用户名: 密码: 验证码:
有关太阳中微子振荡实验和参数三味分析的一些研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中微子是自然界中组成物质的基本粒子之一。人类第一次意识到中微子的存在是在1930年,为了解释β衰变过程中放出的β射线的能谱是连续谱,Pauli提出衰变中还放出一种未知的新粒子带走了一部分能量,当时Pauli将这种新粒子定义为“中子”。但是真正的中子在1932年被Chadwick观测到,为了与中子区分,Feimi提议将这个无质量的新粒子定义为中微子。
     人们早期对中微子的认识有限,一般认为中微子是一种为静止质量为零,不带电荷,只参与弱相互作用的粒子。因此中微子很难与其他物质作用,实验对中微子的探测也就非常困难,直到1956年Frederick Reines和Clyde Cowan才通过反应堆实验第一次观测到反电子中微子。之后随着实验技术的提高,μ子中微子和τ子中微子也相继在实验室中观测到。
     中微子在自然界中分布广泛,其中太阳产生的中微子是人们研究的一个重要方向。第一个测量太阳中微子的实验是由Davis等人在1968年进行的Homestake实验,实验中测量的中微子流量只有标准太阳模型中预测的1/3,大量的中微子消失了,这就是著名的中微子缺失之谜。之后进行的其他太阳中微子实验SAGE, GALLEX/GNO和Super Kamiokande等实验,也验证了这个现象。对中微子缺失之谜的最好的解释是中微子振荡机制,即中微子是存在着微小的质量差且中微子味之间是混合的,在传播过程中不同中微子之间会发生味转化过程,因此测量的电子中微子流量比预测要少。2001年在加拿大进行的SNO实验首次测量了来自太阳中微子的非电子味成分,这是第一次直接的证据显示了太阳中微子的味转化。另外在日本进行的长基线反应堆实验KamLAND同样也测得了反电子中微子的缺失。通过大量太阳中微子实验以及其他类型中微子实验,中微子振荡机制最终确立下来。
     由于实验中只发现了左手中微子,没有右手中微子,根据标准模型质量产生机制,因此中微子质量为零。中微子振荡实验表明中微子存在非简并质量并且是混合的,这与标准模型中的中微子质量为零的预测是矛盾的。很自然的,中微子的质量产生机制是相当令人感兴趣的问题,到底存在着怎样的未知物理,也许下一次人类对基础物理就从中微子领域产生。为了这个目标,现阶段的任务是对中微子振荡机制有清晰地认识,通过振荡实验数据分析得到中微子振荡参数:质量差和混合角的精确结果。
     在这里,我们首先回顾中微子的一些基本性质,然后在三味中微子混合框架下,对中微子振荡机制进行详细的讨论。在真空中,我们给出了三味中微子振荡存活几率;在物质中三味振荡机制很复杂,我们从讨论较简单的二味振荡入手,介绍了中微子在均匀物质中,满足绝热条件的非均匀物质中的存活几率以及由物质效应引起的著名的MSW共振现象。然后给出三味中微子在物质中的存活几率并对太阳中微子传播到地球的存活几率这一具体问题给出了我们的分析。
     在振荡机制中,需要测量的振荡参数为两个质量差和混合矩阵中的三个混合角以及一个CP破坏相因子。中微子实验在确定了振荡机制后,研究的主要方向就是对这些振荡参数的精确测量。通过现有的实验数据,人们已经掌握了两个质量差以及两个混合角的精确值,未能精确测量的是混合角θ13以及与θ13耦合的CP相因子。因此下一代中微子实验的重要目标就是测量θ13,比如Double CHOOZ和我国的大亚湾中微子实验。在θ13精确测量的基础上人们将有可能测量CP.破缺相因子,这个相因子对基础物理有着重要的意义,很可能是造成宇宙中正反物质不对称的重要因素。
     对太阳中微子实验数据的分析是本文的主要内容。实验数据通常采用的是卡方分析方法,在三味中微子混合框架下,通过对所有的太阳中微子实验和KamLAND实验联合分析,我们得到了振荡参数△m122和θ12的精确值,振荡参数是在MSW共振的LMA解区域。我们还分析了θ13的可能值,得到在1.2σ水平有θ13>0的迹象。另外我们还采用一种不同的分析方法即贝叶斯几率分析,在二味中微子混合框架下验证了太阳中微子振荡参数的LMA解,并证明了这个LMA解是非常稳定的。在三味中微子混合框架下,可以将其他类型实验得到的对θ13的约束通过先验几率分布形式引入到我们的分析中。通过不同的先验前提,我们给出了贝叶斯分析中的θ13可能范围。
     中微子物理是粒子物理中的一个新兴领域,目前人们对中微子的研究只取得了初步的成果,仍然有很多问题等待解决。中微子的实验还在继续,中微子的研究还在深入,到底还有多少未知物理隐藏在中微子物理的问题中,我们期待着更多的有突破性的研究成果的出现。
Neutrino is one of nature's elementary particles. The existence of neutrinos was first realized by human in 1930. In order to explain the problem of continuous beta decay spectra, Pauli proposed beta decay also released some unknown particles who take a part of energy away. This new particle was called "neutron" by Pauli. When Chadwick discovered the neutron as we know it today in 1932, Ferimi dubbed the Pauli particle the "neutrino" to distinguish it from Chadwick's heavy neutron.
     The knowledge of neutrino was little known by human in an early study stage. It is generally recognized that neutrinos are particles with no masses, electrically neutral and weak interactions. Therefore, the neutrinos are difficult to interact with the other particles. The experiments are very difficult to detect neutrinos. The first detection of electron anti-neutrinos from reactor was made by Frederick Reines and Clyde Cowan until the year 1956. With the improvement of experimental technique, muon neutrinos and tau neutrinos are observed in the laboratory.
     Neutrinos are widely distributed in nature, in which neutrinos produced by solar play an important role for researchers. The first detection of solar neutrinos was Homestake made by Davis in 1968. The neutrino flux measured by experiment corresponds to approximately one third of the SSM prediction. This means a large of neutrinos lost. This is the famous the puzzle of solar neutrino problem. This puzzle was verified by SAGE, GALLEX/GNO and Super Kamiokande later. The best explanation to this puzzle is the neutrino oscillation. Neutrinos have small masses and flavor mixing. Electron neutrino flux was less than prediction for neutrino flavor transition. SNO experiment in Canada first observed all flavors of active neutrinos and not just to electron neutrinos in 2001. This is the first direct evidence for flavor transition. The long base line reactor experiment KamLAND in Japan also observed anti-neutrinos transition. The neutrino oscillation was established finally by solar neutrino and the other type experiments.
     Because we only find left-handed neutrino in experiments and no right-handed neutrinos, the neutrino mass is zero by standard model. The neutrino oscillation experiments show that neutrinos have different masses and mixing which conflict to prediction of standard model. It is interesting to know how the neutrinos have masses. What actually is unknown in the physical, the next breakthrough in fundamental physics maybe arise from the neutrino field. To this aim, now task is the clear understanding of neutrino oscillation and get the precision neutrino oscillation parameters:the masses and the mixing angle obtained by experimental data.
     Here, we first review some basic properties of neutrinos, then give the detail of neutrino oscillation in three flavor neutrino mixing frame. In vacuum we give the three flavor survival probability. In matter this is troublesome condition. We first discuss the relatively simple two flavor oscillation to give the survival probability in constant density, not constant density but adiabaticity condition medium and the MSW resonance effect. At last we give the survival probability in three flavor frame. The survival probability of solar neutrino transmitted to Earth was presented in our analysis.
     In the oscillation frame, the oscillation parameters to be measured are two mass differences, three mixing angles and a CP violation phase in mixing matrix. After determining the oscillation frame in neutrino experiments, the main research aim is precision measurement of these oscillation parameters. According to experiment data in present, people have already known precisely about two mass differences and two mixing angle, only mixing angleθ13 and the CP phase coupling withθ13 remain undetermined precisely. So the first aim of next generation experiments is the determination ofθ13, such as Double CHOOZ and Daya Bay neutrino experiment in China. On the basis of precision determination onθ13, one would possible to measure CP violation phase, which has an important meaning for fundamental physics, and may be an important factor that cause asymmetry between matter and antimatter in universe.
     Analysis of solar neutrino experimental data is the main content in this thesis. Experimental data analysis is usually used chi-square analysis. Through the combined analysis of all solar neutrino experiments and KamLAND experiment, we give the precision values of oscillation parameters Am122 andθ12 in three flavor mixing frame. The MSW resonance effect LMA region is content. We also give the result ofθ13, our hint ofθ13>0 is at 1.2σlevel. A different analysis Bayesian Probability analysis was used in this thesis. In two flavor mixing frame the Bayesian analysis result test the LMA region of solar neutrino oscillation parameters and the LMA region is very stable. In three flavor mixing frame the Bayesian analysis uses the prior probability function from the constraint of the other type neutrino experiments. We give the Bayesian result ofθ13 interval used different prior probability functions.
     Neutrino physics is one rising area in particle physics, only preliminary outcomes were achieved in neutrino research at present, many problems still remain unsolved. Neutrino experiments are in progress, neutrino are in depth research, how much unknown physics hidden in neutrino physical problems on earth, we are hoping more groundbreaking research outcomes arise.
引文
[1]W. Pauli, letter sent to the Tubingen conference, Dec.1930.
    [2]K.S.Hirata et al., Phys. Rev. Lett.58,1490(1987).
    [3]R.M.Bionta et al., Phys. Rev. Lett.58,1494(1987).
    [4]E.N. Alexeyev et al., JETP Lett.45,589(1987).
    [5]M.Aglietta et al., Europhys. Lett.3,L1315(1987).
    [6]F. Reines, C. L. Cowan, Phys. Rev.113,273 (1959).
    [7]B. Pontecorvo, Sov. Phys. JETP.6,429 (1958).
    [8]Z. Naki, M. Nakagawa, S. Sakata, Prog. Theor. Phys.28,870 (1962).
    [9]W. M. Yao et al. (Particle Data Group), J. Phys. G33,1 (2006).
    [10]E.Majorana, Nuovo Cimento,14,171(1937).
    [11]R.N.Mohapatra et al., Phys. Rev. D23,165(1981);G.Lazarides et al., Nucl. Phys. B181, 287(1981).
    [12]T.Yanagida, Prog. Theor. Phys. B135,66(1978).
    [13]W. M. Yao et al. (Particle Data Group), J. Phys. G33,1 (2006).
    [14]Fogli et al., Phys.Rev.D.78.033010(2008)
    [15]B. Pontecorvo, Sov. Phys. JETP.26,989 (1967).
    [16]L.Wolfenstein, Phys. Rev. D17,2369(1978).
    [17]S.P.Mikhheyev, A.Yu.Smirnov, Sov. J. Nucl. Phys.42,913(1985).
    [18]Samoil M. Bilenky, B. Pontecorvo, Phys.Lett.B102:32,1981; Samoil M. Bilenky, J. Hosek, S.T. Petcov, Phys.Lett.B94:495,1980; Samoil M. Bilenky, B. Pontecorvo, Phys.Lett.B95:233,1980. P. Langacker et al., Nucl. Phys. B282 (1987) 589.
    [19]S. M. Bilenky, D. Nicolo, S. T. Petcov, Phys. Lett. B 538 (2002) 77
    [20]T. K. Kuo, J. T. Pantaleone, Phys. Rev. Lett.57 (1986) 1805.
    [21]X. Shi, D. N. Schramm, Phys. Lett. B 283 (1992) 305.
    [22]M. Apollonio et al., Phys. Lett. B 420,397 (1998); M. Apollonio et al., Phys. Lett. B 466, 415 (1999); M. Apollonio et al., Eur. Phys. J. C 27,331 (2003).
    [23]Thomas Schwetz, Mariam Tortola, Jose W.F. Valle New J.Phys.10:113011,2008
    [24]S.M. Bilenky, C. Giunti, W. Grimus, Prog. Part. Nucl. Phys.43(1999)1.
    [25]C. Giunti, C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics (Oxford University Press,2007).
    [26]L.L. Chau, W.Y. Keung, Phys. Rev. Lett.53 (1984) 1802.
    [27]W.M. Yao et al., J. Phys. G 33 (2006) 1.
    [28]G.L. Fogli et al., Prog. Part. Nucl. Phys.57 (2006) 742.
    [29]S. Eidelman et al., Phys. Lett. B 592,1 (2004).
    [30]J. N. Bahcall, Neutrino Astrophysics, Cambridge University Press (1989).
    [31]J. N. Bahcall et al., Phys. Rev., C54,411-422 (1996).
    [32]J. N. Bahcall et al., Phys. Rev. D49,3923-3945 (1994).
    [33]J. N. Bahcall, Phys. Rev., C56,3391, (1997).
    [34]J. N. Bahcall et al., ApJ,621, L85 (2005).
    [35]Homestake, B.T. Cleveland et al., Astrophys. J.496 (1998) 505.
    [36]GNO, M. Altmann et al., Phys. Lett. B616 (2005) 174.
    [37]SAGE, J.N. Abdurashitov et al., J. Exp. Theor. Phys.95 (2002) 181.
    [38]Kamiokande Collaboration Y. Fukuda et al., Phys.Rev.Lett.77:1683-1686,1996.
    [39]Super-Kamkiokande, J. Hosaka et al., Phys. Rev. D73.
    [40]Super-Kamiokande, J. Cravens et al., Phys. Rev. D78.
    [41]SNO, Q. R. Ahmad et al., Phys. Rev.Lett.89 011302 (2002).
    [42]SNO, B. Aharmim et al., Phys. Rev. C72 (2005) 055502.
    [43]SNO, B. Aharmim et al., Phys. Rev. Lett.101 (2008) 111301.
    [44]KamLAND, K.Rguchi et al., Phys. Rev. Lett.90 (2003) 021802.
    [45]KamLAND, T.Araki et al., Phys. Rev. Lett.94 (2005) 081801.
    [46]KamLAND, S. Abe et al., Phys. Rev. Lett.100 (2008) 221803.
    [47]G.L. Fogli and E. Lisi, Astropart. Phys.3 (1995) 185.
    [48]G.L. Fogli et al., Phys. Rev. D62 (2000) 013002.
    [49]M.V. Garzelli and C. Giunti, Phys. Lett. B488 (2000) 339.
    [50]M.V. Garzelli and C. Giunti, JHEP 12 (2001) 017.
    [51]A. Dziewonski and D. Anderson, "Phys earth planet inter",vol.25, p.297 (1981).
    [52]John N. Bahcall, M. C. Gonzalez-Garcia, C. Pena-Garay, Phys.Rev. C66 (2002) 035802.
    [53]M.C. Gonzalez-Garcia, Y. Nir,Rev.Mod.Phys.75:345-402,2003.
    [54]John N. Bahcall, P. I. Krastev, E. Lisi, Phys.Rev.C55:494-503,1997.
    [55]P. C. de Holanda, A. Y. Smirnov 2002 Phys. Rev. D 66 113005 (2002).
    [56]M.B. Smy, Mod.Phys.Lett.A 17:2163-2178,2002.
    [57]"HOWTO use the SNO Salt Flux Results",http://sno.phy.queensu.ca
    [58]"HOWTO use the SNO NCD Flux Results ",http://sno.phy.queensu.ca
    [59]P. Vogel and J. Engel, Phys. Rev. D 39,3378 (1989).
    [60]M. Maltoni et al., Phys.Rev. D67 093003 (2003).
    [61]Q. Y. Liu et al., Commun. Theor. Phys.44 505 (2005).
    [62]Yang Ping and Liu Qiu-Yu, Chinese Physics Letters 2009 26(8):081402
    [63]F. Ardellier et al. [Double Chooz Collaboration], arXiv:hep-ex/0606025.
    [64]Q. Y. Liu et al., JHEP 0412:066 (2004).
    [65]H. Jeffreys, Theory of Probability. Oxford University Press, New York, USA,1961. First published in 1939.
    [66]T.J. Loredo, (1990), in Maximum-Entropy and Bayesian Methods, Dartmouth,1989, ed. P. Fougere, Kluwer Academic Publishers, Dordrecht, The Netherlands,1990, pp. 81-142.
    [67]T.J. Loredo, (1992), in Statistical Challenges in Modern Astronomy, ed. E.D. Feigelson and G.J. Babu, Springer-Verlag, New York,1992, pp.275-297.
    [68]E.T. Jaynes, Probability Theory:The Logic of Science (Cambridge University Press, 2003).
    [69]G. D'Agostini, Bayesian Reasoning in Data Analysis, A Critical Introduction (World Scientific,2003).
    [70]M.V. Garzelli, C. Giunti, JHEP 0112:017,2001.
    [71]F. James, Statistical methods in experimental physics (World Scientific,2006).
    [72]CHOOZ, M. Apollonio et al., Eur. Phys. J. C27 (2003) 331, arXiv:hep-ex/0301017.
    [73]Palo Verde, F. Boehm et al., Phys. Rev. D64 (2001) 112001, arXiv:hep-ex/0107009.
    [74]G.L. Fogli et al. Prog. Part. Nucl. Phys.57 (2006) 742, arXiv:hep-ph/0506083.
    [75]T. Schwetz, M. Tortola and J.W.F. Valle, New J. Phys.10 (2008) 113011.
    [76]G. Fogli et al., Phys. Rev. Lett.101 (2008) 141801, arXiv:0806.2649.
    [77]G.L. Fogli et al., Prog. Part. Nucl. Phys.57 (2006) 742, arXiv:hep-ph/0506083.
    [78]M.C. Gonzalez-Garcia and M. Maltoni, Phys. Rept.460 (2008) 1, arXiv:0704.1800.
    [79]J. Escamilla, D.C. Latimer and D.J. Ernst, Phys. Rev. Lett.103 (2009) 061804, arXiv:0805.2924.
    [80]A. Bandyopadhyay et al., (2008), arXiv:0804.4857.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700