用户名: 密码: 验证码:
入侵豚草的天敌广聚萤叶甲的寄主选择性及潜在分布区预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从原产地引进天敌是一条有效防治外来入侵杂草的途径,然而如何评估其对非靶标植物的潜在风险,从而减少新的生物入侵问题,是传统生防实践和理论研究面临的严峻课题。广聚萤叶甲原产于北美洲,传入我国后主要取食外来入侵豚草,是防治豚草的潜在天敌。由于其并非严格的单食性昆虫,故对入侵地非靶标植物的潜在风险值得关注。本论文将寄主专一性测定的经典方法与新近提出的概念和方法相结合,将室内与室外、选择性与非选择性实验相结合,对广聚萤叶甲的产卵选择专一性进行了较为全面的研究,为评估和预测其潜在风险提供了丰富的依据,并为杂草生物防治实践的改进进行了有益的探索。
     1.室内条件下广聚萤叶甲的产卵选择
     引用识别期概念及Cox比例风险模型分析方法,结合经典观测方法,比较了靶标植物(豚草)与近缘非靶标植物(三裂叶豚草、苍耳、菊芋、食用向日葵品种和油用向日葵品种)在不同取食经历和不同日龄条件下,被广聚萤叶甲成虫选择产卵的风险。结果表明,广聚萤叶甲在靶标豚草与其它近缘非靶标植物之间,表现出对豚草很强的偏好;不同取食经历和不同日龄不显著影响广聚萤叶甲对靶标植物(豚草)的选择频次,对识别期也无影响。广聚萤叶甲在室内研究条件下具有很强的寄主专一性。
     2.野外受控条件下广聚萤叶甲的产卵选择
     鉴于行为因素不同程度地影响昆虫的寄主选择表现,分别在野外大型罩笼内和野外开放条件下,观察了广聚萤叶甲对靶标植物和非靶标植物的产卵选择行为。研究表明:(i)当有靶标豚草存在的情况下,广聚萤叶甲成虫明显偏好在豚草上产卵,豚草被选择产卵的风险明显高于其他测试植物;(ii)当没有靶标豚草存在的情况下,广聚萤叶甲成虫首先选择三裂叶豚草和苍耳产卵,在食用向日葵和油用向日葵上产卵的风险很低。广聚萤叶甲在野外条件下所表现出与室内研究中同样强的寄主专一性。
     3.野外开放条件下广聚萤叶甲的产卵选择
     本研究就广聚萤叶甲在我国南京地区不同生境下的野外产卵选择进行了调查。在豚草生长季节定期定点调查以下因素:株高、植株斑块大小、植株受光与否、植株开花与否、植株被害程度等,用广义线性混合模型对所调查的变量进行拟合,从而确定影响广聚萤叶甲产卵选择的主要因子。结果表明,斑块大小对广聚萤叶甲的产卵选择有明显的影响,但光照没有明显的影响。被害等级和开花随季节动态对广聚萤叶甲的产卵选择有明显的影响,而株高随季节动态没有明显的影响。在两因子互作影响上,除斑块分别与被害等级和株高互作没有明显的互作外。其他各因子之间的双因素互作均对广聚萤叶甲产卵有明显影响。
     4.广聚萤叶甲对不同植物的产卵选择策略
     寄主品质(如碳、氮和防御代谢物)影响昆虫的产卵策略一权衡卵数量、大小和品质。本试验通过研究广聚萤叶甲在不同植物对的产卵识别期、窝卵数大小和卵粒大小等变量,分析其产卵策略。研究结果表明,广聚萤叶甲明显偏好豚草,在豚草上的窝卵数大(平均值±标准差=20.3±1.5)而且卵粒亦大(0.077±0.001 mm3),二者无相关性;在非靶标的苍耳(10.7±1.1和0.059±0.001 mm3)和向日葵(10.2±0.9和0.063±0.001 mm3)上的窝卵数和卵粒大小都小于豚草,而且窝卵数与卵粒大小之间存在显著的负线性关系,即采取了“多而小”或“少而大”的产卵策略。
     5.广聚萤叶甲对豚草的产卵选择策略
     寄主植物密度和品质均可能影响昆虫的产卵策略。试验研究了广聚萤叶甲对不同大小豚草斑块的产卵选择、逐次(日)产卵行为以及在不同品质和分别感染不同比例卵块和幼虫的豚草上的产卵策略。研究结果表明,豚草品质影响广聚萤叶甲的产卵策略,但豚草密度没有影响。产卵前期尽可能的产多而大的卵粒;中期窝卵数和卵粒大小虽都略有下降,但存在明显的线性关系;产卵后期窝卵数和卵粒大小继续下降,两者没有明显的线性关系。广聚萤叶甲成虫明显偏好生长期豚草,且差异显著。叶甲在处于生长期的豚草上尽可能多的繁殖多(20.3±1.5)而大(0.077±0.001mm3)的后代;在苗期(14.7±1.3和0.074±0.001 mm3)和开花期(10.7±0.8和0.073±0.001 mm3)的豚草上的窝卵数和卵粒大小都小于在生长期豚草上的表现,且窝卵数与卵粒大小存在明显的负线性关系。广聚萤叶甲在感染不同程度卵块和幼虫豚草上的产卵结果表明:(i)广聚萤叶甲在着卵块比例较低(0%、25%、50%)的豚草上产的窝卵数(>15粒),显著大于着卵比例较高(70%、100%)的处理豚草(≈10粒),而且窝卵数随豚草上着卵块比例的增大而减小;(ii)广聚萤叶甲在2个中等程度着卵块比例(25%、50%)处理豚草上产的卵粒大小相近,均显著小于无卵块和较高卵块比例(75%、100%)处理豚草上的卵粒,广聚萤叶甲产出的卵粒大小与豚草已有的着卵块比例之间存在“U”型曲线关系:(iii)产卵风险在没有感染幼虫和感染程度为25%的豚草之间没有显著差异,但与其他感染幼虫处理的豚草存在显著差异;(ⅳ)广聚萤叶甲在感染幼虫较多的处理豚草(50%~100%)上产的窝卵数均较小(<11.2粒),显著小于在感染幼虫较少(25%)和对照豚草上的窝卵数(>21.6粒),广聚萤叶甲的窝卵数大小与豚草幼虫感染程度之间存在显著负相关线性关系;(ⅴ)广聚萤叶甲产在感染幼虫较少(25%)的处理豚草上的卵粒(0.068±0.001mm3)显著小于其他处理豚草(>0.077 mm3),在其他处理豚草之间无显著差异(图6-10),卵粒大小与豚草上已有的幼虫比例之间存在显著的正相关线性关系。上述若干实验说明,豚草上已有卵块和幼虫均影响广聚萤叶甲的产卵选择以及窝卵数与卵粒大小的权衡策略。
     6.广聚萤叶甲成虫和初孵幼虫的取食选择
     寄主植物缺乏会迫使植食性昆虫的寄主选择发生变化,从而影响其寄主专一性。本实验首先对广聚萤叶甲成虫的耐饥饿能力进行了研究,并研究了不同饥饿程度对广聚萤叶甲成虫取食选择不同寄主植物的影响,最后对初孵幼虫取食选择进行了观察。结果表明,(ⅰ)雌虫与雄虫的平均耐饥时间和生存率之间没有明显差异;(ⅱ)除饥饿48h的处理外,其他饥饿时间处理都使叶甲的寄主选择发生显著改变;(ⅲ)广聚萤叶甲初孵幼虫对苍耳和豚草选择频次之间没有显著差异,但在识别期上有明显差异,向日葵与豚草和苍耳无论在选择频次上还是在识别期上都有明显差异,表明广聚萤叶甲初孵幼虫也具有很强的寄主专一性。
     7.广聚萤叶甲在我国大陆潜在分布区的预测
     利用CLIMEX软件对该叶甲与豚草及其近缘植物三裂叶豚草、向日葵等潜在寄主植物的适生区进行了分析和预测;采用由生态气候指数(EI)衍生的生物一气候风险指数(BCRI),分别分析了该叶甲与这三种植物同域分布的范围。广聚萤叶甲在我国大陆的潜在分布区向北可以分布到沈阳,向南可能分布到海南;而华东、华南和西南东部地区是其适宜的分布区域。广聚萤叶甲与豚草在我国北部的共同适宜边际区到达山东济南,与三裂叶豚草和向日葵的北部边际区达到辽宁沈阳,而该叶甲与这3种植物的共同适宜区主要分布在华东、华南和西南东部等地。我国北方种植的向日葵受广聚萤叶甲取食危害的风险很低。
Introduction of natural enemies is an effective approach to the management of alien invasive weeds. A serious of challenges facing biological control practitioners and theoretician is how to accurately assess potential ecological risks of introducing biological control agents to non-target plants, so as to avoid new biological invasions with biocontrol. Ophraella communa LeSage (Coleoptera:Chrysomelidae), by origin of North America, was recently reported heavily attacking alien invasive ragweed, Ambrosia artemissiifolia (Compositae) in the mainland China. Because of not strictly monophagous, its potential risks to non-target plants are of great concern. In this paper, a series of experiments was carried out to study oviposition selection of O. communa by using both classic methods and their modifications in choice- and non-choice experiments in the laboratory and the field. The study has provided rich evidences for assessment of potential risks of O. communa to non-target plants, and useful knowledge for improvement of biological weed control practices. The following results were obtained.
     1. Ovipositon preferences of O. communa under indoor conditions
     The recognition time concept was used, and the time until plants were oviposited was fitted by the Cox proportional hazard model, to analyze the potential risks of oviposition as affected by feeding experiences and aging. The non-target plants for the test were A. trifida, X. sibiricum, two varieties of Helianthus annuus, and H. tuberosus, all in tribe Heliantheae of Composite. The experiments revealed a strong preference for the target weed A. artemisiifolia to the non-target test plants, but did not find significant influences of feeding experiences and aging on the preference.
     2. Ovipositon preferences of O. communa under manipulated outdoor conditions
     Behavioral phenomena have the potential to impact on the interpretation of test results obtained in laboratory. Thus, experiments were conducted both in a large walk-in cage in the field and in open field to observe oviposition preferences. The study showed that:(ⅰ) O. communa strongly preferred A. artemisiifolia for oviposition to non-target plants; (ⅱ) O. communa turned to A. trifida and X. sibiricum for oviposition without the presence of A. artemisiifolia, while the other non-target plants were at little risk.
     3. Oviposition selection of O. communa under in the open field
     A survey was made to investigate oviposition selection of O. communa for A. artemisiifolia as affected by various characteristics of host plants. Following characters were surveyed on a regular time interval and plots:plant height, plant patch size, shading, blooming, and damage levels. The factors surveyed were fitted as covariates with generalised linear mixed modeling (GLMM) to determine the major factors influencing the oviposition selection. The results showed that plant patch size, damage level and blooming have significanltly influences on oviposition selection of O. communa, while lighting and plant height, had no significanltly influences by their own. But there covariates had significanltly influences, by two-way interactions, on oviposition selection of O. communa, except the interaction between patch size and plant height.
     4. Oviposition strategy of O. communa for different plants
     Components of host quality (such as carbon, nitrogen and defensive metabolites) can affect potential and realized fecundity as well as oviposition strategy involving clutch size, egg size and quality in herbivorous insects. Both clutch and egg size of O. communa were greater on A. artemisiifolia than on the other non-target plants without trade-offs. However, a trade-off was detected between clutch size and egg size on X. sibiricum and H. annuus, where there was a negative linear relationship between clutch size and egg size, which suggested an oviposition strategy of either "many-small" or "a few-large".
     5. Oviposition strategy of O. communa for A. artemisiifolia
     Resource density and quality of host plant can affect oviposition strategy of herbivorous insects. Experiments were conducted to observe oviposition strategy of O. communa with different host-density patches. The results showed that the quality of host plants influenced oviposition strategy of O. communa, but the density did not. The strategy of oviposition was "many-large" at the early stage, but a trade-off between clutch size and egg size at the middle stage, and "few-small" at the later stage of oviposition. O. communa preferred A. artemisiifolia at the growing stage by laying larger egg-clutches (20.3±1.5 eggs) and egg size (0.077±0.001mm3) to the plants at seedling and flowering stages. O. communa laid a smaller clutch on the plant infected with egg-masses at lower proportion levels (0%,25%, 50% of leaves) than with the higher (75%,100%), and clutch size decreased linearly with egg-mass proportion on the plant that was exposed to oviposition. O. communa laid smaller eggs on the plant with 25% leaves infected with egg-masses than with the other egg-mass treatments, and a U-shaped curve was fitted between egg size laid and egg-mass proportion treated. The plants with lower levels of egg-mass infection (0%,25%) ran a higher hazard to be oviposited than those with higher levels O. communa laid a smaller clutch (<11.2 eggs) on the plant infected with higher levels of larvae (50%~100%) than with lower levels of larva infection (>21.6 eggs), a negative linear relationship between clutch size and larval infection proportion.O. communa laid smaller eggs (0.068±0.001 mm5) on the plant with 25% infection of larvae than on plants with the other treatments (> 0.077 mm3), and a positive linear relationship between egg size and larval infection was detected. The results suggest that O. communa performed oviposition trade-offs between egg number size on A. artemisiifolia as affected by egg- or larva-infection levels at the time of oviposition.
     6. Feeding preferences of O. communa adults and larvae
     Deprivation of host plants can change feeding preferences of herbivorous insects. Experiments were conducted to study effects of starvationon feeding preferences of O. communa adults among different test plants. Feeding preferences of O. communa larvae among different test plants were also observed. The study showed that:(ⅰ) there were no significant differences in starvation time and survival rate between female and male; (ⅱ) except for the 48h starvation treatment, the other starvation treatments significantly affected host preferences of O. communa adults. (ⅲ) there were no significant differences in feeding choices as measured by feeding incidences (frequencies) between A. artemisiifolia and X. sibiricum in O. communa larvae, but there were significant differences as measured by the recognition time. However, there were significant differences as measured by both feeding choice frequencies and recognition time bewteen H. annuus and A. artemisiifolia, and X. sibiricum.
     7. A projection of potential distribution of O. communa in mainland China.
     To assess the potential establishment of O. communa in mainland China, the CLIMEX software was used to predict potential habitats of the leafbeetle, its host A. artemisiifolia, and potential host plants, A. trifida and Helianthus annuus. The Bioclimatic Risk Index (BCRI), derived from the Ecoclimate Index (EI) in output of the CLIMEX analysis, was used to measure the probability of overlapping distribution between the leafbeetle and plant. The results show that O. communa has the potential to establish at locations from Shengyang, Liaoning Province in the north, through to Hainan province in the south of China, while east China, south China, and the east in southwest China, are potential suitable areas for its establishment. Suitable areas up to the north shared by O. communa and A. artemisiifolia border on Jinan, Shangdong province, while those shared by O. communa and A. trifida and H. annuus border on Shengyang, Liaoning Province. Suitable areas shared by the leafbeetle and all three plants lies in east and south China, and the eastern part in southwest China. The plantation of sunflower crop in north China is at low risk of feeding damage by O. communa.
引文
1. Anderson P, Hilker M, Hansson BS, Bombosch S, Klein B, Schildknecht H.1993. Oviposition deterring components in larval frass of Spodoptera littoralis (Boisd.) (Lepidoptera:Noctuidae). A behavioural and electrophysiological evaluation. Journal of Insect Physiology,39:129-137.
    2. Anderson P, Lofquist J.1996. Asymmetric oviposition behaviour and the influence of larval competition in the two pyralid moths Ephestia kuehniella and Plodia interpunctella. Oikos,76: 47-56.
    3. Awmack CS, Leather SR.2002. Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology,47:817-844.
    4. Baker RHA, Sansford CE, Jarvis CH, Cannon RJC, Macleod A, Walters KFA, Baker RHA, Sansford CE, Jarvis CH.2000. The role of climatic mapping in predicting the potential geographical distribution of non-indigenous pests under current and future climates. Agric Ecos Environ,82:57-71.
    5. Baldwin IT, Kessler A, Halitschke R.2002. Volatile signaling inplant-plant-herbivore interactions: what is real?. Current Opinion in Plant Biology,5(4):351-354.
    6. Ballabeni P, Rahier M.2000a. A quantitative genetic analysis of leaf beetle larval per formance on two natural hosts:including a mixed diet. Journal of Evolutionary Biology,13:98-106.
    7. Ballabeni P, Rahier M.2000b. Performance of leaf beetle larvae on sympatric host and non-host plants. Entomologia Experimental set Applicat,97:175-181.
    8. Baqui MA, Kershaw WJS.1993. Effect of plant water stress on honeydew production, weight gain and oviposition of brown planthopper Nilaparvata lugens on rice cultivars. Entomologia Experimental set Applicata,67:25-30.
    9. Barratt BIP, Moeed A,2005. Environmental Safety of biological control:policy and practice in New Zealand. Biological Control,35:247-252
    10. Barton Browne L, Withers TM.2002. Time-dependent changes in the host-acceptance threshold of insects:implications for host specificity testing of candidate biological control agents. Biocontrol Science and Technology,12:677-693.
    11. Bellinger RG, Ravlin FW, McMaus ML.1990. Predicting Egg Mass Density and Fecundity in Field Populations of the Gypsy Moth (Lepidoptera:Lymantriidae) Using Wing Length of Male Moths. Environmental Entomology,19(4):1024-1028.
    12. Berdegue M, Reitz SR, Trumble JT.1998. Host plant selection and development in Spodoptera exigua:Do mother and offspring know best?. Entomologia Experimentalis et Applicata,89:57-64.
    13. Bernays EA.1989. Host range in phytophagous insects:the potential role of generalist predators. Evolutionary Ecology,3:299-311
    14. Bernays EA, Bright KL.2001. Food choice causes interrupted feeding in the generalist grasshopper Schistocerca americana:further evidence for inefficient decision making. Journal of Insect Physiology,47(1):63-71.
    15. Bernays EA, Chapman RF.1994. Host-Plant Selection by Phytophagous Insects[M]. Chapman & Hall New York,312 pp.
    16. Bernays EA, Funk D.1999. Specialists make faster decisions than generalists:experiments with aphids. Proceedings of the Royal Society of London. B,266:1-6.
    17. Bernays EA, Graham M.1988a. Host specificity in phytophagous insects:selection pressure from generalist predators. Entomologia Experimental set Applicat,49:131-140
    18. Bernays EA, Graham M.1988b. On the evolution of host specificity in phytophagous arthropods. Ecology,69:886-892.
    19. Bernays EA.1991. Relationships between deterrence and toxicity of plant secondary compound for the grasshopper Schistecerca americana. Journal of chemical ecology,17(2):519-526.
    20. Bernays EA.1997. Why are there so many specialists among insect herbivores?[M] Agricultural University, Wageningen, The Netherlands, Separatum.
    21. Bernays EA.2001. Neural limitations in phytophagous insects:implications for diet breadth and evolution of host affiliation. Annual Review of Entomology,46:703-727
    22. Binder BH, Robbins JC, Wiison RL.1995. Chemically mediated ovipositonal behaviors of the European corn borer, Ostrinia nubilalis(Lepidoptera:Pyralidae). Journal of Chemical Ecology, 21(9):1315-1327.
    23. Blossey B.1995. Host specificity screening of insect biological weed control agents as part of an environmental risk assessment[M]. In:Hokkanen H M.ed. Biological Control:Benefits and Risks. Londen:Cambridge University Press, pp.84-89.
    24. Bolter CJ, Dicke D, van Loon JJ, Visser JH, Posthumus MA.1997. Attraction of Colorado potatobeetle to herbivore-damaged plants druing herbivory and after its termination. Chemical Ecology,23:1003-1023.
    25. Briese DT, Sheppard AW.1992. Biogeography, host-choice and speciation in two Mediterranean species of the weevil genus Larinus[A]. In:Thanos, C.A. (Ed.), Proceedings of the 6th International Conference in Mediterranean Climate Ecosystems "Plant—Animal Interactions in Mediterranean Type Ecosystems,"[C] Crete, Greece,23-27 September. University of Athens, pp.307-314
    26. Briese DT.1999. Open field host-specificity tests:is "natural" good enough for risk assessment?[A] In:Withers T M, Barton BL, Stanley L. Eds. Host Specificity Test in Australasia:Towards Improved Assays for Biological Control[A]. Indooroolilly, Australia:Scientific Publishing, pp.44-59.
    27. Briese DT.2003. Host Specificity Test in Australasia:Towards Improved Assays for Biological Control[M]. Indooroolilly, Australia:Scientific Publishing, pp.23-33.
    28. Briese DT.2005. Translating host-specificity test results into the real world:the need to harmonize the yin and yang of current test procesures. Biologocal Control,35:208-214.
    29. Brough CN, Dixon AFG.1990. The effects of stratvation on development and reproductive potential of apterous virginoparae of vetch aphid Megoura viciae. Entomologia Experimentalis et Applicata, 55:41-45. Callosobruchus rhodesianus Pic. (Coleoptera, Bruchidae):Asymmetry of interspecific responses. Agriculture, Ecosystems and Environment,12:229-233.
    30. Buchanan BB, Gruissen W, Jones RL.2000. Biochemistry and molecular biology of plants[M]. American Society of Plant Physiologists, Rockville, MD.
    31. Bush GL.1975. Modes of animal speciation. Annual Review of Entomology,6:339-364.
    32. Carruthers RI, Antonio CM.2005. Theory and application of pest management. Biological Control, 35:181-388.
    33. Chenier JVR, Philogene BJR.1989. Field responses of certain forest coleopera to conifer nonterpenes and atheanol. Chemical Ecology,15(6):1929-1945.
    34. Clement SL, Cristofaro M.1995. Open-field tests in host-specificity determination of insects for biological control of weeds. Biocontrol Science and Technology,5:395-406.
    35. Corbet SA.1971. Mandibular gland secretion of larvae of the flour moth, Anagasta kuehniella, contains an epideictic pheromone and elicits oviposition movements in a hymenopteran parasite. Nature,232:481-484.
    36. Cory JS, Myers JH.2000. Direct and indirect ecological effects of biological control. Trends in Ecology and Evolution,15:137-139.
    37. Courtney SP, Kibota TT.1990. Mother doesn't know best:selection of hosts by ovipositing insects[M].-In:Bernays EA. (ed.), Insect-plant interactions, vol.2. CRC Press, pp.161-188.
    38. Crawley MJ.1983. Herbivory. The dynamics of animal-plant interactions[M]. Blackwell Scientific, Oxford.
    39. Damman H.1991.Oviposition behavior and clutch size in a group-feeding pyralid moth, Omphaloceramunroei. Journal of Animal Ecology,60:193-204.
    40. De Moraes CM, Mescher MC, Tumlinson JH.2001. Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature,410:577-580.
    41. Delfosse ES.2005. Risk and ethics in biological control. Biological Control,35:319-329.
    42. Denno RF, Peterson MA, Gratton C, Cheng JA, Langellotto GA., Huberty AF. Finke DL.2000. Feeding-induced changes in plant quality mediate interspecific competition between sap-feeding herbivores. Ecology,81:1814-1827.
    43. Demovici SA, Teshler MP, Watson AK.2006. Is sunflower (Helianthus annuus) at risk to damage from Ophraella communa, a natural enemy of common ragweed(Ambrosia artemisiifolia)? Biocontrol Science and Technology,16(7):669-686.
    44. Dethier VG.1947. Chemical insect attractants and repellents[M]. Philadelphia:The Blakiston Company,289 p.
    45. Dethier VG.1954. Evolution of feeding preferences in phytophagous insects. Evolution,8:33-44
    46. Dicke M, Sabelis MW, Takabayashi J, Bruin, Posthumus MA..1990. Plant strategies of manipulating predatorprey Interactions through allelochemicals:prospects for application in pest control.Chemical Ecology,16(11):3091-3118.
    47. Diss AL, Kumkel JG, Montgomery ME, Leonard DE.1996. Effects of maternal nutrition and egg provisioning on parameters of larval hatch, survival and dispersal in the gypsy moth Lymantria dispar L. Oecologia,106:470-477.
    48. Doak P.2000. Habitat patchiness and the distribution, abundance, and population dynamics of an insect herbivore. Ecology,81(7):1842-1857
    49. Du YJ, Van Loon JJA, Renwick JAA.1995. Contact chemoreception of oviposition stimulating glucosinolates and an oviposition deterrent cardenolide in two subspecies of Pieris napi. Physiological Entomology,20:164-174.
    50. Dunlap-Pianka HL.1979. Ovarian dynamics in Heliconius butterflies:correlations among daily oviposition rates, egg weights, and quantitative aspects of oogenesis. Journal of Insect Physiol,25: 741-749.
    51. Edwards PB.1999. The use of choice tests in host-specificity testing of herbivorous insects[A]. In: Withers TM, Barton Browne L, Stanley J. (Eds.), Host Specificity Testing in Australasia:Towards Improved Assays for Biological Control[C]. Scientific Publications, QLD DNR, Coorparoo, Australia, pp.35-43.
    52. Eigenbrod SD, Bernays EA.2004. Evaluation of factors affecting host plant selection, with an emphasis on studying behaviour[A]. In:Dent D R and Walton M P. Eds. Methods in ecological & agricultural entomology[C]. London:CAB International, pp.147-169.
    53. Elkinton JS, Carde RT.1984. Odor dispersion[M]. In:Chemical Ecology of Insects (Bell WJ and Carde RT, eds.) pp.73-91.
    54. Finch S, Colier H.2000. Host-plant selection by insects-a theory based on appropriate inappropriate landings. By pest insects of cruciferous plants. Entomologia Experimentalis et Applicata,96:91-102.
    55. Fitt GP.1990. Variation in ovariole number and egg size of Dacus (Diptera:Tephritidae) and their relation to host specialization. Ecological Entomology,15:255-264.
    56. Fordyce JA, Nice CC.2004. Geographic variation in clutch size and a realized benefit of aggregative feeding. Evolution,58:447-450.
    57. Fowler SV.1993. The potential for control of bracken in the UK using introduced herbivorous insects. Pesticide Science,37:393-397.
    58. Fox CW, Mousseau TA.1996. Larval host plant affects fitness consequences of egg size variation in the seed beetle Stator limbatus. Oecologia,107:541-548.
    59. Fox CW, Waddell KJ, Des Lauriers J, Mousseau TA.1997. Seed beetle surivorship, group and egg size plasticity in a paloverde hybrid zone. Ecological Entomology,22:416-424.
    60. Fox GA.2001. Failure-time analysis. In:Scheiner S M, Gurevitch J. eds. Design and analysis of ecological experiments[M]. New York:Oxford University Press, pp.235-266.
    61. Fox LR, Morrow PA.1981. Specialization:species property or local phenomenon? Science, 211:887-893.
    62. Freese G, Zwolfer H.1996. The problem of optimal clutch size in a tritrophic system:the oviposition strategy of the thistle gallfly Urophora cardui (Diptera, Tephritidae). Oecologia, 108:293-302.
    63. Futuyma DJ, Keese MC, Scheffer SJ.1993. Genetic constraints and the phylogeny of insect-plant associations:responses of Ophraella Commuma (Coleoptera:Chrysomelidae) to host plant of its congeners. Evolution,47(3):888-905.
    64. Futuyma DJ, McCafferty SS.1990. Phylogeny and the evolution of host plant associations in the leafbeetle genus Ophraella(Coleoptera:Chrysomelidae). Evolution,44(8):1885-1913.
    65. Futuyma DJ.1990. Observations on the taxonomy and natural history of Ophraella Wilcox (Coleoptera:Chrysomelidae), with a description of a new species. Journal of the New York Entomological Society,98(2):163-186.
    66. Gassmann A.1995. Europe as a source of biological control agents of exotic invasive weeds:status and implications. Mitteilungen der Schweizerischen Entomologischen Gesellschaft,68:313-322.
    67. Giga DP, Smith RH.1985. Oviposition markers in Callosobruchus maculatus F. and Callosobruchus rhodesianus pic. (coleoptera, bruchidae):Assymmetry of interspecific responses. Agriculture, Ecosystems & Environment,12(3):229-233.
    68. Godfray HCJ.1986. Clutch size in a leaf-mining fly(Pegomya nigrit arsis:Anthomyiidae). Ecological Entomology,11:75-81.
    69. Godfray HCJ.1987. The evolution of clutch size in inverte-brates. Oxford Surveys in Evolutionary Biology,4:117-154.
    70. Goeden RD, Ricker DW.1985. The life history of Ophraella notulata (F.) on western ragweed, Ambrosia psilostachya DeCandoll, in south California (Coleoptera:Chrysomelidae). Pan-pacific Entomologist,61(1):32-37.
    71. Gross J, Fatouros NE, Hilker M,2004. The significance of bottom-up effects for host plant specialization in Chrysomela leaf beetles. Oikos,105:368-376.
    72. Hagele BF, Rowell-Rahier M.2000. Choice, performance and heritability of per formance of specialist and generalist insect herbivores towards cacalol and seneciphylline, two allelochemicals of Adenostyles alpina (Asteraceae). Journal of Evolutionary Biology,13:131-142.
    73. Harris P, McEvoy P.1995.The predictability of insect host plant utilization from feeding tests and suggested improvements for screening weed biological control agents[A]. In:Delfosse, E.S., R.R. Scott(eds).Proceedings of the Eighth International Symposium on Biological Control of Weeds[C], 2-7 February 1992, Lincoln University, Canterbury, NewZealand:DSIRCSIRO, Melbourne, 125-131.
    74. Harris P, Zwolfer H.1968. Screening of phytophagous insects for biological control of weeds. Canadian Entomologists,100:295-303.
    75. Haskell PT, Schoomhoven LM.1996. The function of certain mouthpart receptors in relation to feeding in Schistocerca gregaria and Locusta migratoria migralorioides. Entomologia Experimental set Applicata,12:423-440.
    76. Haye T, Goulrt H, Mason PG, Kuhlmann U.2005. Does fundamental host range match ecological host range? A retrospective case study of a Lygus plant bug parasitoid. Biological Control, 35:55-67.
    77. Heard TA,2000. Concepts in insect host-plant selection behaviour and their application to host speciWcity testing[A]. In:Van Driesche RG, Heard TA, McClay A, Reardon R. (Eds.), Proceedings of session:Host-Specificity Testing of Exotic Arthropod Biological Control Agents—the Biological Basis for Improvement in Safety[C]. USDA Forest Service, Forest Health Technology Enterprise Team,Morgantown, pp.1-10
    78. Heard TA, van Klinken RD.1998. An analysis of test designs for host range determination of insects for biological control of weeds[A].In:Zalucki M, Drew R, White G. (Eds.), Proceedings of the 6th Australasian Applied Entomological Research Conference[C]. University of Queensland, Brisbane, pp.539-546.
    79. Hilker M, Kobs C, Varama M, Schrank K.2002. Insect egg deposition induces Pinus sylvestris to attract egg parasitoids. Journal of experimental biology,205(4):455-461.
    80. Hilker M.1989. Intra- and interspecific effects of larval secretions in some chrysomelids (Coleoptera). Entomologia Experimentalis etApplicata,53:237-245.
    81. Hilker M, Weitzel C.1991. Oviposition deterrence by chemical signals of conspecific larvae in Diprion pini (Hymenoptera:Diprionidae) and Phyllodecta vulgatissima (Coleoptera: Chrysomelidae). Entomologia Generalis,15:293-301.
    82. Hoffmeister TS, Babendreier D, Wajnberg E.2005. Statistical tools to improve the quality of experiments and data analysis for assessing non-target effects. Environmental Impact Invertebrates, 15(59):222-240.
    83. Hopper KR.2001. Research needs concerning non-target impacts of biological control introductions.In:Wainberg E, Scott JK, Quimby PC, eds. Evaluating Indirect Ecological Effects of Biological Control. London:CABI Publishing, pp.39-46.
    84. Hsiao TH.1988. Host specificity, seasonality and bionomics of Leptinotarsa beetles[M]. In:Jolivet P, Hawkeswood TJ, Hsiao TH eds. Biology of Chrysomelidae. Dordrecht:Kluwer Academic Publishers, pp.581-599.
    85. Huang X, Renwick JAA.1993. Differential selection of host plants by two Pieris species:the role of oviposition stimulants and deterrents. Entomologia Experimentalis et Applicata,68:59-69.
    86. Jaenike J.1990. Host specialization in phytophagous insects. Annual Review of Ecology and. Systematics,21:243-273.
    87. Jallow MFA, Zalucki MP.1996. Within- and between-population variation in host-plant preference and specificity in Australian Helicoverpa armigera (Hubner) (Lepidoptera:Noctuidae). Australian Journal of Zoology,44:503-519.
    88. Jermy T.1987. The role of experience in the host selection of phytophagous insects[M]. In Chapman RF, Bernays EA, Stoffolano JG eds. Perspectives in Chemoreception and Behavior.New York:SpringerVerlag:pp.143-157.
    89. Julien MH, Griffiths MW.1998. Biological Control of Weeds:a World Catalog of Agents and Their Target Weeds[M]. London:CABI Publishing.
    90. Julien MH.1992. Biological control of weeds (3nd edn)[M]. CAB International, Wallingford.
    91. Karban R, Baldwin IT.1997. Induced Plant Responses to Herbivory[M]. Chicago University Press, Chicago.
    92. Karlsson B, Wiklund C.1985. Egg weight variation in relation to egg mortality and starvation endurance of newly hatched larvae in some satyrid butterflies.Ecological Entomology,10:205-211.
    93. Kasule FK.1991. Egg size increases with maternal age in the cotton stainer bugs Dysdercus fasciatus and D. cardinalis (Hemiptera:Pyrrhocoridae). Ecological Entomology,16:345-349.
    94. Kelley ST, Farrell BD, Mitton JB.2000. Effects of specialization on genetic differentiation in sister species of bark beetles. Heredity,84:218-227.
    95. Kennedy TS.1976. Host plant fingding by flying aphids. Symposia Biologica Hungarica, 16:121-123.
    96. Kessler A, Baldwin IT.2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science,291:2141-2143.
    97. Kessler A, Halitschke R, Baldwin IT.2004. Silencing the jasmonate cascade:induced plant defenses and insect populations. Science,305:665-668.
    98. Klein M, Seitz A.1994. Geographic difierentiation between populations of Rhinocyllus conicus Frolich (Coleoptera:Curculionidae):concordance of allozyme and morphometric analysis. Zool. J. Linn.Soc.110:181-191.
    99. Krebs CJ. The Experimental Analysis of Distribution and Abundance (Fifth edition)[M].北京:科 学出版社,2001.
    100. Leather SR, Awmack CS.1998. The effects of qualitative changes of individuals in the population dynamics of insects[M].-In:Dempster JP and McLean IFG. (eds), Insect populations in theory and in practice. Kluwer, pp.187-206.
    101. Leather SR, Burnand AC.1987. Factors affecting life-history parameters of the pine beauty moth, Panolis flammea(D&S):the hidden costs of reproduction. Functional Ecology,1:331-338.
    102. Leather SR.1985. Oviposition preferences in relation to larval grouth rates and survial in the pin beauty moth, Panolis flammea. Ecological Entomology,10:213-217.
    103. Leather SR.1994. Life history traits of insect herbivores in relation to host quality[M].-In: Bernays EA. (ed.), Insect-plant interactions, CRC Press, pp.175-207.
    104. Leather SR.2002. Does variation in offspring size reflect strength of preference performance index in herbivorous insects?. Oikos,96:192-195.
    105. LeConte JL.1865. On the species of Galeruca and allied genera inhabiting North America. Proceedings of the National Academy of Sciences of the United States of America,17:204-222.
    106. Lee ET, Wang JW.2003. Statistical Methods for Survival Data Analysis[M]. Third Edition. New Jersey:Wiley and Interscience, pp.8-18.
    107.Lee IY. Selection of insects for potential biological control of Ambrosia trifida. Biological control, 27(4):309-317.
    108. LeSage L.1986. A taxonomic monograph of the nearctic galerucine genus Ophraella Wicox (Coleoptera:Chrysomelidae). Memoirs of the Entomological Society of Canada,133:1-75.
    109. Leyva JL, Browning HW, Gilstrap FE.1991. Development of Anastrepha ludens (Diptera: Tephritidae) in several host fruit. Environmental Entomology,20:1160-1165.
    110. Louda SM, Pemberton RW, Johnson MT, Follett PA.2003. Nontarget effects—the achilles' heel of biological control?. Annual Review of Entomology,48:365-396.
    111.MacLean PS, Hyres RA.1983. Ovipositional preference of the alfalfa blotch leafminer (Diptera: Agromyzidae) among some somple and glandular haired Medicago species. Environmental Entomology,12(4):1083-1086.
    112. Marohasy J.1998. The design and interpretation of host-specific tests for weed biological control with particular reference to insect behaviour. Biocontrol News and Information,19(1):13-20.
    113.McCaly AS.1981. Studies of some potential bicontrol agents for Parthenum hysterophorus in Mexico [A]. In:Delfosse ES, ed. Proceedings Of the V International Symposium on Biological Control of Weeds [C]. Melbourne:Common wealth Scientific and Industrial Research Organization, 471-481.
    114. McEnvoy PB.1996. Host specificity and biological pest control. BioScience,46:401-405.
    115. McFadyen REC.1998. Biological control of weeds. Annual Review of Entomology,43:369-393.
    116. Menzel R, Greggers U, Hammer M.1993. Functional organization of appetitive learning in a generalist pollinator, the honey bee[M]. In:Papaj DR.; Lewis AC. (eds) Insect learning:ecology and evolutionary perspective. New York; Chapman and Hall,79-125.
    117. Mitchell ER, Tingl EFC, Heath RR.1990. Ovipostional responses of three Heliothis species (Lepidoptera:Noctuidae) to alleochemicals from cultivated and wild host plants. Journal of Chemical Ecology,16(6):1817-1827.
    118. Monks A, Kelly D.2003. Motivation models fail to explain oviposition behavior in the diamondback moth. Physiological Entomology,28:199-208.
    119. Moriya S.1999. Successive rearing of ragweedbeetle, Ophraella communa Lesage (Coleoptera: Chrysomelidae) in Japan. Ann. Rep. Kanto-Tosan Plant Prot. Soc,46:115-1171.
    120. Muller-Scharer H, Schafiner U, Steinger T,2004. Evolution in invasive plants:implications for biological control. Trends in Ecology and Evolution.19(8):417-422.
    121. Nottingham SF, Hardie J, Dawson GW.1991. Behavioral and electrophysiological responses of aphids to host and nonhost phant volatiles. Journal of Chemical Ecology,17:1231-1242.
    122.Nufio CR, Papaj DR.2001. Host marking behavior in phytophagous insects and parasitoids. Entomologia Experimentalis et Applicata,99:273-293.
    123. Opp SB and Prokopy RJ.1986. Approaches and methods for direct behavioral observation and analysis of plantYinsect interactions[M]. In:Miller JR& Miller TA. (eds):Insect-Plant Interactions. Springer, New York, pp.1-22.
    124. Palaniswamy P, Bodnaryk RP.1994. A wild Brassica from sicily provides trichome-based resistance against flea beetles Phyllotreta crudiferae (Goeze) (Coleoptera:Chrysomelidae). The Canadian Entomologist,126:1119-1130.
    125. Palaniswamy P, Lamb RJ.1993. Wounded induced antixenotic resistance to flea beetles in crucifers. Canadian Entomologist,125:903-912.
    126. Palmer WA, Goeden RD.1991. The host range of Ophraella communa LeSage (Coleoptera: Chrysomelidae). Coleopterists Bulletin,45:115-120.
    127. Papaj DR, Rausher MD.1983. Individual variation in host location by phytophagous insects[M].In: Ahmad S.(ed) Herbivorous insects:host-seeking behaviour and mechanisms. New York; Academic Press,72-124.
    128. Papaj DR.1986. Shifts in foraging behavior by aBattus philenor population:Field evidence for switching by individual butterflies. Behavioral Ecology and Sociobiology,19:31-39.
    129. Pashley DP.1986. Host-associated genetic differentiation in fall armyworm(Lepidoptera Noctuide): a sibling species complex? Annals of the Entomological Society of America,79(6):898-904.
    130. Pasteels JM, Braekman JC, Daloze D, Ottinger R.1982. Chemical defense in chrysomelid larvae and adults. Tetrahedron,38:1891-1897.
    131. Pearson DE, Callaway RM.2005. Indirect nontarget effects of host-specific biological control agents:Implications for biological control. Biological Control,35:288-298.
    132. Pilson D, Rausher MD.1988. Clutch size adjustment by a swallowtail butterfly. Nature, 333:361-363.
    133.Pimental D, Lach L, Zuniga R. Morrison D.2000. Environmental and economic costs of nonindigenous species in the United States. BioScience,50:53-56.
    134. Pimentel D.1986. Biological invasions of plants and animals in agriculture and forestry[M]. In Ecology of biological invasions of North America and Hawaii (ed. Mooney HA and Drake JA), pp.149-162. Springer, New York.
    135. Pimentel D.1991. Diversification of biological control strategies inagriculture. Crop Protection, 10:243-253.
    136. Price PW.1975. Insect Evology[M], John Wiley & Sons, pp.150-167.
    137. Prokopy RJ, Roitberg BD.2001. Joining and avoidance behavior in nonsocial insects. Annual Review of Entomology,46:631-665.
    138. Prokopy RJ.1981. Epideictic pheromones that influence spacing patterns in phytophagous insects[M]. In:Nordlund DA, Jones RL, Lewis WJ. (eds.) Semiochemicals:Their Role in Pest Control. Plenum Press, New York,477-495.
    139. Raupp MJ, Sadof CS.1991. Responses of leaf beetles to injury-related changes in their salicaceous hosts[M]. In:Tallamy DW, Raupp MJ. (eds.) Phytochemical Induction By Herbivores. Wiley & Sons, New York,183-204.
    140. Roseland CR, Bates BW, Oseto CY.1990. Role of a Male-Produced Pheromone of the Red Sunflower Seed Weevil (Coleoptera:Curculionidae) in Host Finding. Environmental Entomology, 19(1):1675-1680.
    141. Rossiter MC, Cox-Foster DL, Briggs MA.1993. Initiation of maternal effects in Lymantria dispar-genetic and ecological components of egg provisioning. Journal of Evolutionary Biology, 6:577-590.
    142. Rossiter MC.1991a. Environmentally based, maternal effects- a hidden force in insect population dynamics. Oecologia,87:288-294.
    143. Rossiter MC.1991b. Maternal effects generate variation in life history-consequences of egg weight plasticity in the gypsy moth. Function Ecology,5:386-393.
    144. Schaffner URS.2001. Host Range Test of Insects for Biological Control:How Can It Be Better Interpreted?. BioScience,51:951-959.
    145. Schindek R, Hilker M.1996. Influence of larvae of Gastrophysa viridula (Coleoptera, Chrysomeldiae) on the distribution of conspecific adults in the field. Ecological Entomology 21:370-376.
    146. Schoonhoven LM, Jermy T, van Loon JJA.1998. Insect-Plant Biology[M]. Chapman & Hall, London.
    147. Schwab W.2003. Metabolome diversity:too few genes, too many metabolites?. Phytochemistry, 62:837-849
    148. Secord D, Kareiva P.1996. Perils and pitfalls in the host specificity paradigm. BioScience, 46:448-453.
    149. Serghei AD, Teshler MP, Watson AK.2006. Is sunflower(Helianthus annuus) at risk to damage from Ophraella communa, a natural enemy of common ragweed(Ambrosia artemisiifolia). Biocontrol Science and Technology,16(7):669-686.
    150. Sheppard AW, Hill R, DeClerck-Floate RA, McClay A, Olckers T, Quimby PC, Zimmermann HG. 2003. A global review of risk-benefit-cost analysis for the introduction of classical biological control agents against weeds:a crisis in the making? Biocontrol News & Information,24:91-108.
    151. Sheppard AW, van Klinken RD, Heard TA.2005. Scientific advances in the analysis of direct risks of weed biological control agents to nontarget plants. Biological Control,35:215-226.
    152. Singer MC, Vasco D, Parmesan C, Thomas CD.1992. Distinguishing between 'preference' and 'motivation'in food choice an example from insect oviposition. Animal Behaviour,44:463-471.
    153. Singer MC.1982. Quantification of host preference by manipulation of oviposition behavior in the butterfly Euphydryas editha. Oecologia,52:224-229.
    154. Singer MC.1986. The definition and measurement of oviposition preference in plant-feeding insects[M]. In:Miller J R, Miller T A. ed. Insect-Plant Interactiions. New York:Springer-Verlag, pp.65-94.
    155. Singer MC.2004. Oviposition preference:its definition, measurement,correlates and its use in assessing risk of host shifts[M]. In:Cullen,J.M., Briese, D.T., Kriticos, D.J., Lonsdale, W.M., Morin, L., Scott,J.K. (Eds.), Proceedings of the XI International Symposium on Biological Control of Weeds[C]. CSIRO Entomology, Canberra, pp.235-244
    156. Smith L.2007. Physiological host range of Ceratapion basicorne, a prospective biologcial control agent of Centaurea solstitialis (Asteraceae).Biological Control,41:120-133.
    157. Stadler E, Renwick JAA, Radke CD, Sachdev-Gupta K.1995. Tarsal contact chemoreceptor response to glucosinolates and cardenolides mediating oviposition in Pieris rapae. Physiological Entomology,20:175-187.
    158. Stadler E.1992. Behavioral Responses of Insects to Plant Secondary Compounds[M]. In: Herbivores:Their Interactions with Secondary Plant Metabolites.NewYork:AcademicPress,45-88.
    159. Stadler E.2002. Plant chemical cues important for egg deposition by herbivorous insects[M]. In Chemoecology of insect eggs and egg deposition (ed. Hilker M and Meiners T), pp.171-204.
    160. Stewart AJA.1996. Interspecific competition reinstated as an important force structuring insect herbivore communities. Trends in Ecology and Evolution,11:233-234.
    161. Stewart LA, Dixon AFG, Ruzicka Z, Iperti G.1991. Clutch and egg size in ladybird beetles. Ento-mophaga,36(3):329-333.
    162. Strong DR, Pemberton RW.2000. Biological control of invading species:risk and reform. Science, 288:1969-1970.
    163. Sutherland JP, Sullivan MS, Poppy GM.1999. The influence of floral character on the foraging behaviour of the hoverfly, Episyrphus balteatus. Entomologia Experimentalis et Applicata,93 (2):157-164.
    164. Szentesi A, Weber DC, Jermy T.2002. Role of visual stimuli in host and mate location of the Colorado potatobeetle. Entomologia Experimentalis et Applicata,105(2-3):141-152.
    165. Teshler MP, Dernovic SA, Di Tommaso A, Coderre D, Watson AK.2004. A novel device for the collection, storage, transport and deliv ery of beneficial insects and its application to Ophraella communa (Coleoptera:Chrysomelidae). Biocontrol Science & Technology,14:347-357.
    166. Thompson JN, Pellmyr O.1991. Evolution of oviposition behaviour and host preferences in Lepidoptera. Annual Review of Entomology,36:65-90.
    167. Thompson JN.1988. Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomologia experimentalis et applicata, 47:3-14.
    168. Thompson JN.1994. The Coevolution Process[M]. Chicago:The University of Chicago Press.
    169. Thorsteinson AJ.1960. Host selection in phytophagous insects. Annual Review of Entomology, 5:193-218
    170. Tschamtke T, Thiessen S, Dolch R, Boland W.2001. Herbivory, induced resistance, and interplant signal transfer in Alnus glutinosa. Biochemical Systematics and Ecology 29:1025-1047.
    171.Tsubaki Y.1995. Clutch size adjustment by Luehdorfia japonica.Swallowtail Butterflies:Their Ecology and Evolutionary Biology[M](ed. by Scriber JM, Tsubaki Y and Lederhouse RC), pp.63-70. Scientific Publishers, Gainesville, Florida
    172. Ueno H, Hasegawa Y, Fujiyama N, Katakura H.2001. Comparis on of genetic variation in growth performance on normal and novel host plants in a local population of a herbivorous ladybird beetle, Epilachna vigintioctomaculata. Heredity,87(1):1-7.
    173.USDA APHIS PPQ,1998. Reviewers Manual for the Technical Advisory Group for Biological Control Agents of Weeds:Guidelines for Evaluating the Safety of Candidate Biological Control Agents[S].
    174. Vaishampayan SM, Waldbauer GP, Kogan M.1975. Visual and oflactory responses in orientation to plants by the green-house whitefly Trialeurodes vaporariorum. Entomologia Experimental set Applicata,18:412-422.
    175. Van der Putten WH, Vet LEM, Harvey JA, Wa" ckers FL.2001. Linking above-and below-ground multitrophic interactions of plants, herbivores, pathogens, and their antagonists. Trends in Ecology and Evolution,16:547-454.
    176. van Klinken RD,2000. Host specificity testing:why do we do it and how can we do it better[A]. In: Van Driesche RG, Heard, TA, McClay, A., Reardon, R. (Eds.), Proceedings of session:host-specificity testing of exotic arthropod biological control agents—the biological basis for improvement in safety[S]. USDA Forest Service, Forest Health Technology Enterprise Team, Morgantown, WV, pp.54-68.
    177. van Klinken RD, Edwards OR.2002. Is host specificity of weed biological control agents likely to evolve rapidly following establishment? Ecology Letters,5:590-596
    178. Vison SB.1985. The behaviour of parasitoids[M]. In Nordlund GA, Jones RL and Lewis WJ. eds., Semiochemicals, Their Role in Pest Control, John Wiley, New York,51-78.
    179. Wang CL, Chiang MY, Wang C.1998. New record of a fastidious chrysomelid, Ophraella communa Lesage (Coleoptera:Chrysomelidae), in Taiwan. Plant Protection Bulletin Taipei, 40(2):185-188.
    180. Wapshere AJ.1974. A strategy for evaluating the safety of organisms for biological weed control. Annals of Applied Biology,77:201-211.
    181. Wapshere AJ.1989. A test sequence for reducing rejection of potential biological control agents for weeds. Annals of Applied Biology,114:515-526.
    182. Ward SA, Dixon AFG.1982. Selective resorption of aphid embryos and habitat changes relative to life span. Journal of Animal Ecology,51:859-864.
    183. Wasserman SS, Mitter C.1978. The relationship of body size to breadth of diet in some Lepidoptera. Ecological Entomology,3:155-160.
    184. Watanabe M.2000. Photoperiodic control of development and reproductive diapause in the leafbeetle Ophraella communa Lesage. Entomological Science,3(2):245-253.
    185. Welch KA.1978. Biology of Ophraella notulata (Coleoptera:Chrysomelidae). Annals of the Entomological Society of America,71 (1):134-136.
    186. Wilcox JA.1965. A synopsis of North American Galerucinae (Coleoptera:Chrysomelidae). Bulletin of the New York State Museum and Science Service,400:1-226.
    187. Williams DW, Fuester RW, Metterhouse WW, Balaam RJ, Bullock RH, Chianese RJ, Reardon RC. 1990. Density, size, and mortality of egg masses in New Jersey populations of the gypsy moth (Lepidoptera:Lymantriidae). Environmental Entomology,19:943-948.
    188. Willinger G, Dobler S.2001.Selective sequestration of iridoid glycosides from their host plants in Longitar sus flea beetles. Biochemical Systematics and Ecology. Biochemistry,29:335-346
    189. Wilson K, Lessells CM.1994. Evolution of clutch size in insects. I. A review of static optimality models. Journal of Evolutionary Biology,7:339-363.
    190. Withers TM, Barton Browne L, Stanley J.2000. How time dependent processes can affect the outcome of assays[A]. In:Van Driesche RG, Heard TA, McClay A, Reardon R. (Eds.), Proceedings of Session:Host-Specificity Testing of Exotic Arthropod Biological Control Agents—the Biological Basis for Improvement in Safety[S]. USDA Forest Service, Forest Health Technology Enterprise Team,Morgantown, pp.27-41
    191.Yamaga Y, Ohgushi T.1999. Preference-performance linkage in a herbivorous lady beetle: consequences of variability of natural enemies. Oecologia,119:183-190.
    192. Yamamura K, Moriya S, Tanaka K, Shimizu T.2006. Estimation of the potential speed of range expansion of an introduced species:characteristics and applicability of the gamma model. Population Ecology,51-62.
    193. Yamaoka K, Hirao T.1977. Stimulation of virginal oviposition by male factor and its effect on spontaneous nervous activity in Bombyx mori. Ibid,23:57-63.
    194. Yamaoka K, Hirao T.1971. Role of nerves from the last abdomianl ganglion in oviposition behavior of Bombyx mori. Insect Physiology,17:2327-2336.
    195. Yamazaki K, Imai C, Natuhara Y.2000. Natuhara Y. Rapid population growth and food-plant exploitation in exotic leaf beetle, Ophraella communa LeSage (Coleoptera; Chrysomelidae), in western Japan. Japanese Journal of Applied Entomology and Zoolog,35:215-223.
    196. Zaviezo T, Mills N.2000. Factors influencing the evolution of clutch size in a gregarious insect parasitoid. Journal of Animal Ecology,69:1047-1057.
    197. Zwolfer H, Harris P.1971. Host specificity determination of insects for biological control of weeds. Annual Review of Entomology,16:159-178.
    198.万方浩,郑小波,郭建英.2005.生物入侵[A].见:万方浩,郑小波,郭建英主编.重要农林外来入侵物种的生物学与控制[C].北京:科学出版社,3-55.
    199.万方浩,刘万学,马骏,郭建英.2005.普通豚草和三裂叶豚草.重要农林外来入侵物种的生物学与控制[M].北京:科学出版社,pp.662-692.
    200.万方浩,叶正楚,Harris P.1997生物防治作用物风险评价的方法.中国生物防治,13(1):37-41
    201.万方浩,李保平,郭建英等.2008.生物入侵:生物防治篇[M].北京:科学出版社,pp.56-73.
    202.万方浩,王韧.1990.恶性害草豚草的生物学及生态学特性.杂草学报,4(1):42,45-48.
    203.万方浩,王韧.1991.世界杂草生防的历史成就及我国杂草生防的现状与建议.生物防治通报,7(2):81-87.
    204.万方浩,马骏,郭建英,游兰韶.2003.豚草卷蛾和苍耳螟对豚草的联合控制作用.昆虫学报,46(4):473-478.
    205.严善春,张丹丹,迟德富.2003.植物挥发性物质对昆虫作用的研究进展.应用生态学报,14(2):310-313.
    206.傅建炜,徐敦明,吴玮等.2005.不同蔬菜害虫对色彩的趋性差异.昆虫知识,42(5):532-533.
    207.刘芸.2004.黄曲条跳甲寄主选择性研究[D].福州:福建农林大学.
    208.吴海荣,强胜,段慧,林金成.2004.豚草.杂草科学,2:50-52.
    209.周忠实,郭建英,万方浩,陈红松,彭兆普,罗源华.2008.低温冷藏对豚草天敌广聚萤叶甲存活和生 殖力的影响.中国生物防治,24(4):367-378.
    210.周琼,梁广文.2003.植物挥发性次生物质对昆虫的行为调控及其机制.湘潭师范学院学报(自然科学版),25(4):55-60.
    211.孟玲,徐军,李海波.2007.外来广聚萤叶甲在我国的扩散及生活史特征.中国生物防治,23(1):5-10.
    212.孟玲,李保平.2005.新近传入我国大陆取食豚草的广聚萤叶甲.中国生物防治,21(2):65-69.
    213.宋红敏,张清芬,韩雪梅,徐岩,徐汝梅.CLIMEX预测物种分布区的软件.昆虫知识,2004,41(4):379-386.
    214.张尔营,孟玲.2007.外来广聚萤叶甲对豚草取食和利用效率的测定.中国生物防治,23(2):123-127.
    215.张丽杰,杨星科,李文柱,崔俊芝.2005.在中国大陆发现豚草条纹萤叶甲.昆虫知识,42(2):227-228.
    216.张茂新,凌冰,庞熊飞.2003.非嗜食植物中的昆虫产卵趋避物及其利用.昆虫天敌,25(1):28-36.
    217.曹振军,李保平,孟玲.2007.外来广聚萤叶甲在我国大陆潜在分布区的预测.中国生物防治,23(4):310-315.
    218.李保平,孟玲.2006.杂草生物防治中天敌昆虫寄主专一性测定及其风险分析.中国生物防治,22(3):161-168.
    219.李君和郑发科.2007.空心莲子草成虫取食量和耐饥饿能力的研究.四川动物,26(1):116-117
    220.杜永均,严福顺.1994.植物挥发性次生物质在植食性昆虫、寄主植物和昆虫天敌关系中的作用机理.昆虫学报,37(2):233-249.
    221.沈佐瑞,2009.昆虫生态学及害虫防治的生态学原理[M].中国农业大学出版社.pp.102-115.
    222.王光宝.2003.章丘大葱甜菜夜蛾的发生与防治技术.植保技术与推广,23(4):20-21.
    223.王宏媛,李保平,孟玲.2009.外来广聚萤叶甲对非靶标植物的选择行为.中国生物防治,25(2):120-124.
    224.王桂荣,郭予元,吴孔明.2002.昆虫触角气味结合蛋白的研究进展.昆虫学报,45(1):131-137.
    225.王毅.2008.二纹柱萤叶甲与鸟柏卷象的生物学及寄主专一性研究[D].武汉:华中农业大学.
    226.王韧.1986.我国杂草生防现状及若干问题的讨论.生物防治通报,2(4):173-177.
    227.祝增荣,程家安,陈琇.1994.温度制约下的白背飞虱窝卵数.昆虫知识,31(2):70.
    228.秦玉川.2009.昆虫行为学导论[M].科学出版社,pp.212-216.
    229.翟宗昭,葛斯琴,杨星科.2005.跳甲的食性及食性分化.昆虫学报.48(3):407-417.
    230.胡亚鹏,孟玲.2007.外来植食性广聚萤叶甲对非靶标植物的潜在影响.生态学杂志,26(1):56-60.
    231.赵卓,刘国东,刘克文.2004.昆虫与植物协同演化关系的研究概况.吉林师范大学学报(自然科学版),3:4-7.
    232.钦俊德.1987.昆虫与植物的关系[M].科学出版社.
    233.钦俊德.2003.诠释植食性昆虫是怎样选择食料植物的.生物学通报,38(6):1-3.
    234.陆宴辉,张永军,吴孔明.2008.植食性昆虫的寄主选择机理及行为调控策略.生态学报,28(10):5113-5122.
    235.顾杰,毛雅琴,王莉萍,许佳君,张愚,杜予州.2009.四纹豆象不同地理种群的遗传分化.昆虫学报,52(]2):1349-1355.
    236.魏守辉,曲哲,张朝贤,李咏军,李香菊.外来入侵物种三裂叶豚草(Ambrosia trifida L)及其风险分析.植物保护,2006,32(4):17-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700