用户名: 密码: 验证码:
膜型、可溶性Tim-3在抗肿瘤免疫应答中的作用及肿瘤基因治疗的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Tim-3(T-cell immunoglobulin-and mucin-domain-containg molecule)分子的发现是源于寻找区分T_H1细胞和T_H2细胞的表面标志物。对其功能的研究揭示Tim-3在自身免疫性疾病和器官移植排斥反应性疾病中具有重要的免疫学作用。应用Tim-3的抗体和Tim-3-Ig融合蛋白能够影响免疫反应,加速疾病的发展。随后的研究发现编码Tim-3分子的基因通过选择性剪切产生一长一短两种形式的mRNA剪切体。长的mRNA指导生成膜型Tim-3(简称Tim-3),膜型Tim-3由信号肽、IgV区和黏液区、跨膜区以及胞质区组成;短的mRNA指导生成包含信号肽、IgV区和胞质区的蛋白质,由于缺少黏液区,因此推测短的mRNA编码生成的蛋白质可能是可溶性的分子(sTim-3,soluble Tim-3),但是目前缺乏直接的实验证据证实sTim-3蛋白分子的存在。
     许多重要的膜型免疫调控分子如CD86、Fas、CTLA-4都有天然的可溶性的对照物。而且这些可溶性的对照物在免疫应答反应中也发挥重要的作用。Tim-3两种形式的mRNA剪切体的发现向我们提出以下几个方面的问题:(1)在免疫反应中Tim-3和sTim-3 mRNA的表达规律。(2)短的Tim-3 mRNA的是否指导生成sTim-3,sTim-3是否具有生物活性。(3) sTim-3和Tim-3在肿瘤免疫应答中的作用及可能的作用机制。
     本研究的第一部分和第二部分试图回答以上几个方面的问题。
     本论文的第三部分的内容是有关克服肿瘤免疫逃避基因治疗的研究。目前,以提高机体抗肿瘤免疫反应为主的治疗措施受到广泛的关注。但是,近年研究发现:受到免疫攻击的肿瘤细胞会迅速上调表达免疫负性共刺激分子—B7-H1(又被称为PD-L1)。B7-H1能够同表达在活化的T淋巴细胞表面的免疫抑制性受体PD-1(program death-1)结合进而抑制T淋巴细胞的杀伤作用。因此,肿瘤细胞表达B7-H1能够促进肿瘤的免疫逃逸。我们采用本研究小组构建的可溶性的PD-1(sPD-1,soluble PD-1,)封闭瘤细胞表面的B7-H1,联合HSP70-肿瘤抗原肽复合物能有效抑制肺部转移性肿瘤。我们还探讨了联合应用的可能作用机制,希望能为制定有效的肿瘤免疫治疗方案提供理论基础和实验依据。
     第一部分异位表达Tim-3促进抗肿瘤免疫应答反应
     目的:在肿瘤局部组织微环境中转染表达Tim-3,并研究Tim-3在调节淋巴细胞功能活性及抗肿瘤方面的作用和机制。方法:提取鼠脾脏总RNA,RT-PCR扩增出Tim-3编码序列,限制性内切酶消化,回收目的片断并插入到pcDNA3.1相应多克隆位点上。构建含有Tim-3全长cDNA序列的真核表达质粒,脂质体介导体外转染CHO细胞,G418筛选出阳性克隆,流式细胞仪分析Tim-3的表达。建立小鼠H22肝细胞癌移植瘤模型,肿瘤组织内注射pTim-3真核表达质粒,RT-PCR、免疫组织化学法检测在肿瘤细胞内Tim-3表达情况。并观察肿瘤的生长速度和荷瘤鼠的生存期。另外,利用H&E染色法分析瘤组织中淋巴细胞浸润情况。分离脾细胞体外测淋巴细胞的杀伤作用。流式细胞仪检测分析Tim-3在新鲜分离的CD3~+T细胞和CD8~+T细胞和接受HSP70-肿瘤抗原肽刺激的CD3~+T细胞和CD8~+T细胞表面的表达情况。结果:限制性酶切分析及序列测定证实成功构建了小鼠Tim-3真核表达质粒pTim-3。FACS检测分析显示转染pTim-3质粒的CHO细胞在表面表达Tim-3抗原。RT-PCR、免疫组织化学法检测肿瘤接种部位能够表达Tim-3 mRNA和Tim-3抗原。同生理盐水对照组和空载体对照组相比,肿瘤接种部位转染表达Tim-3,能显著抑制肿瘤生长速率并明显延长荷瘤鼠的生存期。H&E染色显示有大量的淋巴细胞浸润。接受pTim-3治疗的小鼠的脾细胞杀伤活性明显增强。流式细胞仪检测分析显示新鲜分离的CD3~+T和CD8~+T细胞几乎不表达Tim-3。然而,接受肿瘤抗原肽刺激的CD3~+T和CD8~+T细胞表面表达Tim-3。而且随着刺激次数的增加,CD3~+T和CD8~+T细胞上调表达Tim-3。结论:在肿瘤微环境中转染表达Tim-3,能够有效地促进淋巴细胞的抗肿瘤活性。Tim-3除去表达在活化的CD4~+T细胞表面,也可以表达在活化的CD8~+T表面细胞。
     第二部分可溶性Tim-3抑制T淋巴细胞的免疫应答反应
     首先,我们阐明了Tim-3 mRNA表达在骨髓细胞,胸腺细胞和脾细胞中,而sTim-3 mRNA仅表达在脾细胞中,而骨髓细胞,胸腺细胞和其它非免疫组织细胞不表达sTim-3 mRNA。我们采用Real-Time PCR的方法研究新鲜分离的脾细胞和接受刺激的脾细胞表达两型Tim-3 mRNA的表达情况。Real-Time PCR的结果显示新鲜分离的脾细胞主要表达Tim-3mRNA,而接受刺激的脾细胞主要表达sTim-3mRNA。提示Tim-3和sTim-3 mRNA的表达与脾细胞的免疫状态有关。
     然后,我们用Western blot的方法证实sTim-3蛋白质分子存在于接受刺激的脾细胞的分泌液中。并且转染了sTim-3真核表达质粒的CHO细胞分泌液中也存在sTim-3蛋白质分子。荧光检测显示转染Tim-3-GFP真核表达质粒的CHO细胞显示绿色荧光。而转染sTim-3-GFP真核表达质粒的CHO细胞几乎不显示绿色荧光。间接提示sTim-3-GFP以可溶性蛋白的形式被分泌到细胞外。用转染sTim-3-GFP真核表达质粒的CHO细胞的上清液同T细胞共孵育。FACS检测显示T细胞表面的荧光强度明显高于对照组。证实sTim-3能够和T细胞表面的配体结合。
     体外的实验结果显示sTim-3能够抑制anti-CD3和anti-CD28的刺激淋巴细胞增殖激作用。并且sTim-3同样能够抑制HSP70-肿瘤抗原肽复合物的特异性抗原刺激作用。应用Tim-3的抗体后能够阻断sTim-3抑制淋巴细胞增殖激作用。ELISA检测细胞因子的结果显示:sTim-3能明显抑制IL-2、IFN-γ的分泌,但不影响IL-4的分泌。我们进一步采用肿瘤排斥模型研究sTim-3在体内的免疫学活性。结果显示,肿瘤细胞在接受sTim-3治疗的小鼠体内生长更快一些,荷瘤鼠的存活期明显缩短。和对照组比,接受sTim-3治疗的小鼠的脾细胞增殖能力和杀伤活性明显降低。病理和免疫组化检测结果显示接受sTim-3治疗的瘤组织内浸润T淋巴细胞的数目明显低于对照组。证实sTim-3在体内抑制T细胞的抗肿瘤免疫应答反应。
     我们的研究还试图理解sTim-3影响T细胞免疫应答反应的作用机制。因为CD4~+CD25~-T效应细胞和CD4~+CD25~+T调节细胞都表达Tim-3的配体。因此,sTim-3抑制T细胞的抗肿瘤免疫应答反应可能是通过抑制CD4~+CD25~-T效应细胞的活化,或者促进CD4~+CD25~+T调节细胞的活化。为了回答这个问题。我们采用Real-Time PCR的方法研究反应CD4~+CD25~-T效应细胞和CD4~+CD25~+T调节细胞活性状态的免疫分子表达情况。结果显示,sTim-3能够抑制与CD4~+CD25~-T效应细胞功能相关的细胞因子的表达,比如IL-2、IFN-γ、TNF-β。但不影响与CD4~+CD25~+T调节细胞功能相关的免疫分子(Foxp3、I1-10、TGF-β)的表达。这些结果提示sTim-3主要通过抑制T效应细胞的功能发挥作用。
     第三部分HSP70-肿瘤抗原肽复合物联合sPD-1治疗肺部转移性肿瘤的研究
     B7-H1(又被称为PD-L1)是表达在膜表面的糖蛋白分子,属于共刺激分子B7家族。其受体是PD-1(programmed death-1),PD-1是在淋巴细胞活化过程中诱导表达的一个免疫抑制性受体。B7-H1和其受体PD-1结合后传导的抑制性信号参与了肿瘤的免疫逃避机制。在此研究中,我们发现这一抑制性信号也参与了HSP70-肿瘤抗原肽复合物治疗过程中肿瘤的免疫逃避。我们在用HSP70-肿瘤抗原肽抑制黑色素瘤肺转移的研究中发现,HSP70-肿瘤抗原肽复合物能够有效地始动免疫应答反应,表现为黑色素瘤结节处有大量的淋巴细胞浸润,血清中IL-2、IFN-γ水平明显升高。和对照组相比,HSP70-肿瘤抗原肽复合物治疗组在早期肺部黑色素瘤结节数目明显减少。但是,出乎意料的是,随着观察时间的延长HSP70-肿瘤抗原肽复合物治疗组有大量的黑色素瘤结节生成。在体外,用IFN-γ同黑色素瘤细胞共孵育,流式细胞仪检测发现随着IFN-γ的浓度增加黑色素瘤细胞表面的B7-H1表达显著升高。而未经IFN-γ处理的黑色素瘤细胞不表达B7-H1。Real-Time PCR检测发现B7-H1基因高表达在体内黑色素瘤细胞上。淋巴细胞杀伤实验证实受到IFN-γ处理的黑色素瘤细胞能有效的抵抗淋巴细胞的杀伤。当我们用本研究小组构建的可溶性的PD-1(sPD-1,soluble PD-1)封闭瘤细胞表面的B7-H1,淋巴细胞的杀伤活性得到了提高。提示表达在黑色素瘤细胞表面的B7-H1能够有效抑制淋巴细胞的杀伤活性。在体内,HSP70-肿瘤抗原肽复合物和sPD-1联合应用时观察到明显的协同治疗作用,联合治疗能显著抑制黑色素瘤结节的生成、明显延长小鼠的生存时间。并增强肿瘤特异的CTL对肿瘤细胞的杀伤活性。我们还采用Real-Time PCR检测肿瘤浸润淋巴细胞中相关细胞因子的表达情况。在HSP70-肿瘤抗原肽复合物与sPD-1联合应用组,IFN-γ和IL-2等T_H1型的细胞因子表达明显升高。IL-10、TGF-β和foxp3等免疫负调控分子表达下降。提示联合治疗能够有效的克服黑色素的免疫抵抗作用。在这部分的研究中,我们还探索了应用sPD-1的剂量-效应关系。一次尾静脉注射10μg的sPD-1的表达质粒,在血清中可连续7天检测到sPD-1的存在。每周两次或每周一次应用10μg的sPD-1的表达质粒联合HSP70-肿瘤抗原肽复合物能有效抑制黑色素结节的生成。每周两次5μg的sPD-1的表达质粒联合HSP70-肿瘤抗原肽复合物也能有效抑制黑色素结节的生成。但是每周一次应用5μg的sPD-1的表达质粒联合HSP70-肿瘤抗原肽复合物不能有效抑制黑色素结节的生成。这一研究结果不仅揭示了肿瘤免疫逃逸的一个新的机制,而且也开辟了一条肿瘤免疫治疗的新路径:封闭肿瘤细胞表面的免疫负性共刺激分子—B7-H1,保护CTL。
The search for cell-surface markers that can distinguish T_H1 from T_H2 cells has lead to the identification of a new molecular---Tim-3. It has been reported that administration of anti-Tim-3 antibody and Tim-3 Ig fusion protein can abrogate the induction of peripheral tolerance and promote T_H1-mediated autoimmune and alloimmune disease, which indicated that Tim-3 has important function in the regulation of immune-mediated disease. It was found that Tim-3 mRNA could be alternatively spliced to produce two mRNA molecules. The longer one directs the synthesis of full-length Tim-3 (i.e., Tim-3), the shorter one, without the region encoding the mucin domain and transmembrane domain, was supposed to direct the synthesis of a splice variant of sTim-3.
    Many co-stimulatory molecules and immunoregulatory receptors, such as CD86, Fas and CTLA-4, have native soluble molecules, and these soluble variants were important in controlling immune response as well as in susceptibility and resistance to autoimmune disease. The discovery of sTim-3 raised several question to be answer. The first one was the expression pattern of Tim-3 and sTim-3 mRNA in immune response. The second one was the existence of the translated product of sTim-3 and whether sTim-3 could bind to Tim-3 ligands. The third one was the regulatory role of Tim-3 and sTim-3 in antitumor immune response.
    At present, tumor immunotherapy efforts are focused on the generation of strong T cell response against tumor antigens. However, strong T cell response does not always coincide with tumor rejection, for which upregulated expression of irnmunoinhibitory molecules--- may be responsible. Emerging evidences suggest that B7 homolog 1 (B7-H1) is important in the mechanisms of resistance against tumor associated antigen-specific immunity. Blockade of B7-H1 by sPD-1 can enhance tumor specific CTL response and cause tumor rejection.
    Part I
    Ectopic expression of Tim-3 induces tumor-specific antitumor immunity
    Objective: To express Tim-3 in tumor microenvironment and investigate the role of Tim-3 in regulation of lymphocyte activity and antitumor effect. Methods: Total RNA of concanavalin A stimulated splenocytes was extracted and Tim-3 cDNA was amplified by RT-PCR. The amplified fragment was digested by restriction enzymes and inserted into compatible enzyme restriction sites of pcDNA3.1 to generate murine Tim-3 eukaryotic expression plasmid (pTim-3). CHO cells were transfected with pTim-3 with Dosper liposomal transfection reagent, the transfected cells were screened by G418. And the expression of Tim-3 in the transfected cells were detected by FACS. Tumors were established by injection of H22 into right hind thigh muscle and pTim-3 plasmid was injected intratumorally. The expression of Tim-3 on H22 cells was examined by immunohistochemistry, and tumor volume and the survive was recorded. Hematoxylin and eosin (H&E) staining was performed to detect tumor-infilating T lymphocytes. Cytolytic activity against H22 was determined in 4h - ~(51)Cr release assay. Tim-3 expression on freshly isolated CD3~+ T and CD8~+ T cells and HSP70-tumor peptide complex stimulated CD3~+ T and CD8~+ T cells were examined by FACS analysis. Results: The constructed plasmid, designated as pTim-3, was confirmed by restriction enzymes digestion and DNA sequencing. Flow cytometric analysis revealed that Tim-3 antibody stained the surface of cells transfected with pTim-3 but not the surface of cells transfected with mock plasmid (pcDNA3.1). Intratumor injection of pTim-3 plasmid potently inhibited tumor growth and results in prolonged survival. There was microscopic evidence of dense lymphocyte infiltration in pTim-3 treated mice. In addition, Splenocytes from the pTim-3 treated group showed a strong CTL response against H22 tumor cells, which suggested that ectopic Tim-3-mediated antitumor responses were dependent on a functional adaptive lymphocyte response. We also demonstrate endogenous Tim-3 expression on lymphocyte is relevant in antitumor immune response. Since considerable number of CD3~+ T cell including CD8~+ T cell can express Tim-3 after stimulate with tumor-peptide complex. Conclusion: Expression of Tim-3 on H22 tumor cells can enhance the proliferation and other functions of T lymphocytes. Tim-3 expression is not limit on CD4~+ T cell but also on CD8~+ T cells after stimulation with tumor- peptides complex. Our results thus gain further insight into the function of Tim-3 expressed on nonlymphoid tissues in regulating antitumor immune response. Part II
    Soluble Form of Tim-3 Is An Inhibitory Molecule in T Cell-Mediated Immune Response
    In initial experiments, we demonstrated that Tim-3 mRNA was existent in the cells from thymus, bone marrow and spleen, whereas sTim-3 mRNA was expressed only in spleen cells but not in bone marrow, thymus and non-lymphoid organs. To investigate the expression pattern of sTim-3 and Tim-3 mRNA in immune response, we examined the expression of these mRNAs in freshly isolated and activated splenocytes. Real-Time PCR revealed that both Tim-3 mRNA and sTim-3 mRNA were significantly increased after each rounds of stimulation, whereas there appeared to be a higher increase of sTim-3 product than that of Tim-3 product, suggesting that the expression pattern of Tim-3 mRNA and sTim-3 relied on the activation of splenic lymphocyte.
    We next proceed to examine the existence of sTim-3's protein product by Western blot. The results showed that sTim-3's protein was detected in the cell-free supernatants of the stimulated splenocyts and CHO cells transfected with sTim-3 eukaryotic expression plasmid. Fluorescence microscope analysis revealed that Green fluorescence was found in CHO cells transfected with pTim-3-GFP but scarcely in CHO cells transfected with psTim-3-GFP, indicating that sTim-3 is mostly secreted out, which further conformed that sTim-3 is a soluble molecule. The binding of sTim-3-GFP to its putative ligand(s) on splenic T cells was determined by FACS analysis. The fluorescence intensity on T cells incubated with sTim-3-GFP was significantly increased as compared with control. These results clearly indicated that sTim-3 could bind to putative Tim-3 ligand(s).
    In vitro, the response of T cells to antigen-specific stimulation or anti-CD3 mAb plus anti-CD28 mAb costimulation was significantly suppressed in the presence of sTim-3, and the blockade of sTim-3 with anti-Tim-3 antibody recovered the response of T cells to these stimuli, supporting the notion that sTim-3 mediates the inhibitory effect in immune response. We then attempt to further understand the function of sTim-3 in vivo, in tumor rejection model, sTim-3 facilitated the growth of tumor in vivo and shorten survival of tumor-bearing mice. The proliferation of T cells from sTim-3 treated mice was significantly reduced when they were re-stimulated by antigen-loaded DC in vitro, Moreover, the antitumor CTL activity was significantly reduced by sTim-3 and the amount of T cells in tumor tissue was also significantly decreased. Pathologic and immunohistological findings revealed the reduced tumor-infilating T lymphocytes. To sum up, these results confirmed the inhibitory effect of sTim-3 on the generation of antigen-specific T cell immune response.
    Since both effector CD4~+CD25~- T cells and regulatory CD4~+CD25~+ T cells express a putative Tim-3 ligand, the impairment of antitumor immunity by sTim-3 might be the result of either impairing the function of effector CD4~+ T cells or activating the function of CD4~+ regulatory T cells. To understand the underlying cellular mechanism contributing to the impaired antitumor immunity by sTim-3, we analyzed the expression of genes related to the function of tumor-infiltrating lymphocytes by real-time quantitative PCR. The results indicated that, in sTim-3 treated mice, the expression of IL-2, IFN-γ and TNF-β mRNA was down-regulated, whereas, the expression of forkhead transcription factor 3 (Foxp3), IL-10 and TGF-p mRNA was not influenced as compared with control, theses results suggested that sTim-3 didn't influence Treg cells but otherwise resulted in the profound immune unresponsiveness of CD4~+ T effector cells. Part III
    HSP70 Vaccine in Combination with Gene Therapy with Plasmid
    DNA Encoding sPD-1 Overcomes Immune Resistance and Suppresses
    the Progression of Pulmonary Metastatic Melanoma
    B7-H1 (also known as PD-L1) is a cell surface glycoprotein belonging to the B7 family of costimulatory molecules. It was founded that PD-1 (programmed death-1), which is expressed on the activated lymphocytes, is the receptor of B7-H1. B7-H1 is thought to contribute to immune escape of cancer by interacting with PD-1 receptor. In this study, the treatment with HSP70 vaccine induced an infiltration of T cells into the tumor site as well as the expression of IFN-γ and IL-2, and delayed lung metastases of tumor, but the tumor progression nonetheless occur finally. We incubated B16F1 cells with different doses of IFN-γ in vitro. FACS analysis revealed that the percentage of B7-H1-positive B16F1 cells was significantly increased by IFN-γ stimulation. By contrast, B7-H1 was hardly detectable on the untreated B16F1 cells. Consistent with this result, the upregulatd expression of B7-H1 in vivo in tumor microenvironment was also confirmed by Real-time PCR. We demonstrated that B7-H1 expressed by residual tumor cells was responsible for the resistance of tumor to the therapy with HSP70 vaccine. Blockade of B7-H1 by i.v. injection pPD-1A, a plasmid encoding the extracellular domain of PD-1 (sPD-1) could reverse this resistance and enhance the therapeutic efficacy. To complement these findings, we investigated the gene expression of TILs by Real-time PCR analysis, which revealed that the expression of TH1 cytokines IFN-γ and IL-2 by TIL in the mice treated with HSP70 vaccine in combination with sPD-1 was increased and the expression of negative regulatory molecules IL-10, TGF-β and foxp3 was decreased, demonstrating that multifunctional properties afforded by the combination therapy can effectively overcome tumor resistance and promote effective antitumor immunity. In vivo transfection with pPD-1A could be performed as infrequently as once a week and still produce a significant antitumor effect. These findings suggest that the treatment with HSP70 vaccine followed by blockade of tumor-B7-H1 with sPD-1 may provide a promising approach for tumor immunotherapy.
引文
1. Kaplan G, Totsuka A, Thompson P, et al. 1996. Identification of a surface glycoprotein on African green monkey kidney cells as a receptor for hepatitis A virus. EMBO J. 15:4282.
    2. Ichimura T, Bonventre JV, Bailly V, et al.1998. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem. 273:4135.
    3. Chen TT, Li L, Chung DH, et al. 2005. TIM-2 is expressed on B cells and in liver and kidney and is a receptor for H-ferritin endocytosis. J Exp Med. 202:955.
    4. Ichimura T, Hung CC, Yang SA, et al. 2004. Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am J Physiol Renal Physiol. 286(3):F552.
    5. Mclntire JJ, Umetsu SE, Akbari O, et al. 2001. Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene family. Nat. Immunol. 2:1109.
    6. Umetsu SE, Lee WL, McIntire JJ, et al.2005. TIM-1 induces T cell activation and inhibits the development of peripheral tolerance. Nat Immunol. 6:447.
    7. Kuchroo VK, Umetsu DT, DeKruyff RH, et al. 2003. The TIM gene family: emerging roles in immunity and disease. Nat Rev Immunol. 3:454.
    8. Monney L, Sabatos CA, Gaglia JL, et al. 2002. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 415:536.
    9. Sanchez-Fueyo A, Tian J, Picarella D, et al 2003. Tim-3 inhibits T helper type 1-mediated auto-and alloimmune response and promotes immunological tolerance. Nat. Immunol. 4:1093.
    10. Sabatos, CA, Chakravarti S, Cha E, et al. 2003. Interaction of Tim-3 and Tim-3 ligand(s) regulates T helper type 1 responses and induction of peripheral tolerance. Nat. Immunol. 4:1101.
    11. Meyers JH, Chakravarti S, Schlesinger D, et al. 2005. TIM-4 is the ligand for TIM-1, and the TIM-1-TIM-4 interaction regulates T cell proliferation. Nat Immunol. 6(5):455.
    12. Chakravarti S, Sabatos CA, Xiao S, et al. 2005. Tim-2 regulates T helper type 2 responses and autoimmunity. J Exp Med. 202:437.
    13. Chase SC, Park YR, Shim SC, et al.2004, Chae, S. C. The polymorphisms of TH1 cell surface gene Tim-3 are associated in a Korean population with rheumatoid arthritis. Immunol. lett. 95, 91-95.
    14. Geng H, Zhang GM, Feng ZH, et al. 2006. Soluble Form of T Cell Ig Mucin 3 Is an Inhibitory Molecule in T Cell-Mediated Immune Response. J Immunol. 176:1411.
    15. He, Y F, Zhang G M, Wang X H, et al. 2004. Blocking programmed death (PD)-ligand(s)-PD-1 interactions by local gene therapy results in enhancement of antitumor effect of secondary lymphoid tissue chemokine. J. Immunol. 173:4919.
    16. Wiendl H, Mitsdoerffer M, Hofmeister V, et al. 2002. A functional role of HLA-G expression in human gliomas: an alternative strategy of immune escape. J. Immunol. 168:4772-4780.
    17. Feng, Z H, Huang B, Zhang G M, et al. 2002. Investigation on the effect of peptides mixture from tumor cells inducing anti-tumor specific immune response. Science in China Ser. C 45:361-369.
    18. Zhu C, Anderson AC, Schubart A, et al. 2005. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nature Immunology. 6,1245.
    19. Kashio Y, Nakamura K, Abedin M J, et al. 2003. Galectin-9 induces apoptosis through the calcium-calpain-caspase-1 pathway. J. Immunol. 170:3631-3636.
    20. 20 Ju ST, Cui H, Panka DJ, et al. 1994. Participation of target Fas protein in apoptosis pathway induced by CD4+ Thl and CD8+ cytotoxic T cells. Proc. Natl. Acad. Sci. USA. 91:4185.
    21. Ju ST, Panka DJ, Cui H, R. et al. 1995. Fas (CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature. 373:444.
    22. Brunner T, Mogil RJ, LaFace D, et al. 1995. Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature. 373:441.
    23. Dhein, J, Walczak H, Baumler C, et al. 1995. Autocrine T-cell suicide mediated by APO-1/ (Fas/CD95). Nature. 373:438.
    24. Griffith TS, Brunner T, Fletcher SM, et al. 1995. Fas ligand-induced apoptosis as a
    25. mechanism of immune privilege. Science. 270:1189.
    26. Zitvogel L, Mayordomo JL, Tjandrawan T, et al. 1996. Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and Thelper cell 1-associated cytokines. J. Exp. Med. 1996.183:87.
    27. Mayordomo JL, Zorina T, Storkus WJ, et al. 1995. Bone marrow-derived dendritic cells pulsed with synthetic tumor peptides elicit protective and therapeutic antitumor immunity. Nat. Med. 1:1297.
    28. Mwlero I,Shuford WW, Newby SA, et al. 1997. Monoclonal antibodies against the 4-1BB T cell activation molecule eradicates established tumors. Nat. Med. 3:682.
    29. Shaw SK, Brenner MB. 1995. The beta 7 integrins in mucosal homing and retention. Semin Immunol. 7(5):335. Review.
    30. Shimizu Y, Shaw S. 1993. Cell adhesion. Mucins in the mainstream. Nature. 366:630.
    1. McIntire, J. J., S. E. Umetsu, O. Akbari, M. Potter, V. K. Kuchroo, G. S. Barsh, G. J. Freeman, D. T. Umetsu, and R. H. DeKruyff. 2001. Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene family. Nat. Immunol. 2:1109-1116.
    2. Kuchroo, V. K., D. T. Umetsu, R. H. DeKruyff, and G J. Freeman. 2003. The TIM gene family: emerging roles in immunity and disease. Nat. Rev. Immunol. 3:454-462.
    3. Kumanogoh, A., S. Marukawa, K. Suzuki, N. Takegahara, C. Watanabe, E. S. Ch'ng, I. Ishida, H. Fujimura, S. Sakoda, and K. Yoshida. 2002. Class IV semaphorin Sema4A enhances T-cell activation and interacts with Tim-2. Nature 419:629-633.
    4. Umetsu, S. E., W. L. Lee, J. J. McIntire, L. Downey, B. Sanjanwala, O. Akbari, G. J. Berry, H. Nagumo, G. J. Freeman, D. T. Umetsu, and R. H. Dekruyff. 2005. TIM-1 induces T cells activation and inhibits the development of peripheral tolerance. Nat. Immunol. 6:447-454.
    5. Meyers, J. H., S. Chakravarti, D. Schlesigner, Z. Illes, H. Waledner, S. E. Umestu, J. Kenny, X. X. Zheng, D. T. Umetsu, R. H. Dekrayff, T. B. Strom, and V. K. Kuchroo. 2005. TIM-4 is the ligand for TIM-1, and the TIM-1-TIM-4 interaction regulates T cells proliferation. Nat. Immunol. 6:455-464.
    6. Monney, L., C. A. Sabatos, J. L. Gaglia, A. Ryu, H. Waldner, T. Chernova, S. Manning, E. A. Greenfield, A. J. Coyle, R. A. Sobel, G. J. Freeman, and V. K. Kuchroo. 2002. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 415:536-541.
    7. Sanchez-Fueyo, A., J. Tian, D. Picarella, C. Domening, X. X. zheng, C. A. Sabatos, N. Manlongat, O. Bender, T. Kamaradt, and V. K. Kuchroo. 2003. Tim-3 inhibits T helper type1-mediated auto-and alloimmune response and promotes immunological tolerance. Nat. Immunol. 4:1093-1101.
    8. Sabatos, C. A., S. Chakravarti, E. Cha, A. Schubart, A. Sanchez-Fueyo, X. X. zheng, A. J. Coyle, T. B. Strom, G. J. Freeman, and V. K. Kuchroo. 2003. Interaction of Tim-3 and Tim-3 ligand(s) regulates T helper type 1 responses and induction of peripheral tolerance. Nat. Immunol 4:1102-1110.
    9. Cheng, J. H., T. Zhou, C. Liu, J. P. Shapiro, M. J. Brauer, M. C. Kiefer, P. J. Barr, and J. D. Mountz. 1994. Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. Science 263:1759-1762.
    10. Jeannin, P., G. Magistrelli, J. P. Aubry, G. Caron, J. F. Gauchat, T. Renno, N. Herbault, L. Goetsch, A. Blaecke, P. Y. Dietrich, J. Y. Bonnefoy, and Y. Delneste. 2000. Soluble CD86 is a costimulatory molecule for human T lymphocytes. Immunity 13:303-312.
    11. Oaks, M. K., and K. M. Hallett. 2000. A soluble form of CTLA-4 in patients with autoimmune thyroid disease. J. Immunol. 164:5015-5018.
    12. Feng, Z. H., B. Huang, G. M. Zhang, D. Li, and H. T. Wang. 2002. Investigation on the effect of peptides mixture from tumor cells inducing anti-tumor specific immune response. Science in China Ser. C 45:361-369.
    13. He, Y. F., G. M. Zhang, X. H. Wang, H. Zhang, Y. Yuan, D. Li, and Z. H. Feng. 2004. Blocking programmed death (PD)-ligand(s)-PD-1 interactions by local gene therapy results in enhancement of antitumor effect of secondary lymphoid tissue chemokine. J. Immunol. 173:4919-4928.
    14. Sun, X., M. Valel, E. Leung, J. R. Kanwar, R. Guptal, and G. W. Krissansenl. 2003. Mouse B7-H3 induces antitumor immunity. Gene Ther. 10:1728-1734.
    15. Fields, R. C., K. Shimizu, and J. J. Mule. 1998. Murine dendritic cells pulsed with whole tumor lysates mediate potent antitumor immune responses in vitro and in vivo. Proc. Natl. Acad. Sci. USA 95:9482-9487.
    16. Asavaroengchai, W., Y. Kotera, and J. J. Mule. 2002. Tumor lysate-pulsed dendritic cells can elicit an effective antitumor immune response during early lymphoid recovery. Proc. Natl. Acad. Sci. USA 99:931-936.
    17. Tamura, H., H. D. Dong, G. F. Zhu, G. L. Sica, D. B. Flies, K. Tamada, and L. Chen. 2001. B7-H1 costimulation preferentially enhances CD28-independent T-helper cell function. Blood 97:1809-1816.
    18. Dong, H. D., G. F. Zhu, K. Tamada, and L. Chen. 1999. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat. Med. 5:1365-1369.
    19. Dong, H. D., S. Strome, D. R. Salomao, H. Tamurai, F. Hirano, D. B. Flies, P. C. Roche, P. C. Roche, J. Lui, G. Zhui, K. Tamada, V. A. Lennon, E. Cells, and L. Chen. 2002. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat. Med. 8:793-800.
    20. Wang, G., M. Tschoi, R. Spolski, Y. Y. Lou, K. Ozaki, C. G. Feng, G. Kim, W. J. Leonard, and P. Hwu. 2003. In vivo antitumor activity of interleukin 21 mediated by natural killer cells. Cancer Res. 63:9016-9022.
    21. Herweijer, H., and J. A. Wolff. 2003. Progress and prospects: naked DNA gene transfer and therapy. Gene Ther. 10:453-458.
    22. Wiendl, H., M. Mitsdoerffer, V. Hofmeister, J. Wischhusen, A. Bornemann, R. Meyermann, E. H. Weiss, A. Melms, and M. Weller. 2002. A functional role of HLA-G expression in human gliomas: an alternative strategy of immune escape. J. Immunol. 168:4772-4780.
    23. Rubinstein, M. P., A. N. Kadima, M. L. Salem, C. L. Nguyen, W. E. Gillanders, and D. J. Cole1. 2002. Systemic administration of IL-15 augments the antigen-specific primary CD8~+ T cells response following vaccination with peptide-pulsed dendritic cells. J. Immunol. 169:4928-4935.
    24. Liu, B., A. M. DeFilippo, and Z. Li. 2002. Overcoming immune tolerance to cancer by heat shock protein vaccines. Mol. Cancer Ther. 1:1147-1151.
    25. Hori, S., N. Takashi, and S. Shimon. 2003. Control of regulatory T cells development by the transcription factor Foxp3. Science 299:1057-1061.
    26. Fontenot, J. D., M. A. Gavin, and A.Y. Rudensky. 2003. Foxp3 program the development and function of CD4~+CD25~+ regulatory T cells. Nat. Immunol 4:330-336.
    27. Cobbold, S. P., R. Castejon, E. Adams, D. Zelenika, L. Graca, S. Humm, and H. Waldmann. 2004. Induction of foxp3~+ regulatory T cells in the periphery of T cells receptor transgenic mice tolerized to transplants. J. Immunol. 172:6003-6010.
    28. Terabe, M., and J. A. Berzofsky. 2004. Immunoregulatory T cells in tumor immunity. Curr. Opin. Immunol. 16:157-162.
    29. Mocellin, S., E. Wang, and F. M. Marincola. 2001. Cytokines and immune response in the tumor microenvironment. J.Immunother. 24:392-407.
    30. Janssen, E. M., E. E. Lemmens, T. Wolfe, U. Christen, M. G. von Herrath, and S. P. Schoenberger. 2003. CD4~+ T cells are required for secondary expansion and memory in CD8~+ T lymphocytes. Nature 421:852-856.
    31.Marzo, A. L., B. F. Kinnear, R. A. Lake. J. J. Frelinger, E. J. Collins, B. W. Robinson, and B. Scott. 2000. Tumor-specific CD4~+ T cells have a major "post-licensing" role in CTL mediated anti-tumor immunity. J. Immunol. 165:6047-6055.
    32. Corthay, A., D. K. Skovseth, K. U. Lundin, E. R(?)sj(?), H. Omholt, P. O. Hofgaard, G Haraldsen, and B. Bogen. 2005. Primary antitumor immune response mediated by CD4+ T cells. Immunity 22:371-383.
    33. Wang, H. Y., D. A. Lee, G .Peng, Z .Guo, Y. Li, Y. Kiniwa, E. M. Shevach, and R. F. Wang. 2004. Tumor-specific human CD4~+ regulatory T cells and their ligand(s): implication for immunotherapy. Immunity 20:107-118.
    34. Onizuka, S., I. Tawara, J. Shimizu, S. Sakaguchi, T. Fujita, and E. Nakayama. 1999. Tumor rejection by in Vivo administration of anti-CD25 (interleukin-2 receptor α) monoclonal antibody. Cancer Res. 59:3128-3133.
    35. Nagler-Anderson, C, A. K. Bhan, D. K. Podoksky, and C. Terhorst. 2004, Control freaks: immune regulatory cells. Nat. Immunol. 5:119-122.
    36. Piccirillo, C. A., and A. M. Thornton. 2005. Cornerstone of peripheral tolerance: naturally occurring CD4~+CD25~+ regulatory T cells. Trends Immunol. 25:374-380.
    37. Simmons, W. J., M. Koneru, M. Mohindru, R. Thomas, S. Cutro, P. Singh, R. H. DeKruyff, G. Inghirami, A. J. Coyle, B. S. Kim, and N. M. Ponzio. 2005. Tim-3~+ T-bet~+ tumor-specific Th1 cells colocalize with and inhibit development and growth of murine neoplasms. J. Immunol. 174:1405-1415.
    38. Khademi, M., Z. Illes, A. W. Gielen, M. Marta, N. Takazawa, C. Baecher-Allan, L. Brundin, J. Hannerz, C. Martin, R. A. Harris, D. A. Hailer, V. K. Kuchroo, T.Olsson, F. Piehl, and E. k. Wallstrom. 2004. T cells Ig- and mucin-domain-containing molecule-3 (TIM-3) and TIM-1 molecules are differentially expressed on human Th1 and Th2 cells and in cerebrospinal fluid-derived mononuclear cells in multiple sclerosis. J. Immunol. 172:7169-7176.
    1. Udono H, Srivastava PK. Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 1993; 178:1391-1396.
    2. Liu B, DeFilippo AM, Li Z. Overcoming immune tolerance to cancer by heat shock protein vaccines. Mol Cancer Ther 2002; 1:1147-1151.
    3. Srivastava PK. Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 2002;20:395-425.
    4. Ciupitu AM, Petersson M, O'Donnell CL, Williams K, Jindal S, Kiessling R, Welsh RM. Immunization with a lymphocytic choriomeningitis virus peptide mixed with heat shock protein 70 results in protective antiviral immunity and specific cytotoxic T lymphocytes. J Exp Med 1998;187:685-691.
    5. Arnold DS, Faath S, Rammensee H, Schild H. Cross-priming of minor histocompatibility antigenspecific cytotoxic T cells upon immunization with the heat shock protein gp96. J Exp Med 1995; 182:885-889.
    6. Castellino F, Boucher PE, Eichelberg K, Mayhew M, Rothman JE, Houghton AN, Germain RN. Receptor-mediated uptake of antigen/heat shock protein complexes results in major histocompatibility complex class I antigen presentation via two distinct processing pathways. J Exp Med 2000; 191:1957-1964.
    7. Basu S, Binder RJ, Ramalingam T, Srivastava PK. CD91 is a common receptor for heat shock proteins gp96, hsp90, HSP70, and calreticulin. Immunity 2001;14:303-313.
    8. Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 2002;277:15028-15034.
    9. Binder RJ, Han DK, Srivastava PK. CD91: a receptor for heat shock protein gp96. Nat Immunol 2000;1:151-155.
    10. Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK. HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 2000;6:435-442.
    11. Kojima T, Yamazaki K, Tamura Y, Ogura S, Tani K, Konishi J, Shinagawa N, Kinoshita I, Hizawa N, Yamaguchi E, Dosaka-Akita H, Nishimura M. Granulocyte-macrophage colonystimulating factor gene-transduced tumor cells combined with tumor-derived gp96 inhibit tumor growth in mice. Hum Gene Ther 2003;14:715-728.
    12. Tamura Y, Peng P, Liu K, Daou M, Srivastava PK. Immunotherapy of tumors with autologous tumor-derived heat shock protein preparations. Science 1997;278:117-120.
    13. Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS, Johnson D, Swetter S, Thompson J, Greenberg PD, Roederer M, Davis MM. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med 1999;5:677-685.
    14. Dunbar PR, Smith CL, Chao D, Salio M, Shepherd D, Mirza F, Lipp M, Lanzavecchia A, Sallusto F, Evans A, Russell-Jones R, Harris AL, et al. A shift in the phenotype of melan-A-specific CTL identifies melanoma patients with an active tumor-specific immune response. J Immunol 2000; 165:6644-6652.
    15. Romero P, Dunbar PR, Valmori D, Pittet M, Ogg GS, Rimoldi D, Chen JL, Lienard D, Cerottini JC, Cerundolo V. Ex vivo staining of metastatic lymph nodes by class I major histocompatibility complex tetramers reveals high numbers of antigen-experienced tumor-specific cytolytic T lymphocytes. J Exp Med 1998;188:1641-1650.
    16. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002;3:991-998.
    17. Ravetch JV, Lanier LL. Immune inhibitory receptors. Science 2000;290:84-89.
    18. Dong HD, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, Lennon VA, Cells E, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 2002;8:793-800.
    19. Curiel TJ, Wei S, Dong H, Alvarez X, Cheng P, Mottram P, Krzysike R, Knutson KL, Daniel B, Zimmermann MC, David O, Burow M, et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med 2003;9:562-567.
    20. Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 1999;5:1365-1369.
    21. Strome SE, Dong HD, Tamura H H, Voss SG, Flies DB, Tamada K, Salomao D, Cheville J, Hirano F, Lin W, Kasperbauer JL, Ballman KV, et al. B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res.2003;63:6501-6505.
    22. Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N. Involvement of B7-H1 on tumor cells in the escape from host immune system and tumor immunotherapy by B7-H1 blockade. Proc Natl Acad Sci USA 2002;199:12293-12297.
    23. Blank C, Brown I, Peterson AC, Spiotto M, Iwai Y, Honjo T, Gajewski TF. PD-L1/B7-H1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8~+ T cells. Cancer Res 2004;64:1140-1145.
    24. Hirano F, Kaneko K, Tamura H, Dong H, Wang S, Ichikawa M, Rietz C, Flies DB, Lau JS, Zhu G, Tamada K, Chen L. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res 2005; 65:1089-1096.
    25. He YF, Zhang GM, Wang XH, Zhang H, Yuan Y, Li D, Feng ZH. Blocking programmed death (PD)-Ligand-PD-1 interactions by local gene therapy results in enhancement of antitumor effect of secondary lymphoid tissue chemokine. J Immunol 2004; 173:4919-4928.
    26. Feng ZH, Huang B, Zhang GM, Li D, Wang HT. Investigation on the effect of peptides mixture from tumor cells inducing anti-tumor specific immune response. Science in China (Ser C) 2002;45:361-369.
    27. Moroi Y, Mayhew M, Trcka J, Hoe MH, Takechi Y, Ulrich Hartl F, Rothman JE, Houghton AN. Induction of cellular immunity by immunization with novel hybrid peptides complexed to heat shock protein 70. Proc Natl Acad Sci USA 2000;97:3485-3490.
    28. Blachere NE, Li ZH, Chandauarkar RY, Suto R, Jaikaria NS, Basu S, Udono H, Srivastava PK. Heat shock protein-peptide complexes reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J Exp Med 1997;186:1315-1322.
    29. Wang G, Tschoi M, Spolski R, Lou YY, Ozaki K, Feng CG, Kim G, Leonard WJ, Hwu P. In Vivo antitumor activity of interleukin 21 mediated by natural killer cells. Cancer Res 2003;63:9016-9022.
    30. Herweijer H, Wolff JA. Progress and prospects: naked DNA gene transfer and therapy. Gene Ther 2003;10:453-458.
    31. Zhang G, Gao X, Song YK, Vollmer R, Stolz DB, Gasiorowski JZ, Dean DA , Liu D. Hydroporation as the mechanism of hydrodynamic delivery. Gene Ther 2004; 11:675-682.
    32. Jeannin P, Magistrelli G, Aubry JP, Caron G, Gauchat JF, Renno T, Herbault N, Goetsch L, Blaecke A, Dietrich PY, Bonnefoy JY, Delneste Y Soluble CD86 is a costimulatory molecule for human T lymphocytes. Immunity 2000;13:303-312.
    33. Sun X., Vale M, Leung E, Kanwar JR, Gupta R, Krissansen GW. Mouse B7-H3 induces antitumor immunity. Gene Ther 2003; 10:1728-1734.
    34. Woo EY, Chu CS, Goletz TJ, Schlienger K, Yeh H, Coukos G, Rubin SC, Kaiser LR, June CH. Regulatory CD4~+CD25~+ T Cells in tumors from patients with early-stage non-small cell lung cancer and late-stage ovarian cancer. Cancer Res 2001;61:4766-4772.
    35. Blohm U, Roth E, Brommer K, Dumrese T, Rosenthal FM, Pircher H. Lack of effector cell function and altered tetramer binding of tumor-infiltrating lymphocytes. J Immunol 2002; 169: 5522-5530.
    36. Dobrzanski MJ, Reome JB, Hollenbaugh JA, Dutton RW. Tc1 and Tc2 Effector Cell Therapy Elicit Long-Term Tumor immunity by contrasting mechanisms that result in complementary endogenous type 1 antitumor responses. J Immunol 2004;172:1380-1390.
    37. Kammula US, Lee KH, Riker AI, Wang E, Ohnmacht GA, Rosenberg SA, Marincola FM. Functional analysis of antigen-specific T lymphocytes by serial measurement of gene expression in peripheral blood mononuclear cells and tumor specimens. J Immunol 1999;163:6867-6875.
    38. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med 2004; 10:909-915.
    39. Curier TJ, Coukos G, Zou LH, Alvarez X, Cheng P, Mottram P, Evdemon-Hogan M, Conejo-Garcia JR, Zhang L, Burow M, Zhu Y, Wei S, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters privilege and predicts reduced survival. Nat Med 2004; 10:942-949.
    40. He YF, Wang XH, Zhang GM, Chen HT, Zhang H, Feng ZH. Sustained low-level expression of interferon-y promotes tumor development: potential insights in tumor prevention and tumor immunotherapy. Cancer Immunol Immunother 2005;54:891-897.
    41.Iwai Y, Terawaki S, Ikegawa M, Okazaki T, Honjo T. PD-1 Inhibits Antiviral Immunity at the Effector Phase in the Liver. J Exp Med 2003;198:39-50.
    42. Corthay A, Skovseth DK, Lundin KU, Rosjo E, Omholt H, Hofgaard PO, Haraldsen G, Bogen B. Primary antitumor immune response mediated by CD4~+ T cells. Immunity 2005;22:371-383.
    43. Mocellin S, Wang E, Marincola FM. Cytokines and immune response in the tumor microenvironment. J Immunother 2001 ;24:392-407.
    44. Coughlin CM, Salhany KE, Gee MS, LaTemple DC, Kotenko S, Ma X, Gri G, Wysocka M, Kim JE, Liu L, Liao F, Farber JM, et at. Tumor cell responses to IFN-γaffect tumorigenicity and response to IL-12 therapy and antiangiogenesis. Immunity 1998;9(1):25-34.
    45. Cheng JH, Zhou T, Liu CD, Shapiro JP, Brauer MJ, Kiefer MC, Bar PJ, Mountz JD. Protection from Fas-mediated apoptosis by a soluble form of the Fas molecule. Science 1994;263:1759-1762.
    46. Oaks MK, Hallett KM. Cutting Edge: A soluble form of CTLA-4 in patients with autoimmune thyroid disease. J. Immunol 2000;164:5015—5018.
    1. Mclntire JJ, Umetsu SE, Akbari O, et al. 2001. Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene family. Nat. Immunol. 2:1109.
    2. Kaplan G, Totsuka A, Thompson P, et al. 1996. Identification of a surface glycoprotein on African green monkey kidney cells as a receptor for hepatitis A virus. EMBO J. 15:4282.
    3. Ichimura T, Bonventre JV, Bailly V, et al.1998. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem. 273:4135.
    4. Umetsu SE, Lee WL, McIntire JJ, et al.2005. TIM-1 induces T cell activation and inhibits the development of peripheral tolerance. Nat Immunol. 6:447.
    5. de Souza AJ, Oriss TB, O'malley KJ, et al. 2005. T cell Ig and mucin 1 (TIM-1) is expressed on in vivo-activated T cells and provides a costimulatory signal for T cell activation. Proc Nail Acad Sci U S A.102:17113.
    6. Khademi M, Illes Z, Gielen AW, et al. 2004. T Cell Ig- and mucin- domain-containing molecule-3 (TIM-3) and TIM-I molecules are differentially expressed on human Th1 and Th2 cells and in cerebrospinal fluid-derived mononuclear cells in multiple sclerosis. J Immunol. 172:7169
    7. Kuchroo VK, Umetsu DT, DeKruyff RH, et al. 2003. The TIM gene family: emerging roles in immunity and disease. Nat Rev Immunol. 3:454.
    8. Kumanogoh A, Marukawa S, Suzuki K, et al. 2002. Class IV semaphorin Sema4A enhances T-cell activation and interacts with Tim-2. Nature. 419:629.
    9. Chen TT, Li L, Chung DH, et al. 2005. TIM-2 is expressed on B cells and in liver and kidney and is a receptor for H-ferritin endocytosis. J Exp Med. 202:955.
    10. Sanchez-Fueyo A, Tian J, Picarella D, et al 2003. Tim-3 inhibits T helper type 1-mediated auto-and alloimmune response and promotes immunological tolerance. Nat. Immunol. 4:1093.
    11. Monney L, Sabatos CA. Gaglia JL, et al. 2002. Th1-specific cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature 415:536.
    12. Sabatos, CA, Chakravarti S, Cha E, et al. 2003. Interaction of Tim-3 and Tim-3 ligand(s) regulates T helper type 1 responses and induction of peripheral tolerance. Nat. Immunol. 4:1101.
    13. Geng H, Zhang GM, Feng ZH, et al. 2006. Soluble Form of T Cell Ig Mucin 3 Is an Inhibitory Molecule in T Cell-Mediated Immune Response. J Immunol. 176:1411.
    14. Shakhov AN, Rybtsov S, Tumanov AV, et al. 2004. SMUCKLER/TIM4 is a distinct member of TIM family expressed by stromal cells of secondary lymphoid tissues and associated with lymphotoxin signaling. Eur J Immunol. 34:494.
    15. Meyers JH, Chakravarti S, Schlesinger D, et al. 2005. TIM-4 is the ligand for TIM-1, and the TIM-1-TIM-4 interaction regulates T cell proliferation. Nat Immunol. 6(5):455.
    16. Kuchroo VK, Umetsu DT, DeKruyff RH, et al. 2003. The TIM gene family: emerging roles in immunity and disease. Nat Rev Immunol. 3:454.
    17. Shaw SK, Brenner MB. 1995. The beta 7 integrins in mucosal homing and retention. Semin Immunol. 1995 Oct;7(5):335. Review.
    18. Shimizu Y, Shaw S. 1993. Cell adhesion. Mucins in the mainstream. Nature. 366:630.
    19. Silberstein E, Dveksler G, Kaplan GG. 2001. Neutralization of hepatitis A virus (HAV) by an immunoadhesin containing the cysteine-rich region of HAV cellular receptor-1. J Virol. 75:717.
    20. Silberstein E, Dveksler G, Kaplan GG. 2001. Alteration of hepatitis A virus (HAV) particles by a soluble from of HAV cellular receptor 1 containing the immunoglobin-and mucin-like region. i. Virol. 77, 335-342.
    21. Chakravarti S, Sabatos CA, Xiao S, et al. 2005. Tim-2 regulates T helper type 2 responses and autoimmunity. J Exp Med. 202:437.
    22. Chen TT, Li L, Chung DH, et al. 2005. TIM-2 is expressed on B cells and in liver and kidney and is a receptor for H-ferritin endocytosis. J Exp Med. 202:955
    23. Zhu C, Anderson AC, Schubart A, et al. 2005. The Tim-3 ligand galectin-9 negatively regulates T helper type 1 immunity. Nature Immunology. 6,1245.
    24. Rabinovich GA. 1999. Galectins: an evolutionarily conserved family of animal lectins with multifunctional properties; a trip from the gene to clinical therapy. Cell Death Differ. 1999,6,711
    25. Perillo NL, Marcus ME, Baum LG. 1998. Galectins: versatile modulators of cell adhesion, cell proliferation, and cell death. J Mol Med. 76:402.
    26. Liu FT. 2000. Galectins: a new family of regulators of inflammation. Clin Immunol. 97:79.
    27. wada J, Kanwar YS.1997. Identification and Characterization of galectin-9,a novel β-galactoside-binding mammalian lectin. Jun Wada, Yashpal S. Kanwar. J Biol Chem. 272, 6078.
    28. Wada J, Ota K, Kumar A. 1997. Developmental regulation,expression,and Apoptotic potential of galectin-9, a β-galactoside binding lectin. J.clinical investigation 99,2452.
    29. Rabinovich GA. 1999. Galectins: an evolutionarily conserved family of animal lectins with multifunctional properties; a trip from the gene to clinical therapy. Cell Death Differ. 6(8):711. Review.
    30. 30 Kashio Y, Nakamura k, Abedin MJ, et al. 2003. Galectin-9 induces apoptosis through the Calciun-Calpain- Caspase-1 pathway. J.Immunol. 170, 3631-3636.
    31. Dai SY, Nakagawa R, Itoh A, et al. 2005. Galectin-9 induces maturation of human monocyte-derived dendritic cells. J Immunol. 175(5):2974.
    32. Han WK, Han WK, Bailly V, et al. 2002. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury. Kidney Int. 62(1):237.
    33. Han WK, Bailly V, Abichandani R, et al. Kidney Injury Molecule-1 (KIM-1): a novel biomarker for human renal proximal tubule injury.Kindey Int. 2002, 62,237.
    34. Ichimura T, Hung CC, Yang SA, et al. 2004. Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am J Physiol Renal Physiol. 286(3):F552.
    35. 35 Van Eerdewegh P, Little RD, Dupuis J, et al. 2002. Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature. 25;418(6896):426.
    36. Chakravarti S, Sabatos CA, Xiao S, et al. 2005. Tim-2 regulates T helper type 2 responses and autoimmunity. J. Exp. Med. 202(3):437.
    37. Kumanogoh A, Shikina T, Suzuki K, et al. 2005. Nonredundant roles of Sema4A in the immune system: defective T cell priming and Th1/Th2 regulation in Sema4A-deficient mice. Immunity. 22(3):305.
    38. McIntire JJ, Umetsu SE, Macaubas C, et al. 2003. Immunology: hepatitis A virus link to atopic disease. Nature. 425(6958):576.
    39. Chakravarti S, Sabatos CA, Xiao S, et al.. Tim-2 regulates T helper type 2 responses and autoimmunity. J. Exp.1 Med. 202(3):437.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700