用户名: 密码: 验证码:
位移—弹簧—力反馈泵/马达在二次调节静液传动系统中的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二次调节静液传动技术是一种新型的液压传动技术。该技术是建立在恒压网络的基础上,通过改变传动系统中二次元件(轴向柱塞泵/马达)的斜盘倾角,从而改变其流量,来适应负载扭矩的变化。它能够在四象限内工作,重新利用系统的制动动能和重物势能,具有很高的效率和节能效果。二次调节静液传动系统实际上是一类系统的总称。这类系统按其应用范围可分为速度控制系统、位置控制系统、扭矩控制系统和功率控制系统。由于速度反馈是以上各类系统中都不可缺少的,因此,也可以按速度反馈的方式分为位移-弹簧-力反馈方案和电反馈方案,所谓位移-弹簧-力反馈方案,是指采用测速电机检测转速,通过位移-弹簧-力反馈比例控制阀,来实现对液压马达排量的控制;所谓电反馈方案,是指用测速电机或光电码器来测量马达轴的转速,实现转速反馈。
     针对阀控修磨机台车液压系统在工作过程中不停地启动、制动以及往复运动,造成了大量的能量损失,本论文提出采用二次调节技术的修磨机台车液压系统。论文首先对二次调节静液传动系统的组成及其工作原理进行分析和研究,利用MATLAB中的SIMLINK软件建立了位移-弹簧-力反馈比例变量泵的数字仿真模型,并对泵模型进行了动态仿真分析,作为力反馈系统结构设计仿真实验的理论依据。其次,以钢坯修磨机台车为系统的加载对象对二次调节静液传动系统进行建模。在建立各个元件数学模型的基础上得出二次调节静液传动系统的数学模型,作为系统仿真模型。最后对台车二次调节静液传动系统进行了节能特性分析并对系统各个工况参数对系统回收率的影响进行了深入的研究,仿真结果表明:系统的能量回收效率与系统的压力,系统的转速和负载驱动扭矩有关,且都随着各个参数的增大,系统的回收效率有所增加。采用常规PID控制方法分别采用两种系统方案对二次调节静液传动系统进行了转速控制实验,从仿真结果可以看出电反馈的转速控制效果要比位移-弹簧-力反馈的转速控制效果要好,但是,采用位移-弹簧-力反馈所需的生产成本低、性价比要比电反馈高。
Secondary regulation of hydrostatic transmission technology is a new type of hydraulic drive technology. It is based on the net of constant pressure, accommodating the variety of the load by changing the camplate's obliquity of the secondary unit (axial piston pump /motor),and so the flow changed, to adapt to the changes in load torque. By utilizing the four-quadrant characteristic of the secondary unit, the braking system of kinetic energy and potential energy heavy can be reused, so the technique has high efficiency and good effect of energy saving. Hydrostatic Transmission of secondary regulation is actually a generic term for a class of systems. Such systems can be divided into the speed control system, the position control system, the torque control systems and the power control systems by its scope of application. The speed feedback in the above systems are essential, as a result, It can be divided into displacement-spring-force feedback programme and electronic feedback programme. The so-called displacement-spring-force feedback programme is that using a speed measurement motor to detect speed and feedback the results to displacement - spring - force feedback proportional control valve, so the hydraulic motor displacement control is achieved. The so-called electronic feedback programmes is that using a speed measurement motor or a photoelectric codec instrument to measure the speed and achieve speed feedback.
     Because of the sharpening machine trolley hydraulic system in view of the valve is not to stop in the work process starts, the brake as well as the reciprocal motion, created the massive energy loss, the paper proposed that used secondary regulation technology in the sharpening machine trolley hydraulic system. First of all the paper research on the composition and working principle of the secondary regulation hydrostatic drive system,used the SIMLINK software to establish the displacement-spring-strength feedback proportion variable displacement pump's digital simulation model, and has carried on the dynamic simulation analysis to the pump model. Secondly, take billet sharpening machine trolley as system's load object to establish the mathematical models of secondary regulation hydrostatic transmission. In the foundation of establishing each part mathematical model, obtained the mathematical models of secondary regulation hydrostatic transmission, and takes the system simulation model. Finally, carryed on the energy conservation characteristic analysis of secondary regulation hydrostatic transmission system and conducts the thorough research to the system each operating mode parameter to the system returns-ratio influence. The result had indicated that system's energy recovery efficiency related on the system's pressure, system's rotational speed and load actuation torque and along with each parameter's enlargement, system's recovery efficiency increases. Used the conventional PID control method to carry on the speed control experiment of the system, the simulation result shows that the electricity feedback is better compared to the displacement-spring-strength feedback speed control effect,but, the displacement-spring-strength feedback speed system is lower and the performance-to-price ratio is higher compared to the electricity system.
引文
[1]李运华,史维祥,流体传动技术的现状与发展[J],机床与液压,1994,(4):187-193
    [2]田科,十年来液压技术应用的发展[J],液压与气动,1988,(1):7-10
    [3]W.H.Dieter,The Future for Hydraulics[J],Rexroth Information Quarterly,1985,(3):5-15
    [4]刘宇辉,蒲红,张艳萍等,二次调节静液传动技术的发展及应用[J],佳木斯大学学报,2001年3月
    [5]蒋晓夏,静液驱动二次调节及其自适应控制系统的研究[D],哈尔滨工业大学博士论文,1992:19-25
    [6]H.W.Nikolaus,Antribssystem mit Hydraulischer Kraftuebertragung Patentanmeldung[J],Nr.2739968 vom 6.9.1997
    [7]W.Backe,H.Murrenhoff.Regelung eines Verstellmotors an einem Konstant-Drucknetz [J],O+P.Oelhydraulik und Pneumatik 1981,25(8):635-642
    [8]R.Kordak,Praktische Auslegung Sekundaergereglter Antriebssysteme[J],O+P.Oelhydrau lik und Pneumatik,1982,26(11):795-800
    [9]H.Murrenhoff,Einsatzbeispiel Motorgeregelter Antriebe mit der Moeglichkeit der Eer gierueckgewinnung[J],O+P,Oelhydraulik und Pneumatik,1984,28(7):427-434
    [10]R.Kordak,Sekundaergeregelter Hydrostatische Antriebe[J],O+P.Oelhydraulik und Pne umatik,1985,29(9):657-667
    [11]H.-J.Hass,Drehzahl-und Lageregelung von Verstellmotoren an einem zentralen Druc knetz[J],O+P.Oelhydraulik und Pneumatik,1986,30(12):909-914
    [12]W.Backe,Elektro-hydraulischer Regelung von Verdrangereinheit[J],O+P.Oelhydraulik und Pneumatik,1987,31(10):770-782
    [13]H.Murrenhoff,M.C.Schin,Analys Elektro-hydraulischer Drehza-hlregelungen fuer Ver stellmotoren an Konstant Drucknetz[J],O+P.Oelhydraulik und Pneumatik,1981,26(7):333-340
    [14]F.Metzner,Kennwerte der Dynamik Sekundaerdrehzahahlgeregelter Arialkolbeneinhei ten am eiserpraegten Drucknetz[J],O+P.Oelhydraulik Und Pneumatik,1987,31(7):567-572
    [15]F.Metzner,H.-J.Fahl,Untersuchungungen an einetr serienmabigen drehzahlgereglten Antriebs-Axial kolleneinheit in Schraegscheiben-hauweise[J],O+P.Oelhydraulik Und Pneu matik,1987,31(1):50-55
    [16]F.Metzner,Mikropropzessorgesteute,digitale Drehwinkelregelung von Axialkol-benein heit[J],O+ P.Oelhydraulik Und Pneumatik,1987,31(7):567-572
    [17]W.back,Secondary controlled motors in speed and torque control[J],O+ P,The sec ond International Symposium on Fluid Power,JHPS,Tokyo,September 1993:241-248
    [18]Achten PAJ,Fu Z,Voel GEM,Transforming future hydraulics,a new design of a hyd raulic transformer.In:Proc.of 5~(th)Scandinavian International Conference on Fluid Power,1997,(3):287-310
    [19]Achten PAJ,Voel GEM,The inas fork lift truk-working under constant pressue[J],In 1.International Fluidechnisches Kolloquium in Aachen,1998:1-15
    [20]Achten PAJ,Fu Z,Valving land phenomena of the innas hydaraulic transform[J],In ternational Joural of Fluid Power,200(1):39-47
    [21]谢卓伟,二次转速调节静液驱动系统调速特性分析[J],液压与气动,1989,(3):16-20
    [22]谢卓伟,付永领,刘庆和,二次调节静液驱动系统的微机数字闭环控制[J],工程机械,1990,(11):29-30
    [23]金力民,路甬祥,吴根茂.采用非线性补偿算法克服二次调节系统的低速滞环[J].液压与气动,991,(3):6-8
    [24]阎雨良,陈良华,陈宗,汪崇松,恒压液压网络上马达调速特性实验研究[J],液压与气动,1990,(3):26-28
    [25]范基,王志兰,次级调节的节能液压系统研制[J],液压与气动,1991,(2):16-17
    [26]蒋晓夏,静液驱动二次调节及其自适应控制系统的研究[D],哈尔滨工业大学博士论文,1992:37-65
    [27]姜继海,王德海,韩永刚,吴盛林,二次转速调节静态神经网络非线性控制策略研究[J],机床与液压,1997,(3):21-22
    [28]姜继海,韩永刚,王德海,刘庆和,二次调节静液驱动系统的智能PID控制[J],哈尔滨工业大学学报,1998,(1):45-48
    [29]姜继海,徐志进,刘庆和,王碧泉,二次调节静液驱动转速PID控制及其试验研究[J],工程机械,1997,(11):31-33
    [30]田联房,次级调节扭矩伺服系统加载技术及其控制方法的研究[D],哈尔滨工业大学博士论文,1997:62-67
    [31]田联房,于慈远,刘庆和,李尚义,次级调节液压加载试验台的模糊控制器设计[J],机床 与液压,1998,(1):5-6
    [32]陈华志,苑士华,城市用车辆制动能量回收的液压系统设计[J],液压与气动,2003年第4期
    [33]曼福雷特,哈特勒,彦斯.库克茨,海上浮油及化学品清污船-科那西山特号[J],Rexroth Information Quarterly,1995,(1):10-13
    [34]麦克,苏尔茨,托马斯.库恩茨,适用于高要求的次级反馈控制一德累斯顿工业大学通用实验台[J],Rexroth Information Quarterly,1995,(1):7-9
    [35]H.Matzewitzki,A.Muehlenbruch,奔驰汽车公司行驶模拟试验台[J],Rexroth Informa tion Quarterly,1995,(1):2-6
    [36]Mannesmann Rexroth,Sekundaerregelung in der Pruefstandstechnik,RDES 09 795/10.92
    [37]Kordak,Hydrostatische Antrieb mit Sekundaerregelung[J],RD00248/01.962.Auflage.Mannesmann Rexroth GmbH,1996:147-149
    [38]H.Murrenhoff,E.Weishaupt,Recent Developments for the Control of Variable Displa cment Motors with Impressed Pressure[J],JHPS,Third International Symposium on Fluid Power,Tokyo,1996,(9):79-84
    [39]罗伯特.帕利斯,利用液压驱动技术获取石油高产[J],RIQ,1998(1):16-18
    [40]凌学俭,二次控制技术及其在精轧机组中的应用[J],液压与气动,2001(1):7-10
    [41]茨比克尼夫.帕沃斯基,罗伯特.帕利斯,米夏埃尔,陶依特贝克[J],为老式市内公共汽车配备力士乐驱动装置,Rexroth Information Quarterly,1997,(1):27-28
    [42]战兴群,张炎华,赵克定,二次调节系统中液压蓄能器数学模型的研究[J],CHINA ME C-HANICAL ENGINEERING Vol.12,Suppl.1,May,2001
    [43]邱敏秀,刘湘琪,黄永才,吴昊,力反馈型电液比例压力流量复合控制阀的研究[J],液压与气动[J],2003年第8期
    [44]董宏林,刘宇辉等,二次调节转速系统对能量回收效率的影响,机床与液压[J],2005.NO.11
    [45]王孙安,林廷忻,史维样,液压伺服控制系统的新发展.机床与液压[J],1991,(1):8-14
    [46]李运华,史维祥,林廷沂,近代液压伺服系统控制策略的现状与发展[J],液压与气动,1995,(1)3-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700