用户名: 密码: 验证码:
多学科设计优化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以航空航天产品的概念设计为背景,系统地对多学科设计优化体系的各项技术进行研究,并开发了支持多学科设计优化的框架(虚拟设计环境)——MDOF。
     首先,从高性能优化算法着手,研究遗传算法和模拟退火这两种优化算法的数学基础和计算流程。将这两种算法应用于整体式冲压发动机巡航导弹一体化设计实例中,评估算法的计算性能,并将遗传算法和复合形优化算法结合,对设计问题进行优化,得到了更好的优化结果。
     然后,在深入研究多学科设计优化问题和单学科优化问题区别的基础上,引入了多学科设计优化和多学科优化方法的概念。综合研究目前六种主要的多学科优化方法,给出这些方法的计算流程,对各个方法的计算特性进行简要分析;重点研究协同优化方法的计算特性,通过两个简单的函数实例分析协同优化方法的计算特性,对其不足进行改进,并将其应用于一个包含三个学科的运载火箭设计实例,实现了学科之间并行优化,得到了改善的收敛解,从而验证协同优化方法的可行性。
     接着,系统地对多学科设计优化体系进行研究。将多学科设计优化体系分为八项研究技术,阐述了在MDO应用中这八项技术之间的关系,然后研究了各项技术的基本内容以及其在MDO中的作用。
     最后,根据NASA的研究报告和本文作者的研究体会,总结出一个理想的MDO框架所应该具有的特性和软件开发需求。并根据这些需求,采用面向对象设计概念,开发了多学科设计优化框架——MDOF。通过实例分析,验证在MDOF中,能简单、高效地集成和求解多学科设计优化问题。
This thesis systematically research multidisciplinary design optimization(MDO) technologies based on the conceptual design process of aeronautic and astronautic products, and develop the framework-MDOF, which can support MDO.
    Firstly, high performance optimization algorithms are researched. By presenting the mathemetical base and computational flow, two kind stochastic algorithms: genetic algorithm and simulated annealing algorithm are discussed. After that, these algorithms are applied to conceptual design of integrated ramjet missile. According to the results, the performance of algorithms is assessed. Since genetic algorithm has global searching ability and complex algorithm has capacity in searching local optimum, they are combined to optimize integrated ramjet missile design problem, and better result is gained.
    Then, by differentiating single-disciplinary optimization and multi-disciplinary optimization, the concepts of multidisciplinary design optimiztion and MDO method,or formulation are introduced. In this part, six MDO methods are researched, focusing on the computational flow and performance. Especially, one kind method--Collaborative Optimization(CO) is discussed. By applying CO in two function problems, the performance of CO is analyzed and improved. In the end of this part, CO is applied in conceptual design of launch rocket. Not only parallel disciplinary optimization process is implemented, the convergent solution is gained. So the feasibility of CO applied in conceptual is verified.
    Sequentially, MDO technical system is researched. Due to the development status, MDO technical system is classified by eight technical segments.The connections between these segments are discussed, and the roles of them are presented. After that, the content of each segment is discribed in detail.
    Finally, the requirements for a ideal framework to support MDO are dipicted by synthesizing the NASA's research report with author's experience. According these
    reqirements, the MDO framework-MDOF is developed with the Oriented Object
    concept absorbed in development process. By two examples, the simplity and effectivity of MDOF to solve MDO problem are verified.
引文
[1] AIAA White Paper, Current State of the Art:Multidisciplinary Design Optimization, AIAA MDO Technical Committee, January 15, 1991.
    [2] 郭健,多学科设计优化技术在空间飞行器总体优化中的应用,中国宇航学会空间飞行器总体技术2000学术交流会,九江,2000。
    [3] Giesing, J., and Brathelemy, J. F. M., "Summary of Industry MDO Applications and Needs", AIAA-98-4737, ibid.
    [4] Sobieszczanski-Sobieski, J., Sensitivity of Complex Internally Coupled Systems, AIAA Journal, Vol. 28, No. 1, January 1990, p153-160.
    [5] Sobieszczanski-Sobieski, J., A Step from Hierarchic to Nonhierarchic System, NASA/CP-3031, 1989.
    [6] Hajela, P., Application of Global Sensitivity Equations in Multidisciplinary Aircraft Synthesis, Journal of Aircraft, Vol. 27, No. 12, Dec. 1992, p1002-1010.
    [7] Kroo, I., Multidisciplinary Optimization Methods for Aircraft Preliminary Design, AIAA-94-4325, 1994.
    [8] Renaud, J.E., Improved Coordination in Nonhierarchic System Optimization, AIAA Journal, Vol. 31, No. 12, Dec. 1993, p2367-2373,
    [9] Sellar, R.S., Response Surface. Based, Concurrent Subspace Optimization for Multidisciplinary System Design, AIAA-96-0714, 1996.
    [10] Bolebaum, C.L., Formal and Heuristic System Decomposition in Structural Optimization, NASA/CR-4413, 1991.
    [11] Braun, R.D., Use of the Collaborative Optimization Architecture for Launch Vehicle, AIAA-96-4018, 1996.
    [12] James A.,Ronald D.,A Description of the F/A-18E/F Design and Design Process,AIAA-98-4701, 1998.
    [13] Peter Bartholomew,The Role of MDO within Aerospace Design and Progress Towards and MDO Capability, AIAA-98-4705,1998
    [14] Nick Radovcich, The F-22 Structual/Aeroelastic Design Process with MDO Examples,AIAA-98-4732
    [15] Sean Wakayama, Ilan Kroo, The Challenge and Promise of Blended-Wing-Body Optimization, AIAA-98-4736,1998
    [16] Charles F. L., Michael J. W. and Tom F., Multidiscipline Design as Applied to Space,AIAA-98-4703
    [17] 余雄庆,多学科设计优化算法及其在飞行器设计中应用,航空学报,2000年第1期,2000年1月,p1-6。
    [18] 陈琪峰等,异步并行的分布式协同进化MDO算法,宇航学报,2002年第四期。
    
    
    [19] 谷良贤,龚春林,宋寒冰,协作优化方法的计算特性及其应用范围研究,空间科学学报,2002年增刊。
    [20] 谷良贤,宋寒冰,龚春林,协作优化算法及其在飞行器设计中的应用,弹箭与制导学报,2002.9。
    [21] A. O. Salas, J. C. Townsend, Framework Requirements for MDO Application Development,AIAA-98-4740,1998
    [22] Alexandrov, N. M.; Lewis, R. M.: "Analytical and Computational Properties of Distributed Approaches to MDO", AIAA Paper 2000-4719, 8th AIAA/USAF/NASA/ISSMO Symposium on MA&O, Long Beach, CA, 9/5-9/00.LTRS.
    [23]Amadou Ndiaye,Francois Guibault, A Step Towards an MDO Capability, http://www.cfdsc.ca/english/bulletins/11/1110.html.
    [24] 谷良贤,龚春林,基于遗传算法的复合优化方法在在整体式冲压发动机导弹一体化设计中的应用,西北工业大学学报,已录用。
    [25] 席少霖著,非线性最优化方法,高等教育出版社,1992.6。
    [26] 张文修,梁怡著,遗传算法的数学基础,西安交通大学出版社,2000。
    [27] 康立山,谢云等著,模拟退火算法,科学出版社,1994年4月。
    [28] 钱杏芳,林瑞雄,赵亚男编著,导弹飞行力学,北京理工大学出版社,2000年8月。
    [29] 徐敏,严恒元,飞行器空气动力工程计算方法,西北工业大学出版社,1998.4
    [30] 冲压发动机性能计算,航天三院内部资料。
    [31] K.F. Hulme, C.L. Bloebaum, A Comparison of Solution Strategies for Simulation based Multidisciplinary Design Optimization, AIAA-98-4977,1998.
    [32] Mike Yukish, Timothy W. Simpson, Requitements on MDO Imposed by the Undersea Vehicle Conceptual Design Problem, AIAA-2000-4816,2000.
    [33] Natalia M., Srinivas K., Initial Results of an MDO Method Evaluation Study, AIAA-98-4884,1998.
    [34] M. A. Stelmack, S. M. Batill, Concurrent Subspace Optimization of Mixed Continuous/Discrete Systems.
    [35] Budianto, I.A., A Collaborative Optimization Approach to Design and Deployment of a Space Based Infrared System Constellation, IEEE Aerospace Conference, 2000.
    [36] Ilan Kxoo, Valerie Manning, Collaborative Optimization: Status and Directions, AIAA-2000-4721,2000.
    [37] S. Kodiyalam, J. S. Sobieski, Bi-Level Integrated System Synthesis with Response Surfaces, AIAA-99-1306-wip, 1999.
    [38] S. Kodiyalam, J. S. Sobieski, Multidisciplinary Design Optimization-Some Formal Methods, Framework Requirements, and Application to Vehicle Design.
    
    
    [39] 龙乐豪,总体设计,液体弹道导弹与运载火箭系列丛书,宇航出版社,1989.11
    [40] 甘楚雄,刘冀湘,弹道导弹与运载火箭总体设计,国防工业出版社,1996.1。
    [41] 天地往返运输系统(一、二、三、四、五册),航天工业部一院十九所,1987.9。
    [42] 探空火箭设计,导弹与航天丛书,宇航出版社,1993.12。
    [43] 清宏计算机工作室编著,windows socket C++,机械工业出版社,2001.5。
    [44] J. S. Sobieski, R. T. Haftka,Multidisciplinary Aerospace Design Optimization: Survey of Recent Developments, AIAA-96-0711,1996
    [45] ISIGHT 7.1 Software Reference, http://www.engieous.com
    [46] Steward, D.V., System Analysis and Management, Petrocelli Books, 1981.
    [47] McCulley, C., Complex System Design Task Sequencing for Cost and Time Condiderations, AIAA-96-4156, 1996.
    [48] McCulley. C., A Genetic Tool for Optimal Design Sequencing in Complex Engineering Systems, Structural Optimization, Vol. 12, No. 2/3, Oct. 1996, p186-201.
    [49] Sobieszczanski-Sobieski, Optimization by Decomposition in Structural and Multidisciplinary Optimization, Optimization of Large Structural Systems, Kluwer Academic Publishers, 1993.
    [50] Bloebaum, C.L., Non-Hierarchic System Decomposition in Structural Optimization, Engineering Optimization, Vol. 19, 1992, p171-186.
    [51] Robert Olds John, Multidisciplinary Design Techniques Applied to Conceptual Aerospace Vehicle Design, Ph.D dissertation, North Carolina State Uni., 1993.
    [52] David E. Acton, John R. Olds, Computational Frameworks for Collaborative Multidisciplinary Design of Complex Systems, AIAA-98-4942,1998.
    [53] Jeffrey Richter著,王振华等译,Windows核心编程,机械工业出版社,2000.5。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700