用户名: 密码: 验证码:
辉光放电和射频放电等离子体制备Pd催化剂及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本博士论文利用辉光放电等离子体和射频放电等离子体技术研究了负载Pd金属催化剂的还原与改性效应。制备和表征的催化剂包括双金属Pd-M/HZSM-5(M= Ni, Co, Cu, Ag)催化剂体系、Pd/TiO_2催化剂体系和Pd/Al_2O_3催化剂体系,考察的催化反应涵盖了甲烷催化燃烧反应及乙炔催化加氢反应。为了对催化剂及催化过程进行全面的表征,本论文使用了N2物理吸附(N2 sorption)、X射线光电子能谱(XPS)、X射线衍射(XRD)、原位X射线衍射(in situ XRD)、透射红外光谱(FT-IR)、差示扫描量热(H_2-DSC)、透射电子显微镜(TEM)、H_2化学吸附(H_2 chemisorption)、H_2程序升温脱附(H_2-TPD)、CO吸附的漫反射红外光谱(CO-DRIFT)、C_2H_4低温程序升温脱附(C_2H_4-SAT-TPD)等实验手段。
     为了从结构和理论角度进一步研究等离子体对负载型Pd催化剂还原及改性作用,我们利用密度泛函理论对等离子体改性后的TiO_2与金属Pd之间的作用及乙烯的吸附模型进行了系统的研究。与此同时,从水合电子的角度对负载型Pd催化剂上的金属盐前驱体的还原过程机理也进行了系统的研究。
     利用Ar辉光放电等离子体还原技术和传统等体积浸渍相结合的方法,成功地制备了一系列Pd基双金属Pd-M/HZSM-5(M= Ni, Co, Cu, Ag)催化剂。一系列表征证明了辉光放电等离子体过程不但不会破坏载体HZSM-5的微孔骨架结构,还可以有效地还原催化剂表面的双金属物种,改善催化剂表面的PdO颗粒分散度和稳定性,提高催化剂样品在甲烷催化燃烧反应中的低温催化活性和稳定性。辉光放电等离子体能显著增强催化剂上活性组分PdO与载体之间的相互作用,在反应过程中没有发生PdO的团聚烧结和向金属态Pd的还原。对比四种Pd基双金属催化剂,Pd-Ag/HZSM-5样品的初始反应活性、稳态反应活性和20 h的稳定性表现最好。
     利用H_2、Ar和O_2放电射频等离子体处理Pd/TiO_2催化剂,并对催化剂的表面性质作了较为全面的研究。H_2放电等离子体处理过程的还原效果优于Ar放电处理,并且处理后的Pd/TiO_2催化剂更容易引入金属活性组分与载体TiO_2的强相互作用(SMSI),降低Pd对C_2H_4和H_2的吸附能力,在乙炔催化加氢反应中获得了较好的选择性。O_2放电等离子体处理可以增强Pd/TiO_2催化剂表面的钯前驱体物种与载体之间的相互作用(MPSI),当经过200°C的H_2还原后,催化剂表面也产生了较强的金属—载体相互作用,提高了催化剂的催化反应性能,使Pd/TiO_2-OP表现出最佳的催化反应活性和乙烯选择性。利用密度泛函的计算工具,我们进一步验证了实验表征的结果。
     H_2、Ar和O_2放电等离子体处理使Pd/Al_2O_3催化剂表面的Pd分散度都得到了很大提高,Pd颗粒粒径变小。经过O_2放电等离子体处理后,金属前驱体和载体之间的相互作用增强。由于经过H_2放电等离子体处理的Pd/Al_2O_3上吸附的C_2H_4更容易发生脱附,因此在反应评价中的反应活性和选择性综合表现最好。
     利用密度泛函理论研究了水合电子团簇[(H_2O)n]-(n=1-6),水合离子团簇[Pd(H_2O)n]~(2+)(n=1-6)及水合电子还原Pd~(2+)的过程。当具有高还原性的水合电子与钯离子Pd~(2+)发生还原反应时,Pd~(2+)首先与水分子发生水合化得到水合离子[Pd(H_2O)_4]~(2+)团簇,再通过水合电子的还原作用得到[Pd(H_2O)_4] ,即:[Pd(H_2O)_4]~(2+)→[Pd(H_2O)_4]+→[Pd(H_2O)_4]。通过对还原反应能量的计算,我们进一步验证了等离子体放电条件下产生具有高还原性的水合电子可以还原金属Pd~(2+),并且所放出的热量提供了进一步还原反应所需要克服的能垒,因此等离子体还原过程一旦激发后可以在室温下顺利进行直至将离子还原为金属态。
This dissertation focuses on using glow discharge plasma and radio frequency plasma technology to study preparation and modification of supported Pd metal catalysts. The prepared and characterized metal catalysts cover bimetallic Pd-based catalysts including Pd-M/HZSM-5 (M= Ni, Co, Cu, Ag), Pd/TiO_2 and Pd/Al_2O_3. The investigated catalytic reactions contain methane combustion and selective hydrogenation of acetylene. In order to fully characterize the catalysts and catalytic process, a series of techniques were employed, including N2 sorption, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), in situ XRD, Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), transmission electron microscope (TEM), H_2 temperature-programmed desorption (H_2-TPD), H_2 chemisorption, CO diffuse reflectance Fourier transform infrared spectroscopy (CO-DRIFT), C_2H_4 subambient temperature-programmed desorption (C_2H_4-SAT-TPD) and so on.
     From the viewpoint of theoretical chemistry, the plasma catalysis technique can be classi?ed into two main functions of reduction and modification. First, with using density functional theory method (DFT), we detailedly studied the interaction of C_2H_4 adsorption on the Pd4 cluster which is loaded on perfect and defective anatase TiO_2(101) surface. And then, representative models of hydrated election and hydrated Pd ions regarding the reduction process were studied to clarify the advantages of molecular simulation. It is essential to understand the interactions between plasma and catalysis. Moreover, finding out the main reasons leading to the beneficial effect could provide useful information for further enhancement of performance as well.
     Highly dispersed Pd-M/HZSM-5 (M= Ni, Co, Cu, Ag) catalysts have been synthesized via conventional incipient wetness impregnation followed by novel glow discharge plasma reduction. In the present work, plasma treatment could not only maintain the microporous framework of HZSM-5, but achieve better dispersion and stabilization of PdO particles on the HZSM-5 as well, which lead to a higher initial activity and stability in reaction tests. Also the stronger interaction between PdO and support favored the stability performance, avoiding the sintering or reduction of PdO. Among the investigated catalysts, the Pd-Ag/HZSM-5 sample exhibits the best activity for methane combustion.
     Non-thermal RF plasma modification has been applied to Pd/TiO_2 catalysts. It is confirmed that supported Pd precursors could be effectively reduced to the metallic state during the room temperature plasma treatment in H_2 and Ar. Plasma treatments also enhanced the surface active sites of Pd/TiO_2 catalysts and improved the dispersion of Pd metal particles. In addition, plasma treatments could induce strong metal-support interaction with lower reduction temperature (200°C), accompanied with the reduced adsorption capacity of H_2 and C2H4, which lead to an enhanced catalytic performance on selective hydrogenation of acetylene. On the basis of the experimental results of inducing SMSI and minimizing the detrimental effects of high temperature calcinations by O_2 plasma at room temperature, theoretical study was applied to confirm the enhanced effect on selectivity performance.
     The present theoretical calculations on hydrated electron and hydrated Pd ions were designed to clarify explicitly the exothermic reduction process from Pd~(2+) to Pd0 or [Pd(H_2O)_4]~(2+) to [Pd(H_2O)_4] via metastable state. Since the non-thermal plasma is a mixture of electrons, highly excited atoms and molecules, ions, radicals, etc., the hydration configurations, electron density and HOMO of the given clusters were also considered. We extrapolated two specific processes that the hydrated electron reduced the Pd~(2+) from precursor to the target Pd0. It is likely that once the plasma was excited, the reduction could occur gradually at room temperature, which is still lack of a theoretical proof and detailed description by any other groups as yet.
引文
[1] BP energy outlook 2030: 60 years BP statistical review, London, 2010
    [2]桥本和仁,藤岛昭,图解光催化技术大全,北京:科学出版社,2007
    [3] Breslow R, Chemistry today and tomorrow, Washington, DC: America Chemical Society, 1997
    [4] http://iyc2011.cdstm.cn/index.php
    [5] Liu C J, Vissokov G P, Jang B W L, Catalyst preparation using plasma technologies, Catal. Today, 2002, 72: 173~184
    [6] Wang Z J, Xie Y B, Liu C J, Synthesis and characterization of noble metal (Pd, Pt, Au, Ag) nanostructured materials confined in the channels of mesoporous SBA-15, J. Phys. Chem. C, 2008, 112: 19818~19824
    [7] Zou J J, Zhang Y P, Liu C J, Reduction of supported noble-metal ions using glow discharge plasma, Langmuir, 2006, 22: 11388~11394
    [8] Pan Y X, Liu C J, Shi P, Preparation and characterization of coke resistant Ni/SiO_2 catalyst for carbon dioxide reforming of methane, J. Power Sources, 2008, 176: 46~53
    [9] Hollahan J R, Bell A T, Techniques and applications of plasma chemistry, New York: John Wiley & Sons, 1974
    [10]陈杰瑢,低温等离子体化学及其应用,北京:科学出版社,2001
    [11]图片来源:Science@NASA,http://science1.nasa.gov/
    [12]刘媛,冷等离子体脱除分子筛模板剂研究:[博士学位论文],天津:天津大学,2010
    [13]徐学基,诸定昌,气体放电物理,上海:复旦大学出版社,1996
    [14] Krall N A, Trivelpiece A W, Principles of plasma physics (International Series in Pure and Applied Physics), San Francisco: San Francisco Press, 1973
    [15] Eliasson B, Kogelschatz U, Nonequilibrium volume plasma chemical processing, IEEE Trans. Plasma Sci., 1991, 19: 1063~1077
    [16] Tas M A, Plasma-induced catalysis: A feasibility study and fundamentals: [Ph. D. Dissertation], Netherlands: Eindhoven University of Technology, 1995
    [17] Liu C J, Ye J Y, Jiang J J, et al., Progresses in the preparation of coke resistant Ni-based catalyst for steam and CO_2 reforming of methane, ChemCatChem, 2011, 3: 529~541
    [18] Li X Z, Tian S X, Wang H T, et al., Plasma treatment of Ni catalyst via a corona discharge, J. Mol. Catal. A, 2004, 211: 149~153
    [19] Furukawa K, Tian S R, Yamauchi H, et al., Characterization of H-Y zeolite modified by a radio-frequency CF4 plasma, Chem. Phys. Lett., 2000, 318: 22~26
    [20] Dadashova E A, Yagodovskaya T V, Shpiro E S, et al., The synthesis of Fe2O3/ZSM-5 catalyst for carbon monoxide hydrogenation in glow discharge of oxygen and argon, Kinet. Catal., 1993, 34: 670~673
    [21] Chu W, Wang L N, Chernavskii P A, et al., Glow-discharge plasma-assisted design of cobalt catalysts for Fischer-Tropsch synthesis, Angew. Chem. Int. Ed., 2008, 47: 5052~5055
    [22] Nicole J, Tsiplakides D, Wodiunig S, et al., Activation of catalyst for gas-phase combustion by electrochemical pretreatment, J. Electrochem. Soc., 1997, 144: 312~314
    [23] Nicole J, Comninellis Ch, Electrochemical promotion of oxide catalyst for the gas phase combustion of ethylene, Solid State Ionics, 2000, 136-137: 687~692
    [24] Vernoux P, Gaillard F, Karoum R, et al., Reduction of nitrogen oxides over Ir/YSZ electrochemical catalysts, Appl. Catal. B, 2007, 73: 73~83
    [25] Chen H L, Lee H M, Chen S H, et al., Review of plasma catalysis on hydrocarbon reforming for hydrogen production: Interaction, integration and prospects, Appl. Catal. B, 2008, 85: 1~9
    [26]王昭文,陈明树,万惠霖,高分散负载Pd催化剂上CO氧化性能,厦门大学学报(自然科学版),2011,50:65~69
    [27]史雯,何阿弟,陈晓银等,负载的单钯催化剂的高热稳定性研究,复旦学报(自然科学版),2003,42:423~427
    [28]何炳林,孙君坦,李弘等,聚合物担载胶态钯催化剂的制备及其催化加氢性能研究,高等学校化学学报,1990,11:521~525
    [29] Dahan A, Portnoy M, Remarkable dendritic effect in the polymer-supported catalysis of the Heck arylation of olefins, Org. Lett., 2003, 5: 1197~1200
    [30] Lu G, Franzén R, Zhang Q, et al., Palladium charcoal-catalyzed, ligandless Suzuki reaction by using tetraarylborates in water, Tetrahedron Lett., 2005, 46: 4255~4259
    [31]堵文斌,王继元,朱庆奋等,pH值对粗对苯二甲酸加氢精制Pd/C催化剂性能的影响,石油炼制与化工,2011,3:38~41
    [32]李旺,王力威,涂丹丹等,碳载体处理对Pd催化氧化甲酸的影响,化学工程师,2011,1:18~20
    [33] http://news.chinacars.com/news/shehui/jscheshi/716370.shtml
    [34]王晓红,黄伟,谢克昌,甲烷活化及转化催化剂研究进展,煤炭转化,2001,24:27~31
    [35] Gao D N, Zhang C X, Wang S, et al., Catalytic activity of Pd/Al2O3 toward the combustion of methane, Catal. Commun., 2008, 9: 2583~2587
    [36] Lyubovsky M, Smith L L, Castaldi M, Catalytic combustion over platinum group catalysts: fuel-lean versus fuel-rich operation, Cata1. Today, 2003, 83: 71~84
    [37] Ciuparu D, Lyubovsky M R, Altman E, et al., Ctalytic combustion of methane over palladium-based catalysts, Catal. Rev. Sci. Eng., 2002, 44: 593~649
    [38] Yin F, Ji S, Wu P, et al., Deactivation behavior of Pd-based SBA-15 mesoporous silica catalysts for the catalytic combustion of methane, J. Catal., 2008, 257: 108~116
    [39] Hurtado P, Ordó?ez S, Sastre H, et al., Development of a kinetic model for the oxidation of methane over Pd/Al2O3 at dry and wet conditions, Appl. Catal. B, 2004, 51: 229~238
    [40] Rotko M, Machocki A, Stasinska B, Studies of catalytic process of complete oxidation of methane by SSITKA method, Appl. Surf. Sci., 2010, 256: 5585~5589
    [41] Müller C A, Maciejewski M, Koeppel R A, et al., Role of lattice oxygen in the combustion of methane over PdO/ZrO_2: Combined pulse TG/DTA and MS study with 18O-labeled catalyst, J. Phys. Chem., 1996, 100: 20006~20014
    [42] Müller C A, Maciejewski M, Koeppel R A, et al., Combustion of methane over palladium/zirconia: Effect of Pd-particle size and role of lattice oxygen, Catal. Today, 1999, 47: 245~252
    [43] Niwa M, Awano K, Murakami Y, Activity of supported platinum catalysts for methane oxidation, Appl. Catal., 1983, 7: 317~325
    [44] Baldwin T R, Burch R, Catalytic combustion of methane over supported palladium catalysts: I. Alumina supported catalysts, Appl. Catal., 1990, 66: 337~358
    [45] Baldwin T R, Burch R. Catalytic combustion of methane over supported palladium catalysts: II. Support and possible morphological effects, Appl. Catal., 1990, 66: 359~381
    [46] Yin F X, Ji S F, Wu P Y, et al., Deactivation behavior of Pd-based SBA-15 mesoporous silica catalysts for the catalytic combustion of methane, J. Catal., 2008, 257: 108~116
    [47] Ruiz J A C, Fraga M A, Pastore H O, Methane combustion over Pd supported on MCM-41, Appl. Catal. B, 2007, 76: 115~122
    [48] Gélin P, Primet M, Complete oxidation of methane at low temperature over noble metal based catalysts: A review, Appl. Catal. B, 2002, 39: 1~37
    [49] Escandón L S, Ordó?eaz S, Vega A, et al., Oxidation of methane over palladium catalysts: Effect of the support, Chemosphere, 2005, 58: 9~17
    [50] Ozawa Y, Tochihara Y, Nagai M, et al., Effect of addition of Nd2O3 and La2O3 to PdO/Al2O3 in catalytic combustion of methane, Catal. Commun., 2003, 4: 87~90
    [51] Simplício L M T, Brand?o S T, Sales E A, et al., Methane combustion over PdO-alumina catalysts: The effect of palladium precursors, Appl. Catal. B, 2006, 63: 9~14
    [52] Demoulin O, Rupprechter G, Seunier I, et al., Investigation of parameters influencing the activation of a Pd/gamma-alumina catalyst during methane combustion, J. Phys. Chem. B, 2005, 109: 20454~20462
    [53] Liu C J, Yu K L, Zhang Y P, et al., Characterization of plasma treated Pd/HZSM-5 catalyst for methane combustion, Appl. Catal. B, 2004, 47: 95~100
    [54] Burch R, Urbano F J, Investigation of the active state of supported palladium catalysts in the combustion of methane, Appl. Catal. A, 1995, 124: 121~138
    [55] Okumura K, Matsumoto S, Nishiaki N, et al., Support effect of zeolite on the methane combustion activity of palladium, Appl. Catal. B, 2003, 40: 151~159
    [56] Farrauto R J, Lampert J K, Hobson Melvin C, et al., Thermal decomposition and reformation of PdO catalysts; support effects, Appl. Catal. B, 1995, 6: 263~270
    [57]亓新华,谷永庆,王红娟,甲烷催化燃烧催化剂研究进展,天然气工业,2007,27:125~127
    [58] Ersson A, Ku?ar H, Carroni R, et al., Catalytic combustion of methane over bimetallic catalysts a comparison between a novel annular reactor and a high-pressure reactor, Catal. Today, 2003, 83: 265~277
    [59] Persson K, Ersson A, Jansson K, Influence of co-metals on bimetallic palladium catalysts for methane combustion, J. Catal., 2005, 231: 139~150
    [60]严河清,张甜,王鄂凤等,甲烷催化燃烧催化剂的研究进展,武汉大学学报(理学版),2005,51:161~166
    [61] Narui K, Yata H, Furuta K, et al., Effects of addition of Pt to PdO/Al2O3 catalyst on catalytic activity for methane combustion and TEM observations of supported particles, Appl. Catal. A, 1999, 179: 165~173
    [62] de la Pe?a O’Shea V A, Alvarez-Galvan M C, Requies J, et al., Synergistic e?ect of Pd in methane combustion PdMnOx/Al2O3 catalysts, Catal. Commun., 2007, 8: 1287~1292
    [63]廖巧丽,米镇涛,化学工艺学,北京:化学工业出版社,2001
    [64]冯普凌,国外聚乙烯催化工艺研究进展,高分子通报,2010,1:28~33
    [65]王康军,等离子体—催化剂甲烷无氧转化制乙烯的研究:[博士学位论文],大连:大连理工大学,2008
    [66]郑净植,奚强,炔烃及二烯烃选择性加氢催化剂的研究进展,湖北化工,2003,1:4~5
    [67]车春霞,谭都平,赵育榕等,碳二前加氢催化剂的应用,化工进展,2010,29:183~186
    [68] Westerterp R, Bos R, Wijngaarden R, et al., Selective hydrogenation of acetylene in an ethylene stream in an adiabatic reactor, Chem. Eng. Technol., 2002, 25: 529~539
    [69] Sheth P A, Neurock M, Smith C M, A first-principles analysis of acetylene hydrogenation over Pd(111), J. Phys. Chem. B, 2003, 107: 2009~2017
    [70] Molnárá, Sárkány A, Varga M, Hydrogenation of carbon-carbon multiple bonds: Chemo-, region- and stereo-selectivity, J. Mol. Catal. A, 2001, 173: 185~221
    [71] Borodziski A, Bond G C, Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts: Part II. Steady-state kinetics and effects of palladium particles size, carbon monoxide and promoters, Catal. Rev., 2008, 50: 379~469
    [72] Borodziski A, Bond G C, Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts: Part I. Effect of changes to the catalyst during reaction, Catal. Rev., 2006, 48: 91~144
    [73] Park Y H, Price G L, Promotional effects of potassium on palladium/alumina selective hydrogenation catalysts, Ind. Eng. Chem. Res., 1992, 31: 469~474
    [74] Panpranot J, Kontapakdee K, Praserthdam P, Effect of TiO_2 crystalline phase composition on the physicochemical and catalytic properties of Pd/TiO_2 in selective acetylene hydrogenation, J. Phys. Chem. B, 2006, 110: 8019~8024
    [75]顾虹,许波连,周静等,负载型Pd/TiO_2和Pd-Ag/TiO_2催化剂的乙炔选择性加氢催化性能,物理化学学报,2006,22:712~715
    [76] Hong J P, Chu W, Chen M H, et al., Preparation of novel titania supported palladium catalysts for selective hydrogenation of acetylene to ethylene, Catal. Commun., 2007, 8: 593~597
    [77] Sock M, Eichler A, Surnev S, et al., High-resolution electron spectroscopy of different adsorption states of ethylene on Pd(111), Surf. Sci., 2003, 545: 122~136
    [78] Mei D, Sheth P A, Neurock M, et al., First-principles-based kinetic Monte Carlo simulation of the selective hydrogenation of acetylene over Pd(111), J. Catal., 2006, 242: 1~15
    [79] Stuve E M, Madix R J, Bonding and dehydrogenation of ethylene on palladium metal: Vibrational spectra and temperature-programmed reaction studies on Pd(100), J. Phys. Chem., 1985, 89: 105~112
    [80] Masel R I, Principles of adsorption and reaction on solid surfaces, New York: John Wiley & Sons, 1996
    [81] Sárkány A, Horváth A, Beck A, Hydrogenation of acetylene over low loaded Pd and Pd-Au/SiO_2 catalysts, Appl. Catal. A, 2002, 229: 117~125
    [82] Cheung T P, Johnson M M, Catalyst and alkyne hydrogenation process, EP0722766(A1), 1996
    [83] Pachulski A, Sch?del R, Claus P, Performance and regeneration studies of Pd-Ag/Al2O3 catalysts for the selective hydrogenation of acetylene, Appl. Catal. A, 2011, 400: 14~24
    [84] Huang D C, Chang K H, Pong W F, et al., Effect of Ag-promotion on Pd catalysts by XANES, Catal. Lett., 1998, 53: 155~159
    [85] Kang J H, Shin E W, Kim W J, Selective hydrogenation of acetylene on Pd/SiO_2 catalysts promoted with Ti, Nb and Ce oxides, Catal. Today, 2000, 63: 183~188
    [86] Ahn I Y, Kim W J, Moon S H, Performance of La2O3- or Nb2O5-added Pd/SiO_2 catalysts in acetylene hydrogenation, Appl. Catal. A, 2006, 308: 75~81
    [87] Praserthdam P, Phatanasri S, Meksikarin J, Activation of acetylene selective hydrogenation catalysts using oxygen containing compounds, Catal. Today, 2000, 63: 209~213
    [88] Praserthdam P, Ngamsom B, Bogdanchikova N, et al., Effect of the pretreatment with oxygen and/or oxygen-containing compounds on the catalytic performance of Pd-Ag/Al2O3 for acetylene hydrogenation, Appl. Catal. A, 2002, 230: 41~51
    [89] Chen M H, Chu W, Dai X Y, et al., New palladium catalysts prepared by glow discharge plasma for the selective hydrogenation of acetylene, Catal. Today, 2004, 89: 201~204
    [90] Ruta M, Semagina N, Kiwi-Minsker L, Monodispersed Pd nanoparticles for acetylene selective hydrogenation: Particle size and support effects, J. Phys. Chem. C, 2008, 112: 13635~13641
    [91]林梦海,量子化学计算方法与应用,北京:科学出版社,2004
    [92]唐敖庆,量子化学,北京:科学出版社,1982
    [93]徐光宪,黎乐民,王德民,量子化学——基本原理和从头计算法,北京:科学出版社,2007
    [94]刘靖疆,基础量子化学与应用,北京:高等教育出版社,2004
    [95] Perdew J P, Wang Y, Pair-distribution function and its coupling-constant average for the spin-polarized electron-gas, Phys. Rev. B, 1992, 46: 12947~12954
    [96] Becke A D, Density-functional exchange-energy approximation with correct asymptotic behavior, Phys. Rev. A, 1988, 38: 3098~3100
    [97] Kresse G, Hafner J, Ab initio molecular dynamics for open shell transition metals, Phys. Rev. B, 1993, 48: 13115~13118
    [98]潘云翔,CO_2催化转化的理论与实验研究:[博士学位论文],天津:天津大学,2009
    [99]王建国,等离子体转化甲烷之实验与密度泛函理论研究:[博士学位论文],天津:天津大学,2004
    [100]王奂玲,丁勇,索继栓,甲烷光催化氧化制甲醇研究进展,分子催化,2004,18:388~399
    [101] Lai B K, Kerman K, Ramanathan S, Nanostructured La0.6Sr0.4Co0.8Fe0.2O3/ Y0.08Zr0.92O1.96/La0.6Sr0.4Co0.8Fe0.2O3 (LSCF/YSZ/LSCF) symmetric thin film solid oxide fuel cells, J. Power Sources, 2011, 196: 1826~1832
    [102] Liu Q, Wang A Q, Wang X H, et al., Synthesis, characterization and catalytic applications of mesoporousγ-alumina from boehmite sol, Micropor. Mesopor. Mater., 2008, 111: 323~333
    [103] Inderwildi O R, Jenkins S J, King D A, Mechanistic studies of hydrocarbon combustion and synthesis on noble metals, Angew. Chem. Int. Ed., 2008, 47: 5253~5255
    [104] McCarty J G, Methane combustion: Durable catalysts for cleaner air, Nature, 2000, 403: 35~36
    [105] Stasinska B, Machocki A, Antoniak K, et al., Importance of palladium dispersion in Pd/Al2O3 catalysts for complete oxidation of humid low-methane-air mixtures, Catal. Today, 2008, 137: 329~334
    [106] Guo X, Zhi G, Yan X, et al., Methane combustion over Pd/ZrO_2/SiC, Pd/CeO_2/SiC and Pd/Zr0.5Ce0.5O_2/SiC catalysts, Catal. Commun., 2011, 12: 870~874
    [107] Wang Z J, Liu Y, Shi P, et al., Al-MCM-41 supported palladium catalyst for methane combustion: Effect of the preparation methodologies, Appl. Catal. B, 2009, 90: 570~577
    [108]王周君,负载金属催化剂结构与尺度控制及其表征:[博士学位论文],天津:天津大学,2010
    [109] Eyssler A, Winkler A, Mandaliev P, et al., Influence of thermally induced structural changes of 2 wt% Pd/LaFeO3 on methane combustion activity, Appl. Catal. B, 2011, 106: 494~502
    [110] Klug H P, Alexander L E, In X-ray diffraction procedures for polycrystalline and amorphous materials (2nd Ed.), New York: John Wiley & Sons, 1974
    [111]程党国,等离子体法制备甲烷转化高效催化剂的表征:[博士学位论文],天津:天津大学,2006
    [112] Briot P, Primet M, Catalytic oxidation of methane over palladium supported on alumina: Effect of aging under reactants, Appl. Catal., 1991, 68: 301~314
    [113] Baylet A, Royer S, Marécot P, et al., Effect of Pd precursor salt on the activity and stability of Pd-doped hexaaluminate catalysts for the CH4 catalytic combustion, Appl. Catal. B, 2008, 81: 88~96
    [114] Ozawa Y, Tochihara Y, Nagai M, et al., PdO/Al2O3 in catalytic combustion of methane: Stabilization and deactivation, Chem. Eng. Sci., 2003, 58: 671~677
    [115] Guczi L, Bimetallic nano-particles: Featuring structure and reactivity, Catal. Today, 2005, 101: 53~64
    [116] Venezia A M, Liotta L F, Deganello G, et al., Characterization of pumice-supported Ag-Pd and Cu-Pd bimetallic catalysts by X-ray photoelectron spectroscopy and X-ray diffraction, J. Catal., 1999, 182: 449~455
    [117] Schmal M, Souza M M V M, Alegre V V, et al., Methane oxidation-effect of support, precursor and pretreatment conditions-in situ reaction XPS and DRIFT, Catal. Today, 2006, 118: 392~401
    [118] Wagner C D, Riggs W M, Davis L E, et al., Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer Corporation, 1992
    [119] Silvert P Y, Vijayakrishnan V, Vibert P, et al., Synthesis and characterization of nanoscale Ag-Pd alloy particles, Nanostruct. Mater. 1996, 7: 611~618
    [120] Damle C, Kumar A, Sastry M, Synthesis of Ag/Pd nanoparticles and their low-temperature alloying within thermally evaporated fatty acid films, J. Phys. Chem. B, 2002, 106: 287~302
    [121]王红梅,王志,碳二选择加氢催化剂研究进展,河北化工,2009,32:4~6
    [122] http://www.coronalab.net/coldplasm/coldplasm.htm
    [123]赵化侨,等离子体化学与工艺,合肥:中国科学技术大学出版社,1993
    [124] Ratanatawanate C, Macias M, Jang B W L, Promotion effect of the nonthermal RF plasma treatment on Ni/Al2O3 for benzene hydrogenation, Ind. Eng. Chem. Res., 2005, 44: 9868~9874
    [125] Lingaiah N, Prasad P S S, Rao P K, et al., Structure and activity of microwave irradiated silica supported Pd-Fe bimetallic catalysts in the hydrodechlorination of chlorobenzene, Catal. Commun., 2002, 3: 391~397
    [126] Amorim C, Keane M A, Palladium supported on structured and nonstructured carbon: A consideration of Pd particle size and the nature of reactive hydrogen, J. Colloid Interface Sci., 2008, 322: 196~208
    [127] Mei D, Neurock M, Smith C M, Hydrogenation of acetylene-ethylene mixtures over Pd and Pd-Ag alloys: First-principles-based kinetic Monte Carlo simulations, J. Catal., 2009, 268: 181~195
    [128] Asplund S, Coke formation and its effect on internal mass transfer and selectivity in Pd-catalysed acetylene hydrogenation, J. Catal., 1996, 158: 267~278
    [129] Perdew J P, Wang Y, Accurate and simple analytic representation of the electron-gas correlation-energy, Phys. Rev. B, 1992, 45: 13244~13249
    [130]韩优,Pt/TiO_2界面作用机理及其对甲醇分解催化性能的理论研究:[博士学位论文],天津:天津大学,2008
    [131] Gudmundsson J T, Kimura T, Lieberman M A, Experimental studies of O_2/Ar plasma in a planar inductive discharge, Plasma Sources Sci. Technol., 1999, 8: 22~30
    [132]魏智强,乔宏霞,戴剑锋等,阳极弧等离子体制备镍纳米粉的性能表征,稀有金属材料与工程,2005,34:1415~1418
    [133] Shanmugam Y, Lin F Y, Chang T H, et al., Thermal decomposition of metal nitrates in air and hydrogen environments, J. Phys. Chem. B, 2003, 107: 1044~1047
    [134] Nissinen T, Leskela M, Gasik M, et al., Decomposition of mixed Mn and Co nitrates supported on carbon, Thermochim. Acta, 2005, 427: 155~161
    [135] Nalbandian L, Lemonidou A A, Thermal decomposition of precursors and physicochemical characteristics of titania supported vanadia catalysts, Thermochim. Acta, 2004, 419: 149~159
    [136] Shi C, Hoisington R, Jang B W L, Promotion effects of air and H2 nonthermal plasmas on TiO_2 supported Pd and Pd-Ag catalysts for selective hydrogenation of acetylene, Ind. Eng. Chem. Res., 2007, 46: 4390~4395
    [137]辛勤,固体催化剂研究方法,北京:科学出版社,2004
    [138] Chou C W, Chu S J, Chiang H J, et al., Temperature-programmed reduction study on calcinations of nano-palladium, J. Phys. Chem. B, 2001, 105: 9113~9117
    [139] Baylet A, Marécot P, Duprez D, et al., In situ Raman and in situ XRD analysis of PdO reduction and Pd0 oxidation supported onγ-Al2O3 catalyst under different atmospheres, Phys. Chem. Chem. Phys., 2011, 13: 4607~4613
    [140] Li Y N, Jang B W L, Investigation of calcinations and O_2 plasma treatment effects on TiO_2-supported palladium catalysts, Ind. Eng. Chem. Res., 2010, 49: 8433~8438
    [141] Lee C J, Lee S K, Ko D C, et al., Evaluation of surface and bonding properties of cold rolled steel sheet pretreated by Ar/O_2 atmospheric pressure plasma at room temperature, J. Mater. Process. Technol., 2009, 209: 4769~4775
    [142] Larson B J, Helgren J M, Manolache S O, et al., Cold-plasma modification of oxide surfaces for covalent biomolecule attachment, Biosens. Bioelectron., 2005, 21: 796~801
    [143] Raacke J, Giza M, Grundmeier G, Combination of FTIR reflection absorption spectroscopy and work function measurement for in-situ studies of plasma modification of polymer and metal surfaces, Surf. Coat. Technol., 2005, 200: 280~283
    [144] Daoudi M I, Triki A, Redjaimia A, DSC study of the kinetic parameters of the metastable phases formation during non-isothermal annealing of an Al-Si-Mg alloy, J. Therm. Anal. Calorim., 2011, 104: 627~633
    [145] SáJ, Arteaga G D, Daley R A, et al., Factors influencing hydride formation in a Pd/TiO_2 catalyst, J. Phys. Chem. B, 2006, 110: 17090~17095
    [146] Bracey J D, Burch R, Enhanced activity of Pd/TiO_2 catalysts for the CO/H2 reaction in the absence of strong metal-support interactions (SMSI), J. Catal., 1984, 86: 384~391
    [147] Andersen J A, Fernández-García M, Supported metals in catalysis (Catalytic Science Series, Vol. 5), London: Imperial College Press, 2004
    [148] Belloni J, Nucleation, growth and properties of nanoclusters studied by radiation chemistry: Application to catalysis, Catal. Today, 2006, 113: 141~156
    [149] Liu C J, Zou J J, Yu K L, et al., Plasma application for more environmentally friendly catalyst preparation, Pure Appl. Chem., 2006, 78: 1227~1238
    [150] Panagiotopoulou P, Kondarides D I, Effects of alkali promotion of TiO_2 on the chemisorptive properties and water-gas shift activity of supported noble metal catalysts, J. Catal., 2009, 267: 57~66
    [151] Feng J T, Ma X Y, Evans D G, et al., Enhancement of metal dispersion and selective acetylene hydrogenation catalytic properties of a supported Pd catalyst, Ind. Eng. Chem. Res., 2011, 50: 1947~1954
    [152] Tauster S J, Fung S C, Baker R T K, et al., Strong interactions in supported-metal catalysts, Science, 1981, 211: 1121~1125
    [153] Tessier D, Rakai A, Bozon-Verduraz F, Spectroscopic study of the interaction of carbon monoxide with cationic and metallic palladium in palladium-alumina catalysts, J. Chem. Soc. Faraday Trans., 1992, 88: 741~749
    [154] Pitchon V, Primet M, Praliaud H, Alkali addition to silica-supported palladium: Infrared investigation of the carbon monoxide chemisorption, Appl. Catal., 1990, 62: 317~334
    [155] Guerrero-Ruiz A, Yang S, Xin Q, et al., Comparative study by infrared spectroscopy and microcalorimetry of the CO adsorption over supported palladium catalysts, Langmuir, 2000, 16: 8100~8106
    [156] Gentle T M, Muettertles E L, Acetylene, ethylene and arene chemistry of palladium surfaces, J. Phys. Chem., 1983, 87: 2469~2472
    [157] Busca G, FT-IR study of the surface chemistry of anatase-supported vanadium oxide monolayer catalysts, Langmuir, 1986, 2: 577~582
    [158] Busca G, Saussey H, Saur O, et al., FT-IR characterization of the surface acidity of different titanium dioxide anatase preparations, Appl. Catal., 1985, 14: 245~260
    [159]唐胜,熊国兴,王弘立,Pt-TiO_2, Pt-Ti2O3与Pt-TiO共溅射薄膜模型催化剂上的金属—担体间相互作用:II.电子能谱考察,催化学报,1987,8:234~241
    [160] http://webbook.nist.gov/cgi/cbook.cgi?Formula=C2H4&NoIon=on&Units=SI&cMS=on
    [161] Li Y, Xu B, Fan Y, et al., The effect of titania polymorph on the strong metal-support interaction of Pd/TiO_2 catalysts and their application in the liquid phase selective hydrogenation of long chain alkadienes, J. Mol. Catal. A, 2004, 216: 107~114
    [162] Schbib N S, García M A, Gígola C E, et al., Kinetics of front-end acetylene hydrogenation in ethylene production, Ind. Eng. Chem. Res., 1996, 35: 1496~1505
    [163] Fu Q, Wagner T, Interaction of nanostructured metal overlayers with oxide surfaces, Surf. Sci. Rep., 2007, 62: 431~498
    [164]李晓菁,乔冠军,陈杰瑢,等离子体修饰TiO_2及其响应光谱红移,化学进展,2007,19:220~224
    [165] Seo H, Kim J H, Shin Y H, et al., Ion species and electron behavior in capacitively coupled Ar and O_2 plasma, J. Appl. Phys., 2004, 96: 6039~6044
    [166] Takeuchi K, Nakamura I, Matsumoto O, et al., Preparation of visible-light- responsive titanium oxide photocatalysts by plasma treatment, Chem. Lett., 2000, 29: 1354~1355
    [167] Sanz J F, Márquez A, Adsorption of Pd atoms and dimers on the TiO_2(110) surface: A first principles study, J. Phys. Chem. C, 2007, 111: 3949~3955
    [168] Wahlstr?m E, Lopez N, Schaub R, et al., Bonding of gold nanoclusters to oxygen vacancies on rutile TiO_2(110), Phys. Rev. Lett., 2003, 90: 026101-1~026101-4
    [169] Valero M C, Raybaud P, Sautet P, Interplay between molecular adsorption and metal-support interaction for small supported metal clusters: CO and C2H4 adsorption on Pd4/γ-Al2O3, J. Catal., 2007, 247: 339~355
    [170]王广厚,团簇物理学,上海:上海科技出版社,2003
    [171]王宝章,水合电子,化学通报,1980,9:38~42
    [172] Boag J W, Hart E J, Absorption spectra in irradiated water and some solutions: Absorption spectra of“hydrated”electron, Nature, 1963, 197: 45~47
    [173] Verlet J R R, Bragg A E, Kammrath A, et al., Observation of large water-cluster anions with surface-bound excess electrons, Science, 2005, 307: 93~96
    [174] Herbert J M, Gordon M H, First-principles, quantum-mechanical simulations of electron solvation by a water cluster, PNAS, 2006, 103: 14282~14287
    [175] Mizuse K, Kuo J L, Fujii A, Structural trends of ionized water networks: Infrared pectroscopy of water cluster radical cations (H2O)n+ (n=3-11), Chem. Sci., 2011, 2: 868~876
    [176] http://www.stdaily.com/kjrb/content/2010-04/03/content_171107.htm
    [177] Armbruster M, Haberland H, Schindler H G, Negatively charged water clusters, or the first observation of free hydrated electron, Phys. Rev. Lett., 1981, 47: 323~326
    [178] Pikaev A K, Ershov B G, Primary products of the radiolysis of water and their reactivity, Russ. Chem. Rev., 1967, 36: 602~620
    [179] Kimura Y, Alfano J C, Walhout P K, et al., Ultrafast transient absorption spectroscopy of the solvated electron in water, J. Phys. Chem., 1994, 98: 3450~3458
    [180] Bonin J, Lampre I, Mostafavi M, Absorption spectrum of the hydrated electron paired with nonreactive metal cations, Radiat. Phys. Chem., 2005, 74: 288~296
    [181] Kulkarni A D, Gadre S R, Nagase S, Quantum chemical and electrostatic studies of anionic water clusters, (H2O)n-, J. Mol. Struct., 2008, 851: 213~219
    [182] Rios-Font R, Sodupe M, Rodríguez-Santiago L et al., The role of exact exchange in the description of Cu2+(H2O)n (n=1-6) complexes by means of DFT methods, J. Phys. Chem. A, 2010, 114: 10857~10863
    [183] Taylor A, Matta C F, Boyd R J, The hydrated electron as a pseudo-atom in cavity-bound water clusters, J. Chem. Theory Comput., 2007, 3: 1054~1063
    [184] Reinhard B M, Niedner-Schatteburg G, Ionization energies and spatial volumes of the singly occupied molecular orbital in hydrated magnesium clusters [Mg, nH2O]+, J. Chem. Phys., 2003, 118: 3571~3582
    [185] Lee S, Kim J, Lee S J, et al., Novel structures for the excess electron state of the water hexamer and the interaction forces governing the structure, Phys. Rev. Lett., 1997, 79: 2038~2041
    [186] Henry D J, Varano A, Yarovsky I, Performance of numerical basis set DFT for aluminum clusters, J. Phys. Chem. A, 2008, 112: 9835~9844
    [187] Bérces A, Nukada T, Margl P, et al., Solvation of Cu~(2+) in water and ammonia: Insight from static and dynamical density functional theory, J. Phys. Chem. A, 1999, 103: 9693~9701
    [188] Rienstra-Kiracofe J C, Tschumper G S, Schaefer H F, et al., Atomic and molecular electron affinities: Photoelectron experiments and theoretical computations, Chem. Rev., 2002, 102: 231~282
    [189] Coe J V, Lee G H, Eaton J G, et al., Photoelectron spectroscopy of hydrated electron cluster anions, (H2O)n- n=2-69, J. Chem. Phys., 1990, 92: 3980~3982
    [190] Hameka H F, Robinson G W, Marsden C J, Structure of the hydrated electron, J. Phys. Chem., 1987, 91: 3150~3157
    [191] Lee S. Lee S J, Lee J Y, et al., Ab initio study of water hexamer anions, Chem. Phys. Lett., 1996, 254: 128~134
    [192] Herbert J M, Gordon M H, Charge penetration and the origin of large O-H vibrational red-shifts in hydrated-electron clusters, (H2O)n-, J. Am. Chem. Soc., 2006, 128: 13932~13939
    [193] Pratihar S, Chandra A, Excess electron and lithium atom solvation in water clusters at finite temperature: An ab initio molecular dynamics study of the structural, spectral, and dynamical behavior of (H2O)6- and Li(H2O)6, J. Phys. Chem. A, 2010, 114: 11869~11878
    [194] Ayotte P, Weddle G H, Bailey C G, et al., Infrared spectroscopy of negatively charged water clusters: Evidence for a linear network, J. Chem. Phys., 1999, 110: 6268~6277
    [195] Siefermann K R, Liu Y, Lugovoy E, et al., Binding energies, lifetimes and implications of bulk and interface solvated electrons in water, Nat. Chem., 2010, 2: 274~278
    [196] Stace A J, Walker N R, Firth S, [Cu·(H2O)n]~(2+) clusters: The first evidence of aqueous Cu(II) in the gas phase, J. Am. Chem. Soc., 1997, 119: 10239~10240
    [197] Beret E C, Martínez J M, Pappalardo R R, et al., Explaining asymmetric salvation of Pt(II) versus Pd(II) in aqueous solution revealed by ab initio molecular dynamics simulations, J. Chem. Theory Comput., 2008, 4: 2108~2121
    [198] Martínez J M, Torrico F, Pappalardo R R, et al., Understanding the hydration structure of square-planar aquaions: The [Pd(H2O)4]~(2+) case, J. Phys. Chem. B, 2004, 108: 15851~15855
    [199] Purans J, Fourest B, Cannes C, et al., Structural investigation of Pd(II) in concentrated nitric and perchloric acid solutions by XAFS, J. Phys. Chem. B, 2005, 109: 11074~11082
    [200] Torrico F, Pappalardo R R, Marcos E S, Hydration structure and dynamic properties of the square planar Pt(II) aquaion compared to the Pd(II) case, Theor. Chem. Acc., 2006, 115: 196~203
    [201] Lee H M, Min S K, Lee E C, et al., Hydrated copper and gold monovalent cations: Ab initio study, J. Chem. Phys., 2005, 122: 064314-1~064314-10
    [202] Sansonetti J E, Martin W C, Young S L, Handbook of basic atomic spectroscopic data (Version 1.1.2), Gaithersburg: National Institute of Standards and Technology, 2005
    [203] Donald W A, Leib R D, O’Brien J T, et al., Nanocalorimetry in mass spectrometry: A route to understanding ion and electron salvation, PNAS, 2008, 105: 18102~18107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700