing abzyme, the activity of which surpassed the level of native glutathione peroxidase. Ann. N. Y. Acad. Sci. 1998, 864: 136-141.
    [67] Luo G .M., Zhu Z. Q., Ding L., Gao G., Sun Q., Liu Z., Yang T. S., Shen J. C. Generation of selenium-containing abzyme by using chemical mutation. Biochem. Biophys. Research Commun. 1994, 198: 1240-1247.
    [68] Su D., Ren X. J., You D. L., Li D., Mu Y., Yan G. L., Zhang Y., Luo Y. M., Xue Y., Shen J. C., Liu Z., Luo G. M. Generation of several selenium-containing catalytic antibodies with high catalytic efficiency. Arch. Biochem. Biophys. 2001, 395: 177-184.
    [69] Liu L., Mao S. Z., Liu X. M., Huang X., Xu J. Y., Liu J. Q., Luo G. M., Shen J. C. Functional mimicry of the active site of glutathione peroxidase by glutathione imprinted selenium-containing protein. Biomacromolecules 2008, 9: 363-368.
    [70] Coleman J. O. D., Blake-Kalff M. M. A., Davies T. G. E. Detoxification of xenobiotics by plants: chemical modification and vacuolar compartmentation. Trends Plant Sci. 1997, 2: 144-151.
    [71] Bartling D., Radzio R., Steiner U., Weiler E. W. A glutathione S-transferase with glutathione-peroxidase activity from Arabidopsis thaliana. Eur. J. Biochem. 1993, 216: 579-586.
    [72] Fernández-Ca?ón J. M., Pe?alva M. A. Characterisation of a fungal maleylacetoacetate isomerase genes and identification of its human homologue. J. Biol. Chem. 1998, 273: 329-337.
    [73] Board P. G., Coggan M., Chelvanayagam G., Easteal S., Jermiin L. S., Schulte G. K., Danley D. E., Hoth L. R., Griffor M. C., Kamath A. V., Rosner M. H., Chrunyk B. A., Perregaux D. E., Gabel C. A., Geoghegan K. F., Pandit J. Identification, characterization, and crystal structure of the Omega class glutathione transferases. J. Biol. Chem. 2000, 275: 24798-24806.
    [74] Axarli I. A., Ridgen D. J., Labrou N. E. Characterization of the ligandin site of maize glutathione S-transferase I. Biochem. J. 2004, 382: 885-893.
    [75] Adler V., Yin Z., Fuchs S. Y., Benezra M., Rosario L., Tew K. D., Pinkus M. R., Sardana M., Henderson C. J., Wolf C. R., Ronai Z. Regulation of JNK signaling by GSTp. EMBO J. 1999,18: 1321-1334.
    [76] Kanaoka Y., Ago H., Inagaki E., Nanayama T., Miyano M., Kikuno R., Fujii Y., Eguchi N., Toh H., Urade Y., Hayaishi O. Cloning and crystal structure of hematopoietic prostglandin D synthase. Cell 1997, 90: 1085-1095.
    [77] Thom R., Dixon D. P., Edwards R., Cole D. J., Lapthorn A. J. The structure of a Zeta class glutathione S-transferase from Arabidopsis thaliana: characterisation of a GST with novel active-site architecture and a putative role in tyrosine catabolism. J. Mol. Biol. 2001, 308: 949-962.
    [78] Hayes J. D., McLellan L. I. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radical. Res. 1999, 31: 273-300.
    [79] Guengerich F. P. Enzymatic oxidation of xenobiotic chemicals. CRC Crit. Rev. Biochem. Mol. Biol. 1990, 25: 97-153.
    [80] Ishikawa T. The ATP-dependent glutathione S-conjugate export pump. Trends Biochem. Sci. 1992, 17: 463-468.
    [81] Heijn M., Oude-Elferink R. P. J., Jansen P. M. L. ATP-dependent multispecific organic anion transport system in rat erythrocyte membrane vesicles. Am. J. Physiol. 1992, 262: C104-C110.
    [82] Saxena M., Singhal S. S., Awasthi S., Singh S. V., Labelle E. F., Zimniak P., Awasthi Y. C. Dinitrophenyl S-glutathione ATPase purified from human muscle catalyses ATP hydrolysis in the presence of leukotrienes. Arch. Biochem. Biophys. 1992, 298: 231-237.
    [83] Gottesman M. M., Pastan I. Biochemistry of multidrug-resistance mediated by the multidrug transporter. Annu. Rev. Biochem. 1993, 62: 385-427.
    [84] Jedlitschky G., Leier I., Buchholz U., Centre M., Keppler D. ATP dependent transport of glutathione S-conjugates by the multidrug resistance associated protein. Cancer Res. 1994, 54: 4833-4836.
    [85] van Veen H. W., Konings W. N. Multidrug transporters from bacteria to man: similarities in structure and function. Semin. Cancer Biol. 1997, 8: 183-191.
    [86] Hayes J. D., Flanagan J. U., Jowsey I. R. Glutathione transferases. Annu. Rev. Pharmacol. Toxicol. 2005, 45: 51-88.
    [87] Frova C. The plant glutathione transferase gene family: genomic structure, functions, expression and evolution. Physiol. Plant. 2003, 119: 469-479.
    [88] Ranson H., Collin F., Hemingway J. The role of alternative mRNA splicing in generating heterogeneity within the Anopheles gambiae class I glutathione S-transferase family. Proc. Natl. Acad. Sci. USA. 1998, 95: 14284-14289.
    [89] Vuilleumier S., Pagni M. The elusive roles of bacterial glutathione S-transferases: new lessons from genomes. Appl. Microbiol. Biotechnol. 2002, 58: 138-146.
    [90] Mannervik B., Danielson U. H. Glutathione transferases-structure and catalytic activity. CRC Crit. Rev. Biochem. Mol. Biol. 1988, 23: 283-337.
    [91] Hayes J. D., Mantle T. J. Use of immunoblot techniques to discriminate between the glutathione S-transferase Yf, Yk, Ya, Yn/Yb and Yc subunits and to study their distribution in extra-hepatic tissues. Evidence for three immunochemically distinct groups of transferases in the rat. Biochem. J. 1986, 233: 779-788.
    [92] Hayes J. D., Strange R. C., Percy-Robb I. W. A study of the YaYa and YaYc glutathione S-transferases from rat liver cytosol. Biochem. J. 1981, 197: 491-502.
    [93] Hayes J. D., Pulford D. J. The glutathione S-transferase supergene family: Regulation of GST and the contributions of the isoenzymes to cancer chemoprotection and drug resistance. CRC Crit. Rev. Biochem. Mol. Biol. 1995, 30: 445-600.
    [94] Thom R., Cummins I., Dixon D. P., Edwards R., Cole D. J., Lapthorn A. J. Structure of a Tau class glutathione S-transferase from wheat active in herbicide detoxification. Biochemistry 2002, 41: 7008-7020.
    [95] Dirr H. W., Reinemer P., Huber R. X-ray crystal structures of cytosolic glutathione S-transferases. Implications for protein architecture, substrate recognition and catalytic function. Eur. J. Biochem. 1994, 220: 645-661.
    [96] Wilce M. C. J., Parker M. W. Structure and function of glutathione S-transferases. Biochim. Biophys. Acta. 1994, 1205: 1-18.
    [97] Armstrong R. N. Structure, catalytic mechanism, and evolution of the glutathione transferases. Chem. Res. Toxicol. 1997, 10: 2-18.
    [98] Pemble S. E., Taylor J. B. An evolutionary perspective on glutathione transferases inferred from class-Theta glutathione transferase cDNA sequences. Biochem. J. 1992, 287: 957-963.
    [99] Ladner J. E., Parson J. F., Rife C. L., Gilliland G. L., Armstrong R. N. Parallel evolutionary pathways for glutathione transferases: structure and mechanisms of the mitochondrial class Kappa enzyme rGSTK1-1. Biochemistry 2004, 43: 352-361.
    [100] Robinson A., Huttley G. A., Booth H. S., Board P. G. Modelling and bioinformatics studies of the human Kappa-class glutathione transferase predict a novel third glutathione transferase family with similarity to prokaryotic 2-hydroxychromene-2-carboxylate isomerases. Biochem. J. 2004, 379: 541-552.
    [101] Stadtman T. C. Selenocysteine. Annu. Rev. Biochem. 1996, 65: 83-100.
    [102] K?hrl J., Brigelius-FlohéR., B?ck A., Gartner R., Meyer O., Flohe L. Selenium in biology: Facts and medical perspectives. Biol. Chem. 2000, 381: 849-864.
    [103] Jiang Z. H., Mu Y., Li W. J, Yan G. L., Luo G. M. The progress in mechanism of selenoprotein biosynthesis. Acta Biochimica et Biophysica Sinica 2002, 34: 395-399.
    [104]. Atkins J. F., Gsteland R. F. The twenty-first amino acid. Nature 2000, 407: 463-465.
    [105] Xiang T. Y., Yang S. D., Wu Y. Y. Synthesis and incoporation of selenocysteine. Journal of Hubei Institute for Nationalities. 2005, 23:114-117.
    [106] Zinoni F., Heider J., B?ck A. Features of the formate dehydrogenase mRNA necessary fordecoding of the UGA codon as selenocysteine. Proc. Natl. Acad. Sci. USA 1990, 87: 4660-4664.
    [107] Berry M .J., Banu L., Chen Y. Y., Mandel S. J., Kieffer J. D., Harney J. W., Larsen P. R. Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3? untranslated region. Nature 1991, 353: 273-276.
    [108] Wilting R., Schorling S., Persson B. C., B?ck A. Selenoprotein synthesis in archaea: Identification of an mRNA element of Methanococcus jannaschii probably directing selenocysteine insertion. J. Mol. Biol. 1997, 266: 637-641.
    [109] Sunder A., Hoekstra W. G. Incorporation of selenium from selenite and selenocysteine into glutathione in the isolated perfused rat liver. Biochem. Biophys. Res. Commu. 1980, 93: 1181-1188.
    [110] Rother M., Resch A., Wilting R., B?ck A. Selenoprotein synthesis in archaea. Biofactors 2001, 14: 75-83.
    [111]. Leifelder W., Zeholein E., Berthelot M. A. Gene for a novel tRNA species, that accepts L-serine and cotranslationally inserts selenocysteine. Nature 1988, 331: 723-725.
    [112] Veres Z., Kim I. Y., Scholz T. D., Stadtman T. C. Selenophosphate synthetase. Enzyme properties and catalytic reaction. J. Biol. Chem. 1994, 269: 10597-10603.
    [113] Adams M. D. The genome sequence of Drosophilae melamogaster. Science 2000, 287: 2185-2195.
    [114] Guimaraes M. J. Indentification of novel SelD homolog from eukaryotes bacteria and archaea: is there an autoregulatory mechanism in selenocysteine metabolism? Proc.Natl.Acad. Sci.USA 1996, 93: 15086-15091.
    [115] Leinfelder W., Stadtman T. C. B?ck A. Occurrence in vivo of selenocysteyl-tRNA (SERUCA) in Escherichia coli. Effect of Sel mutations. J. Biol. Chem. 1989, 264: 9720-9723.
    [116] Lee B. J., Rajagopalan M., Kim Y. S., You K. H., Jacobson K. B., Hatfield D. Selenocysteine tRNA[Ser]Sec gene is ubiquitous within the animal kingdom. Mol. Cell. Biol. 1990, 10: 1940-1949.
    [117] Liu Z., Reches M., Groisman I., Engelberg-Kulka H. The nature of the minimal“selenocysteine insertion sequence”(SECIS) in Escherichia coli. Nucleic Acids Res. 1998, 26: 896-902.
    [118] Baron C., Heider J., B?ck A. Interaction of translation factor SELB with the formate dehydrogenase H selenopolypeptide mRNA. Proc. Natl. Acad. Sci. USA 1993, 90: 4181-4185.
    [119] Li C., Reches M., Engelberg-Kulka H., The bulged nucleotide in the Escherichia coli minimal selenocysteine insertion sequence participates in interaction with SelB: A genetic approach. J. Bacteriol. 2000, 182: 6302-6307.
    [120] Liu Z., Reches M., Engelberg-Kulka H. A sequence in the Escherichia coli fdhF“selenocysteine insertion Sequence”(SECIS) operates in the absence of selenium. J. Mol. Biol. 1999, 294: 1073-1086.
    [121] Poole E. S., Brown C. W., Tate W. P. The identity of the base following the stop codon determines the efficiency of in vivo translational termination in Escherichia coli. EMBO J. 1995, 14: 151-158.
    [122] Sandman K. E., Noren C. J. The efficiency of Escherichia coli selenocysteine insertion isinfluenced by the immediate downstream nucleotide. Nucleic Acids Res. 2000, 28: 755-761.
    [123] Martin G. W. III, Harney J. W., Berry M. J. Selenocysteine incorporation in eukaryotes: Insights into mechanism and efficiency from sequence, structure, and spacing proximity studies of the type 1 deiodinase SECIS element. RNA 1996, 2: 171-182.
    [124] Grundner-Culemann E., Martin G. W., Harney J. W., Berry M. J. Two distinct SECIS structures capable of directing selenocysteine incorporation in eukaryotes. RNA 1999, 5: 625-635.
    [125] Kollmus H., Flohe L., McCarthy J. E. Analysis of eukaryotic mRNA structures directing cotranslational incorporation of selenocysteine. Nucleic Acids Res. 1996, 24: 1195-1201.
    [126] Copeland P. R., Fletcher J. E., Carlson B. A., Hatfield D. L., Driscoll D. M. A novel RNA binding protein, SBP2, is required for the translation of mammalian selenoprotein mRNAs. EMBO J. 2000, 19: 306-314.
    [127] Hazebrouck S., Camoin L., Faltin Z., Strosberg A. D., Eshdat Y. Substituting selenocysteine for catalytic cysteine 41 enhances enzymatic activity of plant phospholipid hydroperoxide glutathione peroxidase expressed in Escherichia coli. J. Biol. Chem. 2000, 275: 28715-28721.
    [128] Hortin G., Boime I. Applications of amino acid analogs for studying co-and posttranslational modifications of proteins. Methods Enzymol. 1983, 96: 777-784.
    [129] Wilson M. J., Hatfield D. L. Incorporation of modified amino acids into proteins in vivo. Biochim. Biophys. Acta. 1984, 781: 205-215.
    [130] Richmond M. H. The effect of amino acid analogues on growth and protein synthesis in microorganisms. Bacteriol. Rev. 1962, 26: 398-420.
    [131] Levine M., Tarver H. Studies on ethionine-Incorporation of ethionine into rat proteins. J. Biol. Chem. 1951, 192: 835-850.
    [132] Cowie D. B., Cohen G. N. Biosynthesis by Escherichia coli of active altered proteins containing selenium instead of sulfur. Biochim. Biophys. Acta. 1957, 26: 252-261.
    [133] Richmond M. H. Incorporation of canavanine by Staphylococcus aureus 524 SC. Biochem. J. 1959, 73: 261-264.
    [134] Fildes P. The biosynthesis of tryptophan by Bact. typhosum. Brit. J. Exp. Pathol. 1945, 26: 416-428.
    [135] Cohen G. N., Munier R. Effects of structural analogues of amino acids on growth and synthesis of proteins and enzymes in Escherichia coli. Biochim. Biophys. Acta. 1959, 31: 347-356.
    [136] Kirk K. L. Biochemistry of halogenated organic compounds. Plenum, New York. 1991.
    [137] Xie J. M., Schultz P. G. A chemical toolkit for proteins—an expanded genetic code. Nature Reviews 2006, 7: 775-782.
    [138] Budisa N., Steipe B., Demange P., Eckerskorn C., Kellermann J., Huber R. High-level biosynthetic substitution of methionine in proteins by its analogs 2-aminohexanoic acid, selenomethionine, telluromethionine and ethionine in Escherichia coli. Eur. J. Biochem. 1995, 230: 788-796.
    [139] Ross J. B. A., Szabo A. G., Hogue C. W. V. Enhancement of protein spectra with tryptophan analogs: fluorescence spectroscopy of protein-protein and protein-nucleic acid interactions Fluoresc. Spectrosc. 1997, 278: 151-190.
    [140] Bronskill P. M., Wong J. T. Suppression of fluorescence of tryptophan residues in proteins by replacement with 4-fluorotryptophan. Biochem. J. 1988, 249: 305-308.
    [141] Wong C. Y., Eftink M. R. Incorporation of tryptophan analogues into staphylococcal nuclease, its V66W mutant, and d137–149 fragment: spectroscopic studies. Biochemistry 1998, 37: 8938-8946.
    [142] Yoshikawa E., Fournier M. J., Mason T. L., Tirrell D. A. Genetically engineered fluoropolymers. Synthesis of repetitive polypeptides containing p-fluorophenylalanine residues. Macromolecules 1994, 27: 5471-5475.
    [143] Kothakota S., Mason T., Tirrell D. A., Fournier M. J. Biosynthesis of a periodic protein containing 3-thienylalanine: a step toward genetically engineered conducting polymers. J. Am. Chem. Soc. 1995, 117: 536-537.
    [144] Ring M., Armitage I. M., Huber R. E. m-Fluorotyrosine substitution inβ-galactosidase: evidence for the existence of a catalytically active tyrosine. Biochem. Biophys. Res. Commun. 1985, 131: 675-680.
    [145] Budisa N., Minks C., Medrano F. J., Lutz J, Huber R., Moroder L. Residue-specific bioincorporation of non-natural, biologically active amino acids into proteins as possible drug carriers: Structure and stability of the per-thiaproline mutant of annexin V. Proc. Natl. Acad. Sci. USA 1998, 95: 455-459.
    [146] Muller S., Senn, H., Gsel1 B., Vetter W., Baron C., B?ck A. The formation of diselenide bridges in proteins by incorporation of selenocysteine residues: Biosynthesis and characterization of (Se)2-thioredoxin. Biochemistry 1994, 33: 3404-3412.
    [147] Hendrickson W. A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science 1991, 254: 51-58.
    [148] Budisa N., Karnbrock W., Steinbacher S., Humm A., Prade L., Neuefeind T., Moroder L., Huber R. Bioincorporation of telluromethionine into proteins: A promising new approach for X-ray structure analysis of proteins. J. Mol. Biol. 1997, 270: 616-623.
    [149] Minks C., Huber R., Moroder L., Budisa N. Noninvasive tracing of recombinant proteins with "fluorophenylalanine-fingers" Anal. Biochem. 2000, 284: 29-34.
    [150] Budisa N., Rubini M., Bae J. H., Weyher E., Wenger W., Golbik R., Huber R., Moroder L. Global replacement of tryptophan with aminotryptophans generates non-invasive protein-based optical pH sensors. Angew. Chem. Int. Ed. 2002, 41: 4066-4069.
    [151] Boschi-Muller S., Muller S., Dorsselaer A. V., B?ck A, Branlant G. Substituting selenocysteine for active site cysteine 149 of phosphorylating glyceraldehyde 3-phosphate dehydrogenase reveals a peroxidase activity. FEBS Letters 1998, 439: 241-245.
    [152] Strub M. P., Hoh F., Sanchez J. F., Strub J. M., B?ck A., Aumelas A., Dumas C. Selenomethionine and selenocysteine double labeling strategy for crystallographic phasing. Structure 2003, 11: 1359-1367.
    [1] Freeman B. A, Crapo J. D. Biology of disease. Free radicals and tissue injury. Lab Invest 1982, 47: 412-426.
    [2] Turrens J. F., Boveris A. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem J. 1980, 191: 421-427.
    [3] Harman D. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 1956, 11: 298-300.
    [4] Michiels C., Raes M., Toussaaint O., Remacle J. Importance of Se-glutathione peroxidase, catalase, and Cu/Zn-SOD for cell survival against oxidative stress. Free Radical. Biol. Med. 1994, 17: 235-248.
    [5] Mills G. C. Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobinfrom oxidase breakdown. J. Biol. Chem. 1957, 229: 189-197.
    [6] Rotruck J. T., Pope A. L., Ganther H. E., Swanson A. B., Hafeman D. G., Hoekstra W. G. Selenium: Biochemical role as a component of glutathione peroxidase. Science 1973, 179: 588-590.
    [7] FlohéL., Günzler W. A., Schock H. H. Glutathione peroxidase: a selenoenzyme. FEBS Letts. 1973, 32: 132-134.
    [8] Sies H., Masumoto H. Ebselen as a glutathione peroxidase mimic and as a scavenger of peroxynitrite. Adv. Pharmacol. 1997, 38: 229-246.
    [9] Mugesh G., du Mont W. W. Structure-activity correlation between natural glutathione peroxidase (GPx) and mimics: a biomimetic concept for the design and synthesis of more efficient GPx mimics. Chemistry-A European Journal 2004, 7: 1365-1370.
    [10] Mugesh G., Singh H. B. Heteroatom-directed aromatic lithiation: A versatile route to the synthesis of organochalcogen (Se, Te) compounds. Acc. Chem. Res. 2002, 35: 226-236.
    [11] Liu J., Gao S., Luo G., Yan G., Shen J. Artificial imitation of glutathione peroxidase with 6-selenium-bridgedβ-cyclodextrin. Biochem. Biophys. Res. Commun. 1998, 247: 397-400.
    [12] Liu J., Luo G., Ren X., Mu Y., Bai Y., Shen J. A bis-cyclodextrin diselenide with glutathione peroxidase-like activity. Biochim. Biophys. Acta. 2000, 1481: 222-228.
    [13] Ren X., Yang L., Liu J., Su D., You D., Liu C., Zhang K., Luo G., Mu Y., Yan G., Shen J. A novel glutathione peroxidase mimic with antioxidant activity. Arch. Biochem. Biophys. 2001, 387: 250-256.
    [14] Ren X., Liu J., Luo G., Zhang Y., Luo Y., Yan G., Shen J. A novel selenocystine-β-cyclodextrin conjugate that acts as a glutathione peroxidase mimic. Bioconjugate Chem. 2000, 11: 682-687.
    [15] Ren X., Xue Y., Liu J., Zhang K., Zheng J., Luo G., Guo C., Mu Y., Shen J. A novel cyclodextrin-derived tellurium compound with glutathione peroxidase activity. ChemBioChem. 2002, 3: 356-363.
    [16] Ren X., Xue Y., Zhang. K., Liu J., Luo G., Zheng J., Mu Y., Shen J. A novel dicyclodextrinyl ditelluride compound with antioxidant activity. FEBS Lett. 2001, 507: 377-380.
    [17] Wu Z. P., Hilvert D. Selenosubtilisin as a glutathione peroxidase mimic. J. Am. Chem. Soc. 1990, 112: 5647-5648.
    [18] Mao S. Z., Dong Z. Y, Liu J. Q., Li X. Q., Liu X. M., Luo G. M., Shen J. C. Semisynthetictellurosubtilisin with glutathione peroxidase activity. J. Am. Chem. Soc. 2005, 127: 11588-11589.
    [19] Su D., Ren X. J., You D. L., Li D., Mu Y., Yan G. L., Zhang Y., Luo Y. M., Xue Y., Shen J. C., Liu Z., Luo G. M. Generation of several selenium-containing catalytic antibodies with high catalytic efficiency. Arch. Biochem. Biophys. 2001, 395: 177-184.
    [20] Liu L., Mao S. Z., Liu X. M., Huang X., Xu J. Y., Liu J. Q., Luo G. M., Shen J. C. Functional mimicry of the active site of glutathione peroxidase by glutathione imprinted selenium-containing protein. Biomacromolecules 2008, 9: 363-368.
    [21] Stadtman T. C. Selenocysteine. Annu Rev Biochem 1996, 65: 83-100.
    [22] Atkins J. F., Gsteland R. F. The twenty-first amino acid. Nature 2000, 407: 463-465.
    [23] Muller S., Senn, H., Gsel1 B., Vetter W., Baron C., B?ck A. The formation of diselenide bridges in proteins by incorporation of selenocysteine residues: Biosynthesis and characterization of (Se)2-thioredoxin. Biochemistry 1994, 33: 3404-3412.
    [24] Martin J. L. Thioredoxin-a fold for all reasons. Structure 1995, 3: 245-250.
    [25] Hurst R., Bao Y., Jemth P., Mannervik B., Williamson G. Phospholipid hydroperoxide glutathione peroxidase activity of human glutathione transferases, Biochem J. 1998, 332: 97-100.
    [26] Budisa N., Karnbrock W., Steinbacher S., Humm A., Prade L., Neuefeind T., Moroder L., Huber R. Bioincorporation of telluromethionine into proteins: A promising new approach for X-ray structure analysis of proteins. J. Mol. Biol. 1997, 270: 616-623.
    [1] Penning T. M., Jez J. M. Enzyme redesign. Chem. Rev. 2001, 101: 3027-3046.
    [2] Hedstrom L., Graf L., Stewart C. B., Rutter W. J., Phillips M. A. Modulation of enzyme specificity by site-directed mutagenesis. Methods Enzymol. 1991, 202: 671-687.
    [3] Braman J., Papworth C., Greener A. Site-directed mutagenesis using double-stranded plasmid DNA templates. Methods Mol Biol. 1996, 57: 31-44.
    [4] Martin J. L. Thioredoxin-a fold for all reasons. Structure 1995, 3: 245-250.
    [5] Hurst R., Bao Y., Jemth P., Mannervik B., Williamson G., Phospholipid hydroperoxide glutathione peroxidase activity of human glutathione transferases. Biochem J. 1998, 332: 97-100.
    [6] Rotruck J. T., Pope A. L., Ganther H. E., Swanson A. B., Hafeman D. G., Hoekstra W. G. Selenium: Biochemical role as a component of glutathione peroxidase. Science 1973, 179: 588-590.
    [7] FlohéL., Günzler W. A., Schock H. H. Glutathione peroxidase: a selenoenzyme. FEBS Letts. 1973, 32: 132-134.
    [8] Stadtman T.C. Selenocysteine. Annu Rev Biochem 1996, 65: 83-100.
    [9] Atkins J. F., Gsteland R. F. The twenty-first amino acid. Nature 2000, 407: 463-465.
    [10] Muller S., Senn, H., Gsel1 B., Vetter W., Baron C., B?ck A. The formation of diselenide bridges in proteins by incorporation of selenocysteine residues: Biosynthesis and characterization of (Se)2-thioredoxin. Biochemistry 1994, 33: 3404-3412.
    [11] Budisa N., Karnbrock W., Steinbacher S., Humm A., Prade L., Neuefeind T., Moroder L., Huber R. Bioincorporation of telluromethionine into proteins: A promising new approach for X-ray structure analysis of proteins. J. Mol. Biol. 1997, 270: 616-623.
    [12] Ly S. Y., Kim D. H., Kim M. H. Square-wave cathodic stripping voltammetric analysis of RDX using mercury-film plated glassy carbon electrode. Talanta 2002, 58: 919-926.
    [13] Hou Y. M., Westhof E., Giege R. An unusual RNA tertiary interaction has a role for the specific aminoacylation of a transfer RNA. Proc. Natl. Acad. Sci. USA 1993, 90: 6776-6780.
    [14] Wolfson A. D., Pleiss J. A., Uhlenbeck O. C. A new assay for tRNA aminoacylation kinetics. RNA 1998, 4: 1019-1023.
    [15] Zhang C. M., Liu C. P., Slater S., Hou Y. M. Aminoacylation of tRNA with phosphoserine for synthesis of Cys-tRNACys . Nat. Struct. Mol. Biol. 2008, 15: 507-514.
    [16] Tan K. L., Board P. G. Purification and characterization of a recombinant human Theta-class glutathione transferase(GSTT2-2). Biochem. J. 1996, 315: 727-732.
    [17] Yu H. J., Liu J. Q., B?ck A., Li J., Luo G. M., Shen J. C. Engineering glutathione transferase to a novel glutathione peroxidase mimic with high catalytic efficiency: incorporation of selenocysteine into a glutathione-binding scaffold using an auxotrophic expression system. J. Biol. Chem. 2005, 280: 11930-11935.
    [18] Board P. G., Russel R. J., Marano R. J., Oakeshott J. G. Purification, molecular cloning and heterologous expression of a glutathione S-transferase from the Australian sheep blowfly (Lucilia cuprina).Biochem. J. 1994, 299: 425-430.
    [19] Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantitiesof protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72: 248-254.
    [20] Cavallini D., Graziani M. T., Dupr S. Determination of disulphide groups in proteins. Nature 1966, 212: 294-295.
    [21] Chasteen T. G., Bentley R. Biomethylation of selenium and tellurium: microorganisms and plants. Chemical Reviews 2003, 103: 1-25.
    [22] Duckett S. Fetal encephalopathy following ingestion of tellurium. Experientia 1970, 26: 1239-1241.
    [23] Toews A. D., Lee S. Y., Popko B., Morell P. Tellurium-induced neuropathy: A model for reversible reductions in myelin protein gene expression. J. Neurosci. Res. 1990, 26: 501-507.
    [24] Widy-Tyszkiewicz E., Piechal A., Gajkowska B., Smiaek M. Tellurium-induced cognitive deficits in rats are related to neuropathological changes in the central nervous system. Toxicol. Lett. 2002, 131: 203-214.
    [25] Anon. Merck’s Manual of the Materia Medica, 1st ed; Merck &Co: New York, 1899; 1999 facsimile edition.
    [26] Sredni B., Caspi R. R., Klein A., Kalechman Y., Danziger Y., BenYa’akov M., Tamari T., Shalit F., Albeck M. A new immunomodulating compound (AS-101) with potential therapeutic application. Nature 1987, 330: 173-176.
    [27] Wieslander E., Engman L., Svensj? E., Erlansson M., Johansson U., Linden M., Andersson C. M., Brattsand R. Antioxidative properties of organotellurium compounds in cell systems. Biochem. Pharmacol. 1998, 55: 573-584.
    [28] Fr?nzle S., Markert B. The biological system of the elements (BSE). Part II: A theoretical model for establishing the essentiality of chemical elements. The application of stoichiometric network analysis to the biological system of the elements. Sci. Total Environ. 2000, 249: 223-241.
    [29] Ramadan S. E., Razak A. A., Ragab A. M., El-Meleigy M. Incorporation of tellurium into amino acids and proteins in a tellurium-tolerant fungi. Biol. Trace Elem. Res. 1989, 20: 225-232.
    [30] Yu L. Y., He K. M., Chai D. R., Yang C. M., Zheng O. Y. Evidence for telluroamino acid in biological materials and some rules of assimilation of inorganic tellurium by yeast. Anal. Biochem. 1993, 209: 318-322.
    [31] Siddik Z. H., Newman R. A. Use of platinum as a modifier in the sensitive detection of. tellurium in biological samples. Anal. Biochem. 1988, 172:190-196.
    [32] Newman R. A., Osborn S., Siddik Z. H. Determination of tellurium in biological fluids by means of electrothermal vapourization-inductively coupled to plasma mass spectrometry (ETV-ICP-MS). Clin. Chim. Acta 1989, 179: 191-196.
    [33] Boles J. O., Lebioda L., Dunlap R. B., Odum J. D. Telluromethionine in structural biochemistry. SAAS Bull. Biochem. Biotechnol. 1995, 8: 29-34.
    [34] Budisa N., Steipe B., Demange P., Eckerskorn C., Kellernman J., Huber R. High level biosynthetic substi-tution of methionine in proteins by its analogues 2-aminohexanoic acid, selenomethionine, telluromethionine and ethionine in Escherichia coli. Eur. J. Biochem. 1995, 230: 788-796.
    [35] Yu L., He K., Chai D., Yang C., Zheng O. Evidence for telluroamino acid in biological materials and some rules for assimilation of inorganic tellurium by yeast. Anal. Biochem.1993, 209: 318-322.
    [36] Larner A. J. How does garlic exert its hypocholesterolaemic action? The tellurium hypothesis. Med. Hypothesis 1995, 44: 295-297.
    [37] De Meio R. H., Henriques F. C. Tellurium IV: excretion and distribution in the tissues studied with a radioactive isotope. J. Biol. Chem. 1947, 169: 609-623.
    [38] Vignoli L., Defretin J. P. La toxicologie de tellure. Ann. Biol. Clin. 1964, 22: 399-417.
    [39] Wilson S. R., Zucker P. A., Huang R. R. C., Spector A. Development of synthetic compounds with glutathione peroxidase activity. J. Am. Chem. Soc. 1989, 111: 5936-5939.
    [40] Habig W. H., Jakoby W. B. Assays for differentiation of glutathione S-transferases. Methods Enzymol. 1981, 77: 398-405.
    [41] Mugesh G., Singh H. B. Synthetic organoselenium compounds as antioxidants: Glutathione peroxidase activity. Chem. Soc. Rev. 2000, 29: 347-357.
    [42] Mannervik B. Glutathione peroxidase. Methods Enzymol. 1985, 113: 490-495.
    [43] Su D., You D. L., Ren X. J., Luo G. M., Mu Y., Yan G. L., Xue Y., Shen J. C. Kinetics study of a selenium-containing ScFv catalytic antibody that mimics glutathione peroxidase. Biochem. Biophys. Res. Commun. 2001, 285: 702-707.
    [44] Wilce M. C. J., Board P. G., Feil S. C., Parker M. W. Crystal structure of a theta-class glutathione transferase. The EMBO Journal 1995, 14: 2133-2143.
    [45] Arthur J. R. The glutathione peroxidases. Cell. Mol. Life Sci. 2000, 57: 1825-1835.
    [46] Giles G. I., Fry F. H., Tasker K. M., Holme A. L., Peers C., Green K. N., Klotz L., Sies H., Jacob C. Evaluation of sulfur, selenium and tellurium catalysts with antioxidant potential. Organic & Biomolecular Chemistry 2003, 1: 4317-4322.
    [47] Rooseboom M., Vermeulen N. P. E., Durgut F., Commandeur J. N. M. Comparative study on the bioactivation mechanisms and cytotoxicity of Te-phenyl-L-tellurocysteine, Se-phenyl-L-selenocysteine, and S-phenyl-L-cysteine. Chem. Res. Toxicol. 2002, 15: 1610-1618.
    [48] Epp O., Ladenstein R., Wendel A. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm resolution. Eur. J. Biochem. 1983, 133: 51-69.
    [49] Mao S. Z. Generation of GPx mimic employed semisynthetic methods. PhD Thesis, Jilin University 2005, p96.
    [50] Ding L., Liu Z., Zhu Z. Q., Luo G. M., Zhao D. Q., Ni J. Z. Biochemical characterization of selenium-containing catalytic antibody as cytosolic glutathione peroxidase mimic. Biochem. J. 1998, 332: 251-255.
    [51] Mao S. Z., Dong Z. Y, Liu J. Q., Li X. Q., Liu X. M., Luo G. M., Shen J. C. Semisynthetic tellurosubtilisin with glutathione peroxidase activity. J. Am. Chem. Soc. 2005, 127: 11588-11589.
    [52] Liu J., Gao S., Luo G., Yan G., Shen J. Artificial imitation of glutathione peroxidase with 6-selenium-bridgedβ-cyclodextrin. Biochem. Biophys. Res. Commun. 1998, 247: 397-400.
    [53] Ren X., Xue Y., Liu J., Zhang K., Zheng J., Luo G., Guo C., Mu Y., Shen J. A novel cyclodextrin-derived tellurium compound with glutathione peroxidase activity. ChemBioChem. 2002, 3: 356-363.
    [54] Flohe L., Loschen G., Guenzler W. A., Eichele E. Glutathione peroxidase, V. The kinetic mechanism. Hoppe-Seyler’s Z. Physiol. Chem. 1972, 353: 987-999.
    [55] Yamamoto Y., Takahashi K. Glutathione peroxidase isolated from plasma reducesphospholipid hydroperoxides. Arch. Biochem. Biophys. 1993, 305: 541-545.
    [56] Mugesh G., du Mont W. W. Structure-activity correlation between natural glutathione peroxidase (GPx) and mimics: a biomimetic concept for the design and synthesis of more efficient GPx mimics. Chemistry-A European Journal 2004, 7: 1365-1370.
    [1] Rotruck J. T., Pope A. L., Ganther H. E., Swanson A. B., Hafeman D. G., Hoekstra W. G. Selenium: Biochemical role as a component of glutathione peroxidase. Science 1973, 179: 588-590.
    [2] FlohéL., Günzler W. A., Schock H. H. Glutathione peroxidase: a selenoenzyme. FEBS Letts. 1973, 32: 132-134.
    [3] Sies H., Masumoto H. Ebselen as a glutathione peroxidase mimic and as a scavenger of peroxynitrite. Adv. Pharmacol. 1997, 38: 229-246.
    [4] Mugesh G., du Mont W. W. Structure-activity correlation between natural glutathione peroxidase (GPx) and mimics: a biomimetic concept for the design and synthesis of more efficient GPx mimics. Chemistry-A European Journal 2004, 7: 1365-1370.
    [5] Liu J., Gao S., Luo G., Yan G., Shen J. Artificial imitation of glutathione peroxidase with 6-selenium-bridgedβ-cyclodextrin. Biochem. Biophys. Res. Commun. 1998, 247: 397-400.
    [6] Liu J., Luo G., Ren X., Mu Y., Bai Y., Shen J. A bis-cyclodextrin diselenide with glutathione peroxidase-like activity. Biochim. Biophys. Acta. 2000, 1481: 222-228.
    [7] Ren X., Liu J., Luo G., Zhang Y., Luo Y., Yan G., Shen J. A novel selenocystine-β-cyclodextrin conjugate that acts as a glutathione peroxidase mimic. Bioconjugate Chem. 2000, 11: 682-687.
    [8] Su D., Ren X. J., You D. L., Li, D., Mu Y., Yan G. L., Zhang Y., Luo Y. M., Xue Y., Shen J. C., Liu Z., Luo G. M. Generation of several selenium-containing catalytic antibodies with high catalytic efficiency. Arch. Biochem. Biophys. 2001, 395: 177-184.
    [9] Liu L., Mao S. Z., Liu X. M., Huang X., Xu J. Y., Liu J. Q., Luo G. M., Shen J. C. Functional mimicry of the active site of glutathione peroxidase by glutathione imprinted selenium-containing protein. Biomacromolecules 2008, 9: 363-368.
    [10] Wu Z. P., Hilvert D. Selenosubtilisin as a glutathione peroxidase mimic. J. Am. Chem. Soc. 1990, 112: 5647-5648.
    [11] Mao S. Z., Dong Z. Y, Liu J. Q., Li X. Q., Liu X. M., Luo G. M., Shen, J. C. Semisynthetic tellurosubtilisin with glutathione peroxidase activity. J. Am. Chem. Soc. 2005, 127:11588-11589.
    [12] Shaun P. S., Teh A., Cheng P., Martin F. L. One-Step site-directed mutagenesis of ATM cDNA in large (20kb) plasmid constructs. Hum Mutat 2002, 20: 323-326.
    [13] Antikainen N. M., Martin S. F. Altering protein specificity: techniques and applications. Bioorg. Med. Chem. 2005, 13: 2701–2716.
    [14] Tan K. L., Board P. G. Purification and characterization of a recombinant human theta-class glutathione transferase(GSTT2-2). Biochem. J. 1996, 315: 727-732.
    [15] Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72: 248-254.
    [16] Babbitt P. C., Weat B .L., Buechter D. D. Removal of a proteolytic activity associated with aggregates formed from expression of creatine kinase in Escherichia coli leads to improved recovery of active enzyme. Bio.Technology 1990, 8: 945-949.
    [17] White C. B., Chen Q. A novel activity of Omp T. J. Biol. Chem. 1995, 270: 12990-12994.
    [18] Anfinsen C. B., Haber E., Sela M., White F. H. The kinetics of formation of nativeribonuclease during oxidation of the reduced polypeptide chain. Proc. Natl. Acad. Sci. USA 1961, 47: 1309-1314.
    [19] Anfinsen C. B. Principles that govern the folding of protein chains. Science 1973, 181: 223-230.
    [20] Su D., You D. L., Ren X. J., Luo G. M., Mu Y., Yan G. L., Xue Y., Shen J. C. Kinetics study of a selenium-containing ScFv catalytic antibody that mimics glutathione peroxidase. Biochem. Biophys. Res. Commun. 2001, 285: 702-707.
    [21] Caccuri A. M., Antonini G., Nicotra M., Battistoni A., Bello M. L., Board P. G., Parker M. W., Ricci G. Catalytic mechanism and role of hydroxyl residues in the active site of theta class glutathione S-transferases. J. Biol. Chem. 1997, 272: 29681-29686.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700