用户名: 密码: 验证码:
CKIP-1基因的敲除小鼠模型建立及其在骨骼、免疫系统中的生理功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨骼系统的发育与功能异常可导致包括骨质疏松在内的多种疾病,骨病已成为我国三大老年病之一,深入研究骨发育的分子机制对于骨病的防诊治具有重要意义。
     骨发生包括骨组织形成(bone formation)和骨组织吸收(bone resorption)两种基本过程。骨形成后,人的整个一生均通过骨形成及骨吸收构成的骨重塑(bone remodeling)过程保持骨的更新。其中,骨形成由成骨细胞调控,骨吸收则由破骨细胞调控。目前,对破骨细胞的分化及调控机制了解得比较清楚,破骨细胞已成为重要的药靶。相对而言,对控制成骨细胞分化的基因了解较少,基于成骨细胞功能研究的药物研发报道也非常有限,所以,加深对成骨细胞调控的理解是当前的研究重点。
     由于影响骨骼发育的基因在人类和小鼠中极为保守,因此,小鼠可作为一种理想的研究模型。过去近二十年,转基因和基因敲除小鼠模型的应用深刻地改变了人类对骨生理学的认识,大大加深了人类对骨生物学的理解。但是,目前对于骨骼生理学和骨病遗传学的重要发现绝大多数来自于国外实验室,一个重要的原因是:大量突破性的发现都得益于基因敲除和转基因遗传修饰小鼠模型,而专业方面国内几为空白。基因敲除技术是一种可以定向对生物体进行DNA水平遗传修饰的技术手段,该技术不仅推动了对生命科学重大基本问题的理解,而且对于疾病的治疗提供了模型。近年来,在国家各种基金资助下,国内少数实验室已经初步建立了相应的技术平台,实质性地推动了学术进步,利用遗传学模式动物模型发现新的骨发育调控分子面临新的机遇。本研究正是把握这一机遇,发现了一个新的骨形成负调控分子CKIP-1 (casein kinase 2-interacting protein-1)。CKIP-1为本实验室克隆鉴定并有扎实研究基础和授权发明专利的基因。本研究成功建立了CKIP-1的敲除小鼠模型,并经表型分析发现:(1) CKIP-1基因敲除小鼠可正常出生,表明其非胚胎发育所必需;成体小鼠经软X射线分析表明,敲除小鼠整体骨量增加,颅骨、尾椎骨尤其明显;(2)骨密度仪测量股骨骨矿密度表明敲除小鼠明显高于野生型小鼠;(3)显微CT对股骨远端松质骨三维重建后的定量分析显示CKIP-1敲除小鼠的骨小梁密度、骨连接密度、骨小梁厚度、骨小梁数量均高于野生型,而CKIP-1敲除小鼠的骨小梁间隙低于野生型;(4)钙黄绿素荧光双标技术和骨剂量软件分析表明,敲除小鼠的骨形成速率显著高于野生型;(5)成骨前体细胞经分离体外培养,并行诱导分化及矿化,表明CKIP-1-/-成骨细胞的碱性磷酸酶(ALP)活性显著高于野生型对应细胞;von Kossa和茜素红染色表明,CKIP-1-/-细胞矿化结节的数量极显著地高于野生型对应细胞,显示向细胞外基质沉积I型胶原的能力显著升高。这些数据表明,CKIP-1在生理条件下是成体(而非胚胎期)骨形成的负调控分子,其机制与调控成骨细胞的分化与活性相关。这是CKIP-1生理功能的第一批遗传学证据。进一步的分子机制研究表明CKIP-1的缺失导致骨形成负调控相关的泛素连接酶Smurf1(Smad ubiquitination regulatory factor 1)的E3活性削弱,进而使其底物-磷酸化的MEKK2蛋白水平升高,导致JNK-AP-1通路活性增强,继之上调成骨分化相关基因的转录。至此,我们在自建CKIP-1基因剔除小鼠模型的基础上,发现了CKIP-1在骨稳态调控中的生理功能,同时在整体水平揭示了CKIP-1调控Smurf1活性的生物学意义。
     目前,绝大多数已被发现的骨发育相关分子都在胚胎期发挥作用,只有少数影响成体的骨量,而后者更容易成为治疗骨质疏松疾病的靶标。我们发现,CKIP-1敲除小鼠年龄越大,骨量的升高与野生型小鼠相比越显著。说明CKIP-1通过在成骨细胞中发挥负调控的作用,使得成体的骨重塑平衡被打破。提示CKIP-1可能作为通过影响成体骨形成而治疗骨质疏松的候选靶标。
     针对一个候选的药物靶标分子,需要考虑其特异性及副作用,而首应考虑的是免疫系统。因此我们对CKIP-1敲除小鼠免疫系统进行了观察与分析。前期的初步证据表明,CKIP-1在一些静态及激活的免疫细胞亚群中的表达存在显著差别,在此基础上我们对CKIP-1敲除小鼠展开免疫细胞亚群的分析,结果显示,CKIP-1敲除小鼠脾脏中CD4+CD25+细胞的数量增多,骨髓中粒细胞数量增多,这提示CKIP-1可能参与上述免疫细胞亚群的调控;同时发现在LPS刺激下CKIP-1敲除小鼠IL-5和IFN-γ上调。目前,对免疫系统更加深入系统的表型分析和分子机制研究还在进行中。
     综上,本研究在国际上率先建立了CKIP-1基因敲除的小鼠模型,获得了关于CKIP-1基因生理功能的遗传学证据,发现了CKIP-1在骨形成中的重要负调控功能。并初步探讨了CKIP-1在免疫系统中的可能角色。这些结果加深了对CKIP-1基因的理解,同时为骨质疏松等疾病的防治提供了新的思路。
The disorder of bone development and function can lead to many skeletal diseases, such as osteoporosis. Thus, it is critical to understand the molecular details of the anabolic signaling pathways that control bone homeostasis for developing novel bone anabolic agents to reverse osteoporosis.
     In healthy adults targeted remodeling is a continuous physiological process, and initially bone formation was shown to always follow bone resorption leading to full replenishment of removed bone matrix with newly synthesized bone. Bone remodeling, thus, is understood as a cycle of bone resorption by osteoclasts and formation of new bone by osteoblasts. In contrast to the wealth of knowledge that has been acquired in the osteoclast field, we still know relatively little about osteoblast. There are currently a number of FDA-approved drugs for the prevention and treatment of postmenopausal osteoporosis that work by inhibiting bone resorption .
     The only FDA-approved agent capable of stimulating new bone formation for reversing bone loss in patients with high risk for osteoporotic fracture is parathyroid hormone (PTH).
     Since the genes related to bone development are highly conserved between human and mouse, mouse can be used as an ideal animal model. By this means, we have learned a lot about the mechanisms by which the bone is formed and regulated in the past twenty years.
     Gene targeting is a technique by which targeted gene can be modified accurately at the DNA level. Since the first knockout mice was reported in 1987, gene targeting is now being applied to virtually all areas of biomedicine– from basic research to the development of new therapies. Now deletion of any gene at both temporal and spatial level is feasible. Gene targeting has become one of the most important techniques to uncover the functions of genes in vivo.
     CKIP-1 (casein kinase 2 interacting protein 1) is implicated in regulation of cell differentiation and apoptosis. All of the previous studies were performed at the molecular and celluler levels. At present, the physiological function of CKIP-1 remains unclear due to lack of genetic evidence. In this study we established the CKIP-1 gene knockout mice model and then performed the phenotype analysis. CKIP-1 deficient mice were born normally, with no apparent gross abnormalities, and were fertile, suggesting that CKIP-1 is not required for embryonic development. Further phenotype analysis showed that compared to wild-type mice, the CKIP-1 deficient mice showed an age-dependent increase in bone mass and bone mineral density. This increase is caused by the enhanced activity of osteoblast differentiation and mineralization. Studies at molecular level showed that the activity of HECT-type E3 ligase Smurf1 decreased significantly in CKIP-1 KO mice. Consistently, the protein level of MEKK2, which is a substrate of Smurf1, was markedly upregulated in the absence of CKIP-1. This leads to the JNK-AP-1 pathway jubilantly regulated. Thus using the CKIP-1 KO mice, we uncovered the physiological role of CKIP-1 in regulation of bone homeostasis, and also confirmed the regulatory role of CKIP-1 on Smurf1 activity in vivo.
     Our primary data showed that CKIP-1 gene expression was upregulated or downregulated in certain activated immune cells compared with the resting cells. We then further explored the possible role of CKIP-1 in immune regulation using the wild-type and KO mice, we revealed that the number of CD4+CD25+ double positive cells in spleen and granulocytes in bone marrow was increased in CKIP-1 KO mice. These data suggested that CKIP-1 may participate in the regulation of these cells. We also found that the secretion of IL-5 and IFN-γin serum was upregulated when CKIP-1 gene was deficient. Further analysis of CKIP-1 in immune system is under investigation.
     Taken together, the current study established the CKIP-1 gene knockout mice model and provided the first genetic evidence of physiological function of CKIP-1.Our findings revealed the negative regulatory role of CKIP-1 on bone formation. We also supplied primary analysis of the immune system of CKIP-1 KO mice. These data deepen our understanding of CKIP-1 gene function, and provide new clues for the therapy of bone diseases including osteoporosis.
引文
1. Wagner EF, Karsenty G. 2001. Genetic control of skeletal development. Curr. Opin. Genet. Dev. 11: 527-532.
    2. Karsenty G, Wagner EF. 2002. Reaching a genetic and molecular understanding of skeletal development. Dev. Cell. 2: 389-406.
    3. Zelzer E, Olsen BR. 2003. The genetic basis for skeletal diseases. Nature. 423: 343-348.
    4. Mone Zaidi. 2007. Skeletal remodeling in health and disease. Nat. Med . 13: 791-801
    5. Karsenty G. 2003. The complexities of skeletal biology. Nature. 423: 316-318.
    6. DeWitt N. Bone and cartilage. Nature. 2003, 423: 315.
    7. Corti MC, Rigon C. 2003. Epidemiology of osteoarthritis: prevalence, risk factors and functional impact. Aging Clin. Exp. Res. 15: 359-363.
    8. Erlebacher A, Filvaroff EH, Gitelman SE, Derynck R. 1995. Toward a molecular understanding of skeletal development. Cell. 80: 371-378.
    9. Carr F, Medina WD, Dube S, Bertino JR. 1983. Genetic transformation of murine bone marrow cells to methotrexate resistance. Blood. 62: 180-185.
    10. Raptopoulou A, Sidiropoulos P, Katsouraki M, Boumpas DT. 2007. Anti-citrulline antibodies in the diagnosis and prognosis of rheumatoid arthritis: evolving concepts. Crit. Rev. Clin. Lab Sci. 44: 339-363.
    11. Teitelbaum SL, Ross FP. 2003. Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4: 638-649.
    12. Boyle WJ, Simonet WS, Lacey DL. 2003. Osteoclast differentiation and activation. Nature. 423: 337-342.
    13. Tondravi MM, McKercher SR, Anderson K, Erdmann JM, Quiroz M, Maki R, Teitelbaum SL. 1997. Osteopetrosis in mice lacking haematopoietic transcription factor PU.1. Nature. 386: 81-84.
    14. Hodgkinson CA, Moore KJ, Nakayama A, Steingrimsson E, Copeland NG, Jenkins NA, Arnheiter H. 1993. Mutations at the mouse microphthalmia locus are associated with defects in a gene encoding a novel basic-helix-loop-helix-zipper protein. Cell. 74: 395-404.
    15. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS, Luthy R, Nguyen HQ, Wooden S, Bennett L, Boone T, Shimamoto G, DeRose M, Elliott R,Colombero A, Tan HL, Trail G, Sullivan J, Davy E, Bucay N, Renshaw-Gegg L, Hughes TM, Hill D, Pattison W, Campbell P, Sander S, Van G, Tarpley J, Derby P, Lee R, Boyle WJ. 1997. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell. 89: 309-319.
    16. Yasuda H, Shima N, Nakagawa N, Mochizuki SI, Yano K, Fujise N, Sato Y, Goto M, Yamaguchi K, Kuriyama M, Kanno T, Murakami A, Tsuda E, Morinaga T, Higashio K. 1998. Identity of osteoclastogenesis inhibitory factor (OCIF) and osteoprotegerin (OPG): a mechanism by which OPG/OCIF inhibits osteoclastogenesis in vitro. Endocrinology. 139: 1329-1337.
    17. Li J, Sarosi I, Yan XQ, Morony S, Capparelli C, Tan HL, McCabe S, Elliott R, Scully S, Van G, Kaufman S, Juan SC, Sun Y, Tarpley J, Martin L, Christensen K, McCabe J, Kostenuik P, Hsu H, Fletcher F, Dunstan CR, Lacey DL, Boyle WJ. 2000. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc. Natl. Acad. Sci U S A. 97: 1566-1571.
    18. Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De ST, Daro E, Smith J, Tometsko ME, Maliszewski CR, Armstrong A, Shen V, Bain S, Cosman D, Anderson D, Morrissey PJ, Peschon JJ, Schuh J. 1999. RANK is essential for osteoclast and lymph node development. Genes Dev. 13: 2412-2424.
    19. Kong YY, Yoshida H, Sarosi I, Tan HL, Timms E, Capparelli C, Morony S, Oliveira-dos-Santos AJ, Van G, Itie A, Khoo W, Wakeham A, Dunstan CR, Lacey DL, Mak TW, Boyle WJ, Penninger JM. 1999. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 397: 315-323.
    20. Wong BR, Rho J, Arron J, Robinson E, Orlinick J, Chao M, Kalachikov S, Cayani E, Bartlett FS, Frankel WN, Lee SY, Choi Y. 1997. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J.Biol. Chem. 272: 25190-25194.
    21. Anderson DM, Maraskovsky E, Billingsley WL, Dougall WC, Tometsko ME, Roux ER, Teepe MC, DuBose RF, Cosman D, Galibert L. 1997. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function. Nature. 390: 175-179.
    22. Grigoriadis AE, Wang ZQ, Cecchini MG, Hofstetter W, Felix R, Fleisch HA, Wagner EF. 1994. c-Fos: a key regulator of osteoclast-macrophage lineagedetermination and bone remodeling. Science. 266: 443-448.
    23. Jochum W, David JP, Elliott C, Wutz A, Plenk HJ, Matsuo K, Wagner EF. 2000. Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nat. Med. 6: 980-984.
    24. Sabatakos G, Sims NA, Chen J, Aoki K, Kelz MB, Amling M, Bouali Y, Mukhopadhyay K, Ford K, Nestler EJ, Baron R. 2000. Overexpression of DeltaFosB transcription factor(s) increases bone formation and inhibits adipogenesis. Nat. Med. 6: 985-990.
    25. Franzoso G, Carlson L, Xing L, Poljak L, Shores EW, Brown KD, Leonardi A, Tran T, Boyce BF, Siebenlist U. 1997. Requirement for NF-kappaB in osteoclast and B-cell development. Genes Dev. 11: 3482-3496.
    26. Iotsova V, Caamano J, Loy J, Yang Y, Lewin A, Bravo R. 1997. Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat. Med. 3: 1285-1289.
    27. Matsuo K, Galson DL, Zhao C, Peng L, Laplace C, Wang KZ, Bachler MA, Amano H, Aburatani H, Ishikawa H, Wagner EF. 2004. Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J. Biol. Chem. 279: 26475–26480.
    28. Goldring SR, Goldring MB. 2007. Eating bone or adding it: the Wnt pathway decides. Nat. Med. 13: 133-134.
    29. Diarra D, Stolina M, Polzer K, Zwerina J, Ominsky MS, Dwyer D, Korb A, Smolen J, Hoffmann M, Scheinecker C, van HD, Landewe R, Lacey D, Richards WG, Schett G. 2007. Dickkopf-1 is a master regulator of joint remodeling. Nat. Med. 13: 156-163.
    30. Baron R. 2004. Arming the osteoclast. Nat. Med. 10: 458-460.
    31. Boyce BF, Xing L. 2006. Osteoclasts, no longer osteoblast slaves. Nat. Med. 12: 1356-1358.
    32. Harada S, Rodan GA. 2003. Control of osteoblast function and regulation of bone mass. Nature. 423: 349-355.
    33. Karsenty G. 2001. Minireview: transcriptional control of osteoblast differentiation. Endocrinology. 142: 2731-2733.
    34. Yang X, Karsenty G. 2002. Transcription factors in bone: developmental and pathological aspects. Trends Mol. Med. 8: 340-345.
    35. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. 1997. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 89: 747-754.
    36. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T. 1997. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 89: 755-764.
    37. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ. 1997. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 89: 765-771.
    38. Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G. 2000. Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell. 100: 197-207.
    39. Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G. 2002. Leptin regulates bone formation via the sympathetic nervous system. Cell. 111: 305-317.
    40. Yoshida Y, Tanaka S, Umemori H, Minowa O, Usui M, Ikematsu N, Hosoda E, Imamura T, Kuno J, Yamashita T, Miyazono K, Noda M, Noda T, Yamamoto T. 2000. Negative regulation of BMP/Smad signaling by Tob in osteoblasts. Cell. 103: 1085-1097.
    41. Yousfi M, Lasmoles F, Lomri A, Delannoy P, Marie PJ. 2001. Increased bone formation and decreased osteocalcin expression induced by reduced Twist dosage in Saethre-Chotzen syndrome. J. Clin. Invest. 107: 1153-1161.
    42. Mohan, S, Baylink, D.J. 2005. Impaired skeletal growth in mice with haploinsufficiency of IGF-1: genetic evidence that differences in IGF-1 expression could contribute to peak bone mass differences. J. Endocrinol. 185: 415–420.
    43. Sims NA, Dupont S, Krust A, Clement-Lacroix P, Minet D, Resche-Rigon M, Gaillard-Kelly M, Baron R. 2002. Deletion of estrogen receptors reveals a regulatory role for estrogen receptors-beta in bone remodeling in females but not in males. Bone. 30: 18–25.
    44. Miao D, He B, Lanske B, Bai XY, Tong XK, Hendy GN, Goltzman D, Karaplis AC. 2004. Skeletal abnormalities in PTH-null mice are influenced by dietary calcium. Endocrinology .145: 2046–2053.
    45. Bassett JH, O Shea PJ, Sriskantharajah S, Rabier B, Boyde A, Howell PG, Weiss RE, Roux JP, Malaval L, Clement-Lacroix P, Samarut J, Chassande O, WilliamsGR. 2007. Thyroid hormone excess rather than TSH deficiency induces osteoporosis in hyperthyroidism. Mol. Endocrinol. 21: 1095–1107.
    46. Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, Wang H, Cundy T, Glorieux FH, Lev D, Zacharin M, Oexle K, Marcelino J, Suwairi W, Heeger S, Sabatakos G, Apte S, Adkins WN, Allgrove J, Arslan-Kirchner M, Batch JA, Beighton P, Black GC, Boles RG, Boon LM, Borrone C, Brunner HG, Carle GF, Dallapiccola B, De PA, Floege B, Halfhide ML, Hall B, Hennekam RC, Hirose T, Jans A, Juppner H, Kim CA, Keppler-Noreuil K, Kohlschuetter A, LaCombe D, Lambert M, Lemyre E, Letteboer T, Peltonen L, Ramesar RS, Romanengo M, Somer H, Steichen-Gersdorf E, Steinmann B, Sullivan B, Superti-Furga A, Swoboda W, van BM, Van HW, Vikkula M, Votruba M, Zabel B, Garcia T, Baron R, Olsen BR, Warman ML. 2001. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 107: 513-523.
    47. Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, Wu D, Insogna K, Lifton RP. 2002. High bone density due to a mutation in LDL-receptor-related protein 5. N. Engl. J. Med. 346: 1513-1521.
    48. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de CB. 2002. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 108: 17-29.
    49. Yang X, Matsuda K, Bialek P, Jacquot S, Masuoka HC, Schinke T, Li L, Brancorsini S, Sassone-Corsi P, Townes TM, Hanauer A, Karsenty G. 2004. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome. Cell. 117: 387-398.
    50. Datto M, Wang XF. 2005. Ubiquitin-mediated degradation a mechanism for fine-tuning TGF-beta signaling. Cell. 121: 2-4.
    51. Yamashita M, Ying SX, Zhang GM, Li C, Cheng SY, Deng CX, Zhang YE. 2005. Ubiquitin ligase Smurf1 controls osteoblast activity and bone homeostasis by targeting MEKK2 for degradation. Cell. 121: 101-113.
    52. Wang X, Kua HY, Hu Y, Guo K, Zeng Q, Wu Q, Ng HH, Karsenty G, de CB, Yeh J, Li B. 2006. p53 functions as a negative regulator of osteoblastogenesis, osteoblast-dependent osteoclastogenesis, and bone remodeling. J. Cell Biol. 172: 115-125.
    53. Jones DC, Wein MN, Oukka M, Hofstaetter JG, Glimcher MJ, Glimcher LH. 2006. Regulation of adult bone mass by the zinc finger adapter protein Schnurri-3.Science. 312: 1223-1227.
    54. Ellies DL, Krumlauf R. 2006. Bone formation: The nuclear matrix reloaded. Cell. 125: 840-842.
    55. Dobreva G, Chahrour M, Dautzenberg M, Chirivella L, Kanzler B, Farinas I, Karsenty G, Grosschedl R. 2006. SATB2 is a multifunctional determinant of craniofacial patterning and osteoblast differentiation. Cell. 125: 971-986.
    56. Winslow MM, Pan M, Starbuck M, Gallo EM, Deng L, Karsenty G, Crabtree GR. 2006. Calcineurin/NFAT signaling in osteoblasts regulates bone mass. Dev. Cell. 10: 771-782.
    57. Bosc DG, Graham KC, Saulnier RB, Zhang C, Prober D, Gietz RD, Litchfield DW. 2000. Identification and characterization of CKIP-1, a novel pleckstrin homology domain-containing protein that interacts with protein kinase CK2. J .Biol. Chem. 275: 14295-14306.
    58. Yu Y, Zhang C, Zhou G, Wu S, Qu X, Wei H, Xing G, Dong C, Zhai Y, Wan J, Ouyang S, Li L, Zhang S, Zhou K, Zhang Y, Wu C, He F. 2001. Gene expression profiling in human fetal liver and identification of tissue- and developmental-stage-specific genes through compiled expression profiles and efficient cloning of full-length cDNAs. Genome Res. 11: 1392-1403.
    59. Chevray PM, Nathans D. 1992. Protein interaction cloning in yeast: identification of mammalian proteins that react with the leucine zipper of Jun. Proc. Natl. Acad. Sci U S A. 89: 5789-5793.
    60. Zhang L, Xing G, Tie Y, Tang Y, Tian C, Li L, Sun L, Wei H, Zhu Y, He F. 2005. Role for the pleckstrin homology domain-containing protein CKIP-1 in AP-1 regulation and apoptosis. EMBO J. 24: 766-778.
    61. Zhang L, Tie Y, Tian C, Xing G, Song Y, Zhu Y, Sun Z, He F. 2006. CKIP-1 recruits nuclear ATM partially to the plasma membrane through interaction with ATM. Cell. Signal. 18: 1386-1395.
    62. Zhang L, Tang Y, Tie Y, Tian C, Wang J, Dong Y, Sun Z, He F. 2007. The PH domain containing protein CKIP-1 binds to IFP35 and Nmi and is involved in cytokine signaling. Cell. Signal. 19: 932-944.
    63. Tokuda E, Fujita N, Oh-hara T, Sato S, Kurata A, Katayama R, Itoh T, Takenawa T, Miyazono K, Tsuruo T. 2007. Casein kinase 2-interacting protein-1, a novel Akt pleckstrin homology domain-interacting protein, down-regulates PI3K/Akt signaling and suppresses tumor growth in vivo. Cancer Res. 67: 9666-9676.
    64. Olsten ME, Canton DA, Zhang C, Walton PA, Litchfield DW. 2004. The Pleckstrin homology domain of CK2 interacting protein-1 is required for interactions and recruitment of protein kinase CK2 to the plasma membrane. J. Biol. Chem. 279: 42114-42127.
    65. Canton DA, Olsten ME, Kim K, Doherty-Kirby A, Lajoie G, Cooper JA, Litchfield DW. 2005. The pleckstrin homology domain-containing protein CKIP-1 is involved in regulation of cell morphology and the actin cytoskeleton and interaction with actin capping protein. Mol. Cell. Biol. 25: 3519-3534.
    66. Canton DA, Olsten ME, Niederstrasser H, Cooper JA, Litchfield DW. 2006. The role of CKIP-1 in cell morphology depends on its interaction with actin-capping protein. J. Biol. Chem. 281: 36347-36359.
    67. Safi A, Vandromme M, Caussanel S, Valdacci L, Baas D, Vidal M, Brun G, Schaeffer L, Goillot E. 2004. Role for the pleckstrin homology domain-containing protein CKIP-1 in phosphatidylinositol 3-kinase-regulated muscle differentiation. Mol. Cell. Biol. 24: 1245-1255.
    68. Capecchi MR. 2005. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century. Nat. Rev. Genet. 6: 507-512.
    69. Zhu H, Kavsak P, Abdollah S, Wrana JL, Thomsen GH. 1999. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature. 400: 687-693.
    70. Zhao M, Qiao M, Oyajobi BO, Mundy GR, Chen D. 2003. E3 ubiquitin ligase Smurf1 mediates core-binding factor alpha1/Runx2 degradation and plays a specific role in osteoblast differentiation. J. Biol. Chem. 278: 27939-27944.
    71. Wang HR, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH, Wrana JL. 2003. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science. 302: 1775-1779.
    72. Zhao M, Qiao M, Harris SE, Oyajobi BO, Mundy GR, Chen D. 2004. Smurf1 inhibits osteoblast differentiation and bone formation in vitro and in vivo. J. Biol. Chem. 279: 12854-12859.
    73. Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL. 2005. Regulation of the polarity protein Par6 by TGFbeta receptors controls epithelial cell plasticity. Science. 307: 1603-1609.
    74. Moreadith RW, Radford NB. 1997. Gene targeting in embryonic stem cells: the new physiology and metabolism. J. Mol. Med. 75: 208-216.
    75. Sedivy JM, Dutriaux A. 1999. Gene targeting and somatic cell genetics--a rebirth or a coming of age? Trends Genet. 15: 88-90.
    76. Thomas KR, Capecchi MR. 1987. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell. 51: 503-512.
    77. Doetschman T, Gregg RG, Maeda N, Hooper ML, Melton DW, Thompson S, Smithies O. 1987. Targetted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature. 330: 576-578.
    78. Mansour SL, Thomas KR, Capecchi MR. 1988. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature. 336: 348-352.
    79.《基因打靶技术》杨晓,黄培堂,黄翠芬主编。科学出版社,2002.
    80.李力博士论文《人胎肝来源PACT等重要功能基因的基因打靶研究》2005
    81. Barrios-Rodiles M, Brown KR, Ozdamar B, Bose R, Liu Z, Donovan RS, Shinjo F, Liu Y, Dembowy J, Taylor IW, Luga V, Przulj N, Robinson M, Suzuki H, Hayashizaki Y, Jurisica I, Wrana JL. 2005. High-throughput mapping of a dynamic signaling network in mammalian cells. Science. 307: 1621-1625.
    82. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M. 2005. Towards a proteome-scale map of the human protein-protein interaction network. Nature. 437: 1173-1178.
    83. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksoz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE. 2005. A human protein-protein interaction network: a resource for annotating the proteome. Cell. 122: 957-968.
    84. Lin X, Liang M, Feng XH. 2000. Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling. J. Biol. Chem. 275: 36818-36822.
    85. Roos-Mattjus P, Sistonen L. 2004. The ubiquitin-proteasome pathway. Ann. Med. 36: 285-295.
    86. Bhoj VG, Chen ZJ. 2009. Ubiquitylation in innate and adaptive immunity. Nature. 458: 430-437.
    87. Wrana JL, Attisano L. 2000. The Smad pathway. Cytokine Growth Factor Rev. 11: 5-13.
    88. Murakami G, Watabe T, Takaoka K, Miyazono K, Imamura T. 2003. Cooperative inhibition of bone morphogenetic protein signaling by Smurf1 and inhibitory Smads. Mol. Biol. Cell. 14: 2809-2817.
    89. Asano Y, Ihn H, Yamane K, Kubo M, Tamaki K. 2004. Impaired Smad7-Smurf-mediated negative regulation of TGF-beta signaling in scleroderma fibroblasts. J. Clin. Invest. 113: 253-264.
    90. Shi W, Chen H, Sun J, Chen C, Zhao J, Wang YL, Anderson KD, Warburton D. 2004. Overexpression of Smurf1 negatively regulates mouse embryonic lung branching morphogenesis by specifically reducing Smad1 and Smad5 proteins. Am. J. Physiol. Lung Cell Mol. Physiol. 286: 293-300.
    91. Zhao M, Qiao M, Harris SE, Oyajobi BO, Mundy GR, Chen D. 2004. Smurf1 inhibits osteoblast differentiation and bone formation in vitro and in vivo. J. Biol. Chem. 279: 12854-12859.
    92. Horiki M, Imamura T, Okamoto M, Hayashi M, Murai J, Myoui A, Ochi T, Miyazono K, Yoshikawa H, Tsumaki N. 2004. Smad6/Smurf1 overexpression in cartilage delays chondrocyte hypertrophy and causes dwarfism with osteopenia. J .Cell Biol. 165: 433-445.
    93. Izzi L, Attisano L. 2004. Regulation of the TGFbeta signalling pathway by ubiquitin-mediated degradation. Oncogene. 23: 2071-2078.
    94. Ying SX, Hussain ZJ, Zhang YE. 2003. Smurf1 facilitates myogenic differentiation and antagonizes the bone morphogenetic protein-2-induced osteoblast conversion by targeting Smad5 for degradation. J. Biol. Chem. 278: 39029-39036.
    95. Wang HR, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH, Wrana JL. 2003. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science. 302: 1775-1779.
    96. Ogunjimi AA, Briant DJ, Pece-Barbara N, Le RC, Di GG, Kavsak P, Rasmussen RK, Seet BT, Sicheri F, Wrana JL. 2005. Regulation of Smurf2 ubiquitin ligase activity by anchoring the E2 to the HECT domain. Mol. Cell. 19: 297-308.
    97. Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D,Ducy P, Karsenty G. 2002. Leptin regulates bone formation via the sympathetic nervous system. Cell. 111: 305-317.
    98. Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, Kondo H, Richards WG, Bannon TW, Noda M, Clement K, Vaisse C, Karsenty G. 2005. Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature. 434: 514-520.
    99. Shi Y, Yadav VK, Suda N, Liu XS, Guo XE, Myers MG, Karsenty G. 2008. Dissociation of the neuronal regulation of bone mass and energy metabolism by leptin in vivo. Proc. Natl. Acad. Sci U S A. 105: 20529-20533.
    100. Karsenty G, Wagner EF. 2002. Reaching a genetic and molecular understanding of skeletal development. Dev. Cell. 2: 389-406.
    101. Karsenty G. 2003. The complexities of skeletal biology. Nature. 423:316-318.
    102.廖二元,谭利华。代谢性骨病学,人民卫生出版社,2003,第一版,1-78。
    103. de VM. 1996. Dynamics of bone remodelling: biochemical and pathophysiological basis. Eur. J. Clin. Chem. Clin. Biochem. 34: 729-734.
    104. Roodman GD. 2009. Pathogenesis of myeloma bone disease. Leukemia. 23: 435-441.
    105. Zelzer E, Olsen BR. 2003. The genetic basis for skeletal diseases. Nature. 423: 343-348.
    106. Ducy P, Schinke T, Karsenty G. 2000. The osteoblast: a sophisticated fibroblast under central surveillance. Science. 289: 1501-1504.
    107. Glimcher LH, Jones DC, Wein MN. 2007. Control of postnatal bone mass by the zinc finger adapter protein Schnurri-3. Ann. NY Acad. Sci. 1116: 174-181.
    108. Orkin SH, Zon LI. 2008. SnapShot: hematopoiesis. Cell. 132: 712.
    109. King C, Tangye SG, Mackay CR. 2008. T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu. Rev. Immunol. 26: 741-766.
    110. Shevach EM. 2002. CD4+ CD25+ suppressor T cells: more questions than answers. Nat. Rev. Immunol. 2: 389-400.
    111. Nomura T, Sakaguchi S. 2005. Naturally arising CD25+CD4+ regulatory T cells in tumor immunity. Curr. Top Microbiol. Immunol. 293: 287-302.
    112. Apostolou I, Sarukhan A, Klein L, von BH. 2002. Origin of regulatory T cells with known specificity for antigen. Nat. Immunol. 3: 756-763.
    113. Hori S, Nomura T, Sakaguchi S. 2003. Control of regulatory T celldevelopment by the transcription factor Foxp3. Science. 299: 1057-1061.
    114. Gershon RK, Lance EM, Kondo K. 1974. Immuno-regulatory role of spleen localizing thymocytes. J. Immunol. 112: 546-554.
    115. Bhoj VG, Chen ZJ. 2009. Ubiquitylation in innate and adaptive immunity. Nature. 458: 430-437.
    116. Akira S, Uematsu S, Takeuchi O. 2006. Pathogen recognition and innate immunity. Cell. 124: 783-801.
    117. O NL, Fitzgerald KA, Bowie AG. 2003. The Toll-IL-1 receptor adaptor family grows to five members. Trends Immunol. 24: 286-290.
    118. Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, Schroeder L, Aderem A. 2000. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc. Natl. Acad. Sci U S A. 97: 13766-13771.
    119. Yamamoto M, Sato S, Hemmi H, Hoshino K, Kaisho T, Sanjo H, Takeuchi O, Sugiyama M, Okabe M, Takeda K, Akira S. 2003. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science. 301: 640-643.
    120. Tsitsikov EN, Laouini D, Dunn IF, Sannikova TY, Davidson L, Alt FW, Geha RS. 2001. TRAF1 is a negative regulator of TNF signaling. enhanced TNF signaling in TRAF1-deficient mice. Immunity. 15: 647-657.
    121. Shi Y, Feng Y, Kang J, Liu C, Li Z, Li D, Cao W, Qiu J, Guo Z, Bi E, Zang L, Lu C, Zhang JZ, Pei G. 2007. Critical regulation of CD4+ T cell survival and autoimmunity by beta-arrestin 1. Nat. Immunol. 8: 817-824.
    122. Lamhamedi-Cherradi SE, Zheng SJ, Maguschak KA, Peschon J, Chen YH. 2003. Defective thymocyte apoptosis and accelerated autoimmune diseases in TRAIL-/- mice. Nat. Immunol. 4: 255-260.
    123. Fallon PG, Sasaki T, Sandilands A, Campbell LE, Saunders SP, Mangan NE, Callanan JJ, Kawasaki H, Shiohama A, Kubo A, Sundberg JP, Presland RB, Fleckman P, Shimizu N, Kudoh J, Irvine AD, Amagai M, McLean WH. 2009. A homozygous frameshift mutation in the mouse Flg gene facilitates enhanced percutaneous allergen priming. Nat. Genet.
    124. Sanderson CJ, Urwin D. 2000. Interleukin-5: a drug target for allergic diseases. Curr. Opin. Investig. Drugs. 1: 435-441.
    125. Dougall WC, Glaccum M, Charrier K, Rohrbach K, Brasel K, De Smedt T, Daro E, Smith J, Tometsko ME, Maliszewski CR, Armstrong A, Shen V, Bain S,Cosman D, Anderson D, Morrissey PJ, Peschon JJ, Schuh J. 1999. RANK is essential for osteoclast and lymph node development. Genes Dev. 13(18): 2412-24.
    126. Boyle WJ, Simonet WS, Lacey DL. 2003. Osteoclast differentiation and activation. Nature. 423(6937): 337-42.
    127. Yoshida Y, Tanaka S, Umemori H, Minowa O, Usui M, Ikematsu N, Hosoda E, Imamura T, Kuno J, Yamashita T, Miyazono K, Noda M, Noda T, Yamamoto T. 2000. Negative regulation of BMP/Smad signaling by Tob in osteoblasts. Cell. 103(7): 1085-97.
    128. Kim S, Koga T, Isobe M, Kern BE, Yokochi T, Chin YE, Karsenty G, Taniguchi T, Takayanagi H. 2003. Stat1 functions as a cytoplasmic attenuator of Runx2 in the transcriptional program of osteoblast differentiation. Genes Dev. 17(16): 1979-91.
    129. Johnson ML, Harnish K, Nusse R, Van Hul W. 2004. LRP5 and Wnt signaling: a union made for bone. J. Bone Miner. Res. 19(11): 1749-57.
    130. Jones DC, Wein MN, Oukka M, Hofstaetter JG, Glimcher MJ, Glimcher LH. 2006. Regulation of adult bone mass by the zinc finger adapter protein Schnurri-3. Science. 312: 1223-1227.
    131. Jones DC, Wein MN, Glimcher LH. 2007. Schnurri-3: a key regulator of postnatal skeletal remodeling. Adv. Exp. Med. Biol. 602: 1-13.
    132. Lu K, Yin X, Weng T, Xi S, Li L, Xing G, Cheng X, Yang X, Zhang L, He F. 2008. Targeting WW domains linker of HECT-type ubiquitin ligase Smurf1 for activation by CKIP-1. Nat. Cell Biol. 10: 994-1002.
    133. Layfield R, Searle MS. 2008. Disruption of ubiquitin-mediated processes in diseases of the brain and bone. Biochem. Soc. Trans. 36: 469-471.
    134. Ralston SH. 2008. Pathogenesis of Paget's disease of bone. Bone. 43:819-825.
    135. Layfield R, Hocking LJ. 2004. SQSTM1 and Paget's disease of bone. Calcif. Tissue Int. 75: 347-357.
    136. Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS, Albright S, Lindhout D, Cole WG, Henn W, Knoll JH, Owen MJ, Mertelsmann R, Zabel BU, Olsen BR. 1997. Mutations involving the transcription factor CBFA1 cause cleidocranial dysplasia. Cell. 89: 773-779.
    137. Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR,Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ. 1997. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 89: 765-771.
    138. Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S, Kishimoto T. 1997. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 89: 755-764.
    139. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G. 1997. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 89: 747-754.
    140. Wada T, Nakashima T, Oliveira-dos-Santos AJ, Gasser J, Hara H, Schett G, Penninger JM. 2005. The molecular scaffold Gab2 is a crucial component of RANK signaling and osteoclastogenesis. Nat. Med. 11: 394-399.
    141. Colosimo PF, Hosemann KE, Balabhadra S, Villarreal GJ, Dickson M, Grimwood J, Schmutz J, Myers RM, Schluter D, Kingsley DM. 2005. Widespread parallel evolution in sticklebacks by repeated fixation of Ectodysplasin alleles. Science. 307: 1928-1933.
    142. Miller CT, Beleza S, Pollen AA, Schluter D, Kittles RA, Shriver MD, Kingsley DM. 2007. cis-Regulatory changes in Kit ligand expression and parallel evolution of pigmentation in sticklebacks and humans. Cell. 131: 1179-1189.
    143. Glusman G, Kaur A, Hood L, Rowen L. 2004. An enigmatic fourth runt domain gene in the fugu genome: ancestral gene loss versus accelerated evolution. BMC Evol. Biol. 4: 43.
    144. Fondon JW, Garner HR. 2004. Molecular origins of rapid and continuous morphological evolution. Proc. Natl. Acad. Sci U S A. 101: 18058-18063.
    145. Stein PL, Vogel H, Soriano P. 1994. Combined deficiencies of Src, Fyn, and Yes tyrosine kinases in mutant mice. Genes Dev. 8: 1999-2007.
    146. Hummler E, Cole TJ, Blendy JA, Ganss R, Aguzzi A, Schmid W, Beermann F, Schutz G. 1994. Targeted mutation of the CREB gene: compensation within the CREB/ATF family of transcription factors. Proc. Natl. Acad. Sci U S A. 91: 5647-5651.
    147. Jung MY, Skryabin BV, Arai M, Abbondanzo S, Fu D, Brosius J, Robakis NK, Polites HG, Pintar JE, Schmauss C. 1999. Potentiation of the D2 mutant motor phenotype in mice lacking dopamine D2 and D3 receptors. Neuroscience. 91: 911-924.
    148. Senju S, Iyama K, Kudo H, Aizawa S, Nishimura Y. 2000. Immunocytochemical analyses and targeted gene disruption of GTPBP1. Mol. Cell. Biol. 20:6195-6200.
    149. Rudnicki MA, Braun T, Hinuma S, Jaenisch R. 1992. Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell. 71: 383-390.
    150. Medina A, Ghaffari A, Kilani RT, Ghahary A. 2007. The role of stratifin in fibroblast-keratinocyte interaction. Mol. Cell. Biochem. 305: 255-264.
    151. Chakraborti S, Mandal M, Das S, Mandal A, Chakraborti T. 2003. Regulation of matrix metalloproteinases: an overview. Mol. Cell. Biochem. 253:269-285.
    152. Pilcher BK, Wang M, Qin XJ, Parks WC, Senior RM, Welgus HG. 1999. Role of matrix metalloproteinases and their inhibition in cutaneous wound healing and allergic contact hypersensitivity. Ann. NY Acad. Sci. 878: 12-24.
    153. Uccelli A, Moretta L, Pistoia V. 2008. Mesenchymal stem cells in health and disease. Nat. Rev. Immunol. 8(9): 726-736.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700