用户名: 密码: 验证码:
油液混合动力挖掘机压差补偿能量回收及动力控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液压挖掘机作为国家建设发展中的重要工程机械,其节能减排具有重要的经济意义和环保意义。常规的元件技术革新,液压系统改进在挖掘机上已经趋于成熟,而混合动力技术的深入研究为挖掘机上的节能减排提供了新的突破口。目前,汽车上的油电混合动力应用研究较为广泛,并且有了较为成熟的产品;挖掘机上的油电混合动力呈现蓬勃发展的研究热潮。而油液混合动力技术的研究在挖掘机这一重要工程机械上还较为稀缺,研究院所和高校都还未有大量的研究文献出现,而在公司层面也只有几家国际大型公司对此项技术进行了研究和试制,并且多数实施保密措施。总体而言,挖掘机上油液混合动力技术还处于起步阶段,研究成果较少。本文以液压挖掘机上油液混合动力技术的应用为核心,结合液压挖掘机工作过程中特有的能量回收过程,在油液混合动力复合模式,模型建立,参数匹配,整机控制方法上进行了相应的研究,并建立相应的实验平台进行验证。以期为进一步的深入研究和产品化做出一定的贡献。
     本文的主要研究内容具体包含以下几方面:
     1.在普通液压挖掘机的结构、工况基础上,比较了串联式、并联式、混联式等油液混合动力方案的优劣,选取了适宜挖掘机的并联式方案作为本文的油液混合动力的研究结构。通过对该复合模式的结构设计,利用低成本的回转马达代替高成本的二次元件来实现油液混合动力的功能。
     2.设计了完全自动化的挖掘机势能和动能能量回收系统方案,并结合油液混合动力提出了压差补偿能量回收系统的原理和控制方法,克服了以往能量回收过程中较多的限制条件,提高了能量回收的能量利用率,减少了能量回收过程中的能量损失。
     3.提出了针对油液混合动力系统的参数匹配方法。以蓄能器为核心,克服并联式油液混合动力复合模式中能量密度较低的缺陷,满足挖掘机正常工作的动力需求。
     4.通过分析比较油电混合动力挖掘机上现有的控制策略,选用了适合于并联式油液混合动力系统的双转速工作点控制策略。在此基础上,提出变参数PID控制、负载预测以及发动机怠速切换相结合的方法来稳定单个工作点上的转速平稳,并通过遗传算法进一步提高整机的节能效果,获得了20%左右的燃油节省。
     5.设计和搭建了多功能的油液混合动力实验平台,对上述的控制方法进行了验证和分析,同时为今后的油液混合动力节能研究提供了评判标准。
Hydraulic excavator was the very important construction machinery for the national economic development. Its energy saving, emission reduction had extraordinary economic and environmental significance. The innovation of conventional component technology and improvement of the excavator hydraulic system had been matured almost. But the in-depth research on hybrid technology offered a new breakthrough for the excavator energy saving. Currently, the research of the electrical hybrid was more widely on the vehicle and some mature product had been manufactured. On the excavator, the research of the electrical hybrid technology also was the most attractive. On the contrary, the research of the hydraulic hybrid technology was scarcity. There were few research literatures from institutes and universities. Only some large international excavator corporation had begun the study of hydraulic hybrid technology on the excavator and took an optimistic view about the prospects for its application. But their research information was kept confidentially. Overall, the research of the hydraulic hybrid technology was still in its infancy and had fewer achievements. In this thesis, in order to further in-depth research and make some contribution, we considered the application of the hydraulic hybrid technology on the excavator as the main task, combined the hybrid technology with the energy recovery during the excavator working as the dynamic energy recovery system, took research on the composite structure designing, system modeling, components parameter matching and machine control method, established the appropriate experimental platform for authentication.
     The main research areas in this thesis included the following aspects:
     1. Based on the general structure and working conditions of the hydraulic excavator, the series, parallel and the mixture type of the hydraulic hybrid system were compared, and the parallel type was selected as the main study structure. The low cost double rotary motor was used to replace the high cost secondary hydraulic component for realizing the hybrid function by redesigning the parallel structure.
     2. Fully automated solutions were designed for excavator potential energy and kinetic energy recovery. The solutions combined with the hydraulic hybrid system were called as the dynamic energy recovery system. And the principle and control method of this new system were explained. The new dynamic energy recovery system could overcome the restrictive conditions, improve the efficiency of the energy recovery course, and reduce the loss.
     3. A new parameters matching method for the hydraulic hybrid system was presented. The accumulator was taken as the core component during the matching course to overcome the disadvantage of the hydraulic hybrid technology which was in low energy density and meet the power demand of the excavator working conditions.
     4. By analyzing and comparing the existing control strategies, the double speed point control strategy which was suitable for the hydraulic hybrid system was chosen. On this basis, variable parameter PID control, load forecasting, and the engine idling switch methods were proposed to stabilize the single speed point steady. By genetic algorithm to further improve the overall energy savings, a20%fuel savings was gained.
     5. A parallel hydraulic hybrid test platform was designed and established to verify the control method mentioned above. And the platform also could provide the criterion for the future control method.
引文
1 2013年挖掘机行业保有量情况探讨分析[OL].2013,http://www.china-consulting.cn/news/20130328/s85567.html.
    2张利平,周兰午,刘芬.定量泵液压系统节能方法研究[J].中国机械工程,2001,12(z1):36-38.
    3马乐,王绍鱿.电子节气门控制系统的构建[J].内燃机工程,2005,26(4):20-23.
    4金立生,赵丁选,黄运华.液压挖掘机节能用油门模糊控制器的开发研究[J].中国公路学报,2004,17(1):119-122.
    5 Noguchi N, Terao H, Sakata C. Performance improvement by control of flow rates and diesel injection timing on dual-fuel engine with ethanol[J]. Bioresource Technology,1996,56(1):35-39.
    6高峰.液压挖掘机节能控制技术的研究[D].杭州:浙江大学.2001.
    7张彦廷,何广利,王庆丰.基于能量流分析的液压挖掘机节能研究[J].机床与液压,2007,35(8):134-139.
    8彭天好,杨华勇,傅新.液压挖掘机全局功率匹配与协调控制[J].机械工程学报,2001,37(11):50-53.
    9高峰,高宇,冯培恩.挖掘机载荷自适应节能控制策略[J].同济大学学报(自然科学版),2001,29(9):1036-1040.
    10尚涛,赵丁选,肖英奎.液压挖掘机功率匹配节能控制系统[J].吉林大学学报(工学版),2004,34(4):592-596.
    11吴向东,安维胜.液压系统的能量回收[J].液压与气动,2001(12):16-17.
    12 Zhang J, Ma P, Schwab M. Hydraulic system for recovering potential energy[P]. US 0074509A1, Apr.5.2007.
    13 Brinkman J. Energy recovery system[P]. US:7634911B2, Dec.22.2009.
    14王庆丰,张彦廷,肖清.混合动力工程机械节能效果评价及液压系统节能的仿真研究[J].机械工程学报,2005,41(12):135-140.
    15 Quan H B, Xin W J, Ming H J. A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels[J]. Atmospheric Environment,2003, 37(7):949-957.
    16 Haijun C. Fuel Injection Control and Simulation of EFI engine Based on ANFIS[C]. International Conference on Intelligent Computation Technology and Automation, Vol 1, Proceedings,2008:191-194.
    17 Mauck L D, Menchaca J, Lynch C S. Piezoelectric hydraulic pump development[C]. SPIE's 7th Annual International Symposium on Smart Structures and Materials,2000:729-739.
    18贾文华,殷晨波,曹东辉.挖掘机正流量泵控液压系统的特性分析[J].南京工业大学学报(自然科学版),2011,33(6):98-101.
    19高峰,潘双夏.负流量控制模型与试验研究[J].机械工程学报,2005,41(7):107-111.
    20王爽,李志远,余新旸.液压挖掘机负流量控制系统的节能分析与实现[J].合肥工业大学学报(自然科学版),2006,29(2):213-216.
    21 D.Zimmerman J, Pelosi M, A.Williamson C. Energy consumption of an LS excavator hydraulic system[C].2007 ASME International Mechanical Engineering Congress and Exposition, Seattle, Washington, USA,2007.
    22 Budny E, Chlosta M, Gutkowski W. Load-independent control of a hydraulic excavator[J]. Automation in Construction,2003,12(3):245-254.
    23 Casoli P, Anthony A, Ricco L. Modeling Simulation and Experimental Verification of an Excavator Hydraulic System-Load Sensing Flow Sharing Valve Model[J]. Training,2012,2010:06-10.
    24 Lin T, Wang Q, Hu B. Research on the energy regeneration systems for hybrid hydraulic excavators[J]. Automation in Construction,2010,19:1016-1026.
    25 Hitachi. EX 1900挖掘机[OL].2008,http://www.hitachi-c-m.com/global/products/excavator/large/ex1900-6/index.html.
    26 Chan C C. The state of the art of electric and hybrid vehicles[J]. Proceedings of the IEEE,2002,90(2):247-275.
    27 Yoon J I, Kwan A K, Truong D Q. A study on an energy saving electro-hydraulic excavator[C]. ICROS-SICE International Joint Conference, Fukuoka,Japan,2009.
    28 Tao L, Hui S, Jihai J A. Investigation to simulation of control strategy of parallel hydraulic hybrid vehicles based on backward modeling[C]. IEEE International Conference on Mechatronics and Automation,2009:551-556.
    29 Matheson, Paul, Stecki. Development and simulation of a hydraulic-hybrid powertrain for use in commercial heavy vehicles[J].2003,112(2):114-123.
    30 Moreno J, Ortuzar M E, Dixon L W. Energy-management system for a hybrid electric vehicle, using ultracapacitors and neural networks[J]. Industrial Electronics, IEEE Transactions on,2006,53(2):614-623.
    31王东云.混合动力挖掘机动力总成及参数匹配方法研究[D].杭州:浙江大学.2009.
    32林潇.并联式混合动力挖掘机动力总成控制策略研究[D].杭州:浙江大学.2010.
    33朱大可,奚汉章,李建军.露天电动挖掘机及其电控系统的发展历程[J].矿业装备,2011(3):54-56.
    34杨国永,谷侃锋,沙清泉.一种新型电动挖掘机整体设计[J].机械设计与制造,2012(11):61-63.
    35 Jinrui N, Zhifu W, Qinglian R. Simulation and analysis of performance of a pure electric vehicle with a super-capacitor [C]. Vehicle Power and Propulsion Conference,2006:1-6.
    36 Eberle U, Helmolt R v. Sustainable transportation based on electric vehicle concepts:a brief overview[J]. Energy & Environment Sciense,2010,3:689-699.
    37 H.W.Nikolaus. Antribssystem mit Hydraulischer Kraftuebertragung Patentanmeldung[P]. NR:2739968,1997.
    38 P.Kordak. Auslegung sekundaer gereg lter antriebs systeme[J]. Oelhydraulik und Pneumatik,1982,26(11):795-800.
    39 H.Murrenhoff. Einsatzbeispiel motorge rege lter antriebe mit der moeglichkeit der ergie rueck gewinnung[J]. Oelhydraulik und Pneumatik,1984,28(7):427-434.
    40 J.Hass. Drehzahl und lageregelung von verstellmotoren an einem zentralen drucknetz[J]. Oelhydraulik und Pneumatik,1986,30(12):909-914.
    41 H.Murrenhoff, M.C.Schin. Analys elektro hydraulischer drehza hlregelungen fuer verstellmotoren an konstant drucknetz[J]. Oelhydraulik und Pneumatik,1981, 26(7):567-572.
    42 R.Kordak. Dremoment steuerung bei elektrischen und hydrostatischen maschinen mit hoher dynamik[J]. Oelhydraulik und Pneumatik,1994,38(1):35-37.
    43 Rydberg K E. Energy efficient hydraulic hybrid drives[C]. The Scandinavian International Conference on Fluid Power, linkoping,Sweden,2009.
    44 Hewko L O, Weber T R. Hydraulic energy storage based hybrid propulsion system for a terrestrial vehicle[C]. Energy Conversion Engineering Conference, 1990:99-105.
    45 Wu B, Lin C-C, Filipi Z. Optimization of power management strategies for a hydraulic hybrid medium truck[C]. Proceedings of the 2002 Advanced Vehicle Control Conference, Hiroshima,Japan,2002.
    46 Kepner R P. Hydraulic power assist-a demonstration of hydraulic hybrid vehicle regenerative braking in a road vehicle application[C]. International Truck&Bus Meeting&Exhibition,2002.
    47 Wu B, Lin C C, Z.Filipi. Optimal power management for a hydraulic hybrid delivery truck[J]. Vehicle System Dynamics,2004,42:23-40.
    48 Filipi Z, Louca L, Daran B. Combined optimization of design and power management of the hydraulic hybrid propulsion system for the 6× 6 medium truck [J]. Int. J. of Heavy Vehicle Systems,2004,11:372-402.
    49董宏林,姜继海,吴盛林.液压变压器与液压蓄能器串联使用的优化条件及能量回收研究[J].中国机械工程,2003,14(3):192-194.
    50姜继海,卢红影,周瑞艳.液压恒压网络系统中液压变压器的发展历程[J].东南大学学报(自然科学版),2006,36(5):869-874.
    51卢红影,姜继海,张维官.基于液压恒压网络系统的液压变压器控制液压缸系统[J].吉林大学学报(工学版),2009,39(4):885-890.
    52周奉香,苑士华,李辉.公交车辆制动能量回收与再利用系统研究[J].客车技术与研究,2003,25(6):6-7.
    53魏英俊.新型液压驱动混合动力运动型多用途车的研究[J].中国机械工程,2006,17(15):1645-1648.
    54龙贻欢,林镜双.新型液驱混合动力系统的研究[J].液压与气动,2008(9):40-49.
    55刘涛,姜继海,孙辉.静液传动混合动力汽车的研究与进展[J].汽车工程,2009,31(7):586-591.
    56 Achten P A J. A serial hydraulic hybrid drive train for off-road vehicles[C]. IFPE, 2008.
    57 Rydberg K E. Hydraulic hybrids-the new generation of energy efficient drives[C]. Proceedings of the Seventh International Conference on Fluid Power Transmission and Control,2009:899-905.
    58 Naruse M, Ohtsukasa N. Hybrid powered construction equipment[P]. US: 6820356 B2.
    59 Kagoshima M, Sora T, Komiyama M. Development of power-train control system for excavator[J]. JSAE,2004,35(4):101-106.
    60 Komiyama M, Kagoshima M. Hybrid construction machine[P]. US:7669413 B2, Mar.2.2010.
    61袁瑜.卡特彼勒推出首款混合动力挖掘机336EH[OL].2012,http://news.cehome.com/industry/121017/22972.html.
    62姜继海,于安才,沈伟.基于CPR网络的全液压混合动力挖掘机[J].液压与气动,2010,9:44-48.
    63张敏杰,王庆九,管成.并联式油液混合动力挖掘机动力系统仿真研究[J].中国机械工程,2010,21(16):1932-1935.
    64 Lin T L, Wang Q F. Hydraulic accumulator-motor-generator energy regeneration system for a hybrid hydraulic excavator[J]. Chinese Journal of Mechanical Engineering,2012,25(6):1121-1129.
    65 Burke A F. Batteries and ultracapacitors for electric, hybrid, and fuel cell vehicles[J]. Proceedings of the Ieee,2007,95(4):806-820.
    66 Nzisabira J, Louvigny Y, Duysinx P. Comparison of Ultra Capacitors, Hydraulic Accumulators and Batteries Technologies to Optimize Hybrid Vehicle Ecoefficiency[C].2009 International Conference on Power Engineering, Energy and Electrical Drives,2009:342-347.
    67 Lajunen A, Suomela J. Evaluation of energy storage system requirements for hybrid mining loaders[J]. Ieee Transactions on Vehicular Technology,2012, 61(8):3387-3393.
    68泰纳尔,液压挖掘机[M].北京:机械工业出版社.1975.
    69黄宗益,叶伟,李兴华.液压挖掘机液压系统概述[J].建筑机械化,2003,24(9):12-16.
    70秦家升,赵继云,王晓倩.挖掘机液压冲击问题分析[J].机床与液压,2008,36(9):273-275.
    71朱红妹,卫少克,刘钊.液压挖掘机挖掘工况与挖掘力分布特性分析[J].机电设备,2007,8:9-12.
    72 Kim Y J, Filipi Z S. Simulation study of a series hydraulic hybrid propulsion system for a light truck[C]. SAE 2007 Commercial Vehicle Engineering Congress & Exhibition,2007.
    73 Shan M. Modeling and control strategy for series hydraulic hybrid vehicles[D]. Toledo:The University of Toledo.2009.
    74 Deppen T O, Alleyne A G, Stelson K. A Model Predictive Control Approach for a Parallel Hydraulic Hybrid Powertrain[C].2011 American Control Conference, New York,2011:2713-2718.
    75 Yan Y, Liu G, Chen J. Intergrated modeling and optimization of a parallel hydraulic hybrid bus[J]. International Journal of Automotive Technology,2010, 11(1):97-104.
    76杜玖玉,王贺武,黄海燕.混联式液压混合动力系统储能元件参数优化[J].农业工程学报,2012,28(6):39-43.
    77刘娟,孔祥东,何龙.二次调节系统四象限工作特性及节能分析[J].液压与气动,2008(10):15-18.
    78郭江华,梁述海,王英辉.舰用柴油机建模方法综述[J].船舶工程,2005,27(2):58-61.
    79 Davis R I, Lorenz R D. Engine torque ripple cancellation with an integrated starter alternator in a hybrid electric vehicle:implementation and control [J]. IEEE Transactions on Inductry Applications,2003,39(6):1765-1773.
    80刘昊,陈鹰,陶国良.压缩空气动力发动机工作过程建模及特性研究[J].自然科学进展,2004,14(3):319-324.
    81曹桂军,卢兰光,熊华胜.车用柴油串联式混合动力系统经济性试验研究[J].内燃机工程,2009,30(4):1-6.
    82张明柱,周志立,徐立友.柴油发动机调速特性时连续性数学模型研究[J].农业工程学报,2004,20(3):74-77.
    83周广猛,郝志刚,刘瑞林.基于MATLAB的发动机万有特性曲线绘制方法[J].内燃机与动力装置,2009(2):34-36.
    84李小华,罗福强,汤东.多项式插值法绘制发动机万有特性曲线[J].农业工程学报,2004,20(5):138-141.
    85封士彩.气囊式蓄能器气体多变指数理论值和实际值的确定[J].液压与气动,2002(5):3-5.
    86柳俊忻,马彪,李和言.基于吸收压力冲击的蓄能器参数设计及其仿真研究 [J].车辆与动力技术,2009(2):6-11.
    87战兴群,张炎华,赵克定.二次调节系统中液压蓄能器数学模型的研究[J].中国机械工程,2001,12(z1):45-46.
    88 Gong J, Gong J, Zhang D. Research on modeling and control strategy of hybrid system in hydraulic excavator in AMEsim[J]. Modern Manufacturing Engineering, 2011(1):49-53.
    89郭勇,张德胜,冀谦.基于AMEsim的挖掘机动臂液压回路仿真研究[J].建筑机械,2007(12):96-98.
    90黄中华,刘少军.一种液压挖掘机动臂势能回收方法及装置[P].CN101435451 A, May.5.2009.
    91周宇,朱建公.基于AMESim的液压挖掘机动臂控制仿真[J].机床与液压,2009,37(11):214-216.
    92 Zhang X, Liu S, Huang Z. Research on the system of boom potential recovery in hydraulic excavator[C]. Proceedings of the 2010 International Conference on Digital Manufacturing & Automation 2010:303-306.
    93张树忠,邓斌,柯坚.基于液压变压器的挖掘机动臂势能再生系统[J].中国机械工程,2010,21(10):1161-1166.
    94李磊,李莺莺,孟广良.油液混合动力装载机能量再生系统研究[J].工程机械,2012,43(12):27-31.
    95韩慧仙.液压挖掘机动臂液压缸再生回路控制[J].液压气动与密封,2008(5):48-50.
    96 Liang X, Virvalo T. Accumulator-charged drive for a hydraulic boom to save energy[C]. ASME 2002 International Mechanical Engineering Congress and Exposition New Orleans, Louisiana, USA,2002.
    97李建启.可回收制动能量的液压挖掘机回转系统[P].CN 2072546 U,Mar.6.1991.
    98张树忠,张弓,陆军坊.挖掘机回转液压系统的仿真研究[J].建筑机械化,2008(11):57-59.
    99于安才.静液传动混合动力挖掘机回转和行走机构节能技术研究[D].哈尔滨:哈尔滨工业大学.2012.
    100 Yuanjun H, Chengliang Y, Jianwu Z. The parameter matching of parallel hybrid electric city-bus powertrain system[J]. Journal of Shanghai Jiaotong University, 2007,41(2):272-277.
    101 Xiao L, Cheng G, Shuangxia P. Parameter matching method for parallel hybrid hydraulic excavators[J]. Journal of Agricultural machinery,2009,40(6):27-32.
    102 Qing X, Qingfeng W. Parameter matching method for hybrid power system of hydraulic excavator[J]. China Journal of Highway and Transport,2008, 21:121-126.
    103 Hui S, Jihai J, Xin W. Parameters matching and contrl method of hydraulic hybrid vehicles with secondery regulation technology[J]. Chinese Journal of Mechanical Engineering,2009,22(1):57-63.
    104 Rydberg K E. Hydraulic accumulators as key components in energy efficient mobile systems[C]. ICFP,2005.
    105 J.Schouten N, A.Salman M, A.Kheir N. Fuzzy logic control for parallel hybrid vehicles[J]. IEEE Transactions on Control System Technology,2002, 10(3):460-468.
    106 Farrall S D, Jones R P. Energy management in an automotive electric/heat engine hybrid powertrain using fuzzy decision making[C]. Proceedings of the 1993 International Sympoelum on intelligent Control,1993:463-468.
    107 Poursamad A, Montazeri M. Design of genetic-fuzzy control strategy for parallel hybrid electric vehicles[J]. Control Engineering Practice,2008, 16(7):861-873.
    108 Harmon F G, Frank A A, Joshi S S. The control of a parallel hybrid-electric propulsion system for a small unmanned aerial vehicle using a CMAC neural network[J]. Neural Networks,2005,18(5-6):772-780.
    109 Zwe-Lee G. Particle swarm optimization to solving the economic dispatch considering the generator constraints[J]. Power Systems, IEEE Transactions on, 2003,18(3):1187-1195.
    110 Zhou Y, Zhou G, Zhang J. A hybrid glowworm swarm optimization algorithm for constrained engineering design problems[J]. Applied Mathematics & Information Sciences,2013,7(1):379-388.
    111 Barsali S, Miulli C, Possenti A. A control strategy to minimize fuel consumption of series hybrid electric vehicles [J]. Energy Conversion, IEEE Transactions on,2004,19(1):187-195.
    112 Arsie I, Graziosi M, Pianese C. Optimization of supervisory control strategy for parallel hybrid vehicle with provisional load estimate[C]. Proc.7th Int. Symp. Adv. Vehicle Control(AVEC),2004.
    113 Xiao Q, Wang Q, Zhang Y. Control strategies of power system in hybrid hydraulic excavator[J]. Automation in Construction,2008,17:361-367.
    114 Xiao L, Shuangxia P, Dongyun W. Dynamic simulation and optimal control strategy for a parallel hybrid hydraulic excavator[J]. Journal of Zhejiang University SCIENCE A,2008,9:624-632.
    115王冬云,管成,潘双夏.液压挖掘机功率匹配与动力源优化综合控制策略[J].农业机械学报,2009,40(4):91-95.
    116 Wang D Y, Lin X, Zhang Y. Fuzzy logic control for a parallel hybrid hydraulic excavator using genetic algorithm[J]. Automation in Construction,2011, 20(5):581-587.
    117 Piccolo A, Ippolito L, zo Galdi V. Optimisation of energy flow management in hybrid electric vehicles via genetic algorithms [C]. Advanced Intelligent Mechatronics,2001:434-439.
    118 Amirjanov A. The development of a changing range genetic algorithm [J]. Computer Methods in Applied Mechanics and Engineering,2006, 195(19-22):2495-2508.
    119 Wang X, Yu A C, Chen W. Optimal Matching on Driving System of Hydraulic Hybrid Vehicle[J]. Advanced in Control Engineeringand Information Science, 2011,15:5294-5298.
    120 Abriola D. Development of a genetic algorithm for the search of optical model parameters [J]. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms,2011,269(24):2984-2989.
    121张维刚.基于CAN总线结构的并联液压混合动力车控制系统[J].微计算机信息,2006,22(28):1-3.
    122张军,殷鹏龙,廖晓明.基于CAN总线的中型挖掘机电气控制系统设计[J].中国工程机械学报,2010,8(3):303-308.
    123于海生.CAN总线工业测控网络系统的设计与实现[J].仪器仪表学报,2001,22(1):17-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700