用户名: 密码: 验证码:
绿色无铅易切削黄铜的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铅黄铜以其优异的成型性能、易切削性能和耐腐蚀性能而广泛应用在各个制造领域。但是铅元素在环境中是极其有害的物质,因而本文的研究目的在于开发出一种环境友好无铅易切削黄铜用来代替传统的铅黄铜。
     本文在了解铅黄铜易切削原理的基础上,用铝硅镁元素替代有毒的铅元素,采用普通铸造工艺得到金相组织为(β+γ)的合金,通过变质处理使第二相γ变细小且弥散分布,起到类似铅的断屑作用,同时所添加的镁与铜硅形成化合物,使合金的断屑质点增加。
     针对本文所开发的无铅易切削黄铜60Cu-Zn-1Si-2.4Al-xMg-0.1Ti,利用金相显微镜、扫描电镜、能谱分析仪研究了Ti和Mg对高锌黄铜显微组织和耐蚀性的影响,通过力学性能测试、脱锌腐蚀、车切测试等手段考察了所研制黄铜的力学性能、腐蚀性能和切削性能,分析了合金腐蚀过程和切削机理。
     该黄铜的显微组织主要由基体p相、细小的变质γ相和含镁化合物颗粒构成。经钛元素变质处理后,γ相由原来大的星花状转变为细小的点状,均匀弥散分布于基体p相颗粒内部,提高合金的综合性能;随镁含量增加,化合物数量增多,当镁含量小余2%时,含镁化合物颗粒弥散分布基体内部,强化合金。
     变质处理和热处理降低了合金的内应力使黄铜中锌的流失减少,脱锌层变小,镁含量的增加促进了锌的流失,脱锌层变厚。无铅黄铜具有良好的耐脱锌腐蚀性能,其在CuCl2溶液中腐蚀24小时后脱锌层厚度仅为131μm,扩散系数的数量级为10-11,失重方程符合指数衰减方程。
     变质处理和镁元素使合金断屑变细小,切削力减小,切削性能提高。合金切削力受切削深度的影响最大,其次为进给量,切削速度影响最小。根据Griffith脆性断裂理论计算得第二相颗粒临界尺寸为0.88 um。
The Lead brass is used in various fields of machinery manufacturing widely because of its superior performance, easy molding cutting and ability corrosion resistance. However the lead is extremely harmful in the environment. The purpose of this research is to produce a kind of unleaded free-cutting brass, which can used to instead of the traditional lead brass.
     The experiment is based on the theory of lead brass cut ability, considering using Si, Al and Mg to replace Pb, and using common casting to get brass alloy which microstructure is (β+γ). The second phase y becomes small and mass by modification to play the role of lead to broken crumbs. The number of particle to broken crumbs is added by compound composed of Mg, Cu and Si in the alloy.
     The effect of adding Ti and Mg on the microstructure and corrosive properties of the alloy were study by optical microscope, SEM, energy spectrum analyzer. The mechanical properties, corrosion resistance and cutting performance are reviewed by the tests of mechanical, dezincification and cutting. The corrosion process and mechanism of cutting process are analyzed.
     The microstructure of the brass consists of matrix P, tiny metamorphic y and particle composition of Mg. The y is changed from the large flower-like into a small dot and distribution diffuse in theβby modification of Ti, and the mechanical properties of the alloy is improved. The number of compound increase as the content of Mg adds. The performance of alloy strengthened as compound particle disperse in matrix distribution when the content of Mg less than 2%.
     The depth of dezincification and the weightlessness are decreased after modification and heat treatment. However, Mg promotes dezincification. The corrosion resistance performance of this unleaded brass is excellented. The depth of dezincification is 131μm, the order of magnitude of diffusion coefficient of Zn is 1011~1012, and the weightlessness of alloy conforms to index regression.
     The scraps become smaller, cutting force decreases and cutting performance improved by adding Ti and Mg in the alloy. The factors effecting force are in the order of depth of cut, feed rate and cut speeding. According to the fracture theory of Griffith, the critical dimension of particle was calculated, which is 0.88μm.
引文
[1]田荣璋,王祝堂.铜合金及其加工手册[M].湖南:中南大学出版社,2002:190-213.
    [2]谭树松.有色金属材料学[M].北京:冶金工业出版社,1993:30-37.
    [3]林肇琦.有色金属材料学[M].辽宁:东北工学院出版社,1986:133-134.
    [4]林肇琦.有色金属材料学[M].辽宁:东北工学院出版社,1986:138-143.
    [5]’廖自基.环境中微量重金属元素的污染危害与迁移转化[M].北京:科学技术出版社.1989:69-100.
    [6]冯福建,王兰,虞江萍,等.我国铅中毒群体特征[J].四川环境,2002,21(1):7-11.
    [7]Rabinowitz MB.Toxicokinetics of Bone Lead [J]. Environ Health Prospect,1991,91: 33-37.
    [8]Sibergeld EK, Waalkes M, Rice JM.Lead as a Carcinogen:Experimental Evidence and Mechanisms of Action[J].Am J Ind Med,2000,38:316-323.
    [9]Onalaja AO, Claudio L.Genetic Susceptibility to Lead Poisioning[J].Environmental Health Perspectives,2000,108:23-23.
    [10]孙毅.职业性铅接触的骨毒效应[D].上海:复旦大学,2008.
    [11]David C, Bellinger PhD, MSc, et al. Low-Level Lead Exposure Intelligence and academic Achievement:A Long-Term follow-up Study[J].Pediatrics.1992,90(6):855-861.
    [12]Richard L. Canfield, Ph.D., Charles R. Henderson, et al.Intellectual Impairment in Children with Blood Lead Concentrations below 10 μg per Deciliter[J].N Engl J Med 2003,348(16):1517-1526.
    [13]Rogan W J, Dietrich K N, Ware J H, et al. The Effect of Chelation Therapy with Succimer on Neuropsychological Development in Children Exposed to Lead[J].N Engl J Med 2001,344:1421-1426.
    [14]Kaiser R, Henderson AK, Daley WR, et al. Blood Lead Levels of Primary School Children in Dhaka, Bangladesh[J].Environ Health Perspect.2001,109(6):563-566.
    [15]Schwartz J, Angle C, Pitcher H.Relationship between Childhood Lead Levels and Stature[J].Pediatrics,1986,77:281-288.
    [16]Shukla R, Dietrich KN, Bornschein RL, et al.Lead Exposure and Growth in the Early Preschool Child:a Follow-up Report from the Cincinnati Lead Study [J].Pediatrics, 1991,88:886-892.
    [17]Osman K, Zejda JE, Schutz A, et al.Exposure to Lead and other Metals in Children from Katowice District, Poland[J].Int Arch Occup Environ Health,1998,71:180-186.
    [18]Tetsuya A, Tetsuro A, Yoshihiro Y.Morphological Influence of Bi Substituted for Pb in Free Cutting Brass on Machinability[J]. Journal of the Japan Copper and Brass Research Association,2001,140(1):253-256.
    [19]Michels Harold T. Replacing Lead in Brass Plumbing Castings[J].Advanced Material an Processes,2002,(1):75-77.
    [20]A.La Fontaine, V. J. Keast.Compositional Distributions in Classical and Lead-free Brasses[J].Materials Characterization,2006,(57):424-429.
    [21]杨晓婵.日本开发无铅、低铅黄铜合金[J].现代材料动态,2002,(11):8.
    [22]Bown J, Polyvinyl chloride:U. K.To Ban Lead Stabilizers in Water Pipes [J]. Chemical Week.2000.162(34):22.
    [23]M Peters. Lead-free Brass Alloys Seek New Markets[J].Foundry Management& Technology,2002 (6):8-11.
    [24]P K Rohatgi, D Nath. Corrosion and Dealloying of Cast Lead-free Copper Alloy Graphite Composites [J]. Corrosion Science,2000,42:1553-1571.
    [25]秦毅红.铋深加工产品的应用及其发展前景[J].世界有色金,1998.4:43-44.
    [26]覃静丽.无铅易切削铋黄铜的制备及腐蚀、切削性能研究[D].湖南:中南大学,2008.
    [27]闫亮明,邓小民.环保易切削黄铜的研究[J].有色金属加工.2007,36,(1):23-27.
    [28]海亮集团,浙江铜加工研究所有限公司.无铅易切削黄铜合金:中国,CN1546703A[P].2004-11-17.
    [29]汪治军,张天莉.绿色易切削无铅黄铜棒的研制[J].有色金属加工,2004,33,(6):10-11.
    [30]张明,谢潇,蔡泊华等.环保健康新型无铅易切削耐蚀低硼钙黄铜合金:中国,200510049842[P].2005-8-22.
    [31]张明,章四琪,谢潇等.无铅易切削锑黄铜合金:中国,200410015836[P].2004-12-29.
    [32]黄劲松,彭超群,章四琪等.无铅易切削镁黄铜的组织与性能[J].材料科学与工程学报,2006,6,(24):854-857.
    [33]肖来荣60Cu-Zn-xMg合金组织与性能的研究[D].湖南:中南大学,2009.
    [34]肖寅昕,匡同春,蔡英儿.新型高锌加工黄铜变质处理研究[J].特种铸造及有色合金.1998,(5):21-23.
    [35]潘复生,张丁非.铝合金及应用[M].北京:化学工业出版社,2006:12-23.
    [36]魏绪钧,徐秀芝,冯法伦.稀土对HPb5921铅黄铜金相组织及性能的影响[J].稀土,1992,13(4):56-59.
    [37]廖乐杰,何福忠.稀土在铜及铜合金中的作用及其应用效果[J].特种铸造及有色合金,1997(2):52-53.
    [38]郭锋,梅敦.稀土元素Ce对H62黄铜组织特征变化的作用[J].包头钢铁学院学报,2000,19(3):250-253.
    [39]季玮.稀土对高锰铝青铜铸态组织和性能的影响[J].中国稀土学报,1995,13(1):54-59.
    [40]宋永安,王嘉欣.稀土在铝、铜、镁合金中的作用与应用[J].铝加工,2002,125(4):4-7.
    [41]程巨强,刘志学,胡垚.复合变质处理对ZCuZn40Pb2组织和力学性能的影响[J].特种铸造及有色合金,2009,29(10):967-969.
    [42]刘志学,程巨强,倪自飞,等.新型铜合金细化添加剂对铸造铅黄铜变质处理效果的影响[J],铸造,2009,58(9):891-893.
    [43]司乃潮,周飞.Ti+B复合细化对CuZnAl形状记忆合金的影响[J].材料科学与工艺,1998,6(4):99-104.
    [44]郭淑梅.高强耐磨复杂铝黄铜研究[J].特种铸造及有色合金,2003(3):18-20.
    [45]李炳辉.金属材料金相图谱下册[M].北京:机械工业出版社,2006:1482-1489.
    [46]张全叶,罗勇,邝山等.变质剂对多元复杂耐磨黄铜组织性能的影响[J].甘肃冶金,2009,31(3):1-3.
    [47]章爱生,严明明,曾秋莲.稀土硼锆在HPb59-1黄铜中的细化变质效果[J]铸造,2005,54(10):1017-1020.
    [48]魏绪钧,徐秀芝,冯法伦.稀土对HPb59-1铅黄铜金相组织及性能的影响[J].稀土,1992,13(3):24-26.
    [49]王吉会,姜晓霞,李诗卓.硼对铜合金组织和性能的影响[J].材料研究学报,1997,11(4):381-386.
    [50]倪自飞,程巨强,刘志学.B变质对HPb59-1黄铜组织细化的影响[J].特种铸造及有色合金,2007,27(1):70-72.
    [51]程巨强,刘志学.变质处理对铅黄铜铸态组织及凝固方式的影响[J].特种铸造及有色合金,2008,28(11):826-828.
    [52]章爱生,徐鹏,严明明,等.微量硼在HPb59-1黄铜中的细化变质作用[J].热加工工艺,2005,7:22-25.
    [53]Fasoyinu F A sadayappan M, Zavadil R, et al.Effects of Grain Refinement on Hot Tear Resistance and Shrinkage Characteristics of Permanent Mold Cast Yellow Brass (C85800)[J].AFS Transaction,1998,106:327-337.
    [54]Yano T, Ling X, Higashida K, et al.Improvement of Formability of Leaded Brass during Hot Working Science and Technology[J].AFS Transaction,1999,15:67-72.
    [55]魏乐林,孙宇宁,杨大泓.钛对铝铜合金铸件力学性能的影响[J].特种铸造及有色合金,1999(5):16-17.
    [56]陈亚军,许庆彦,黄天佑.铝合金晶粒细化剂研究进展[J].材料导报,2006,20(12):57-61.
    [57]辛社伟,赵永庆,曾卫东.钛合金固态相变的归纳与讨论(Ⅱ)——共析和有序化转变[J].钛工业进展,2008,25(1):40-44.
    [58]陈村中.有色金属熔炼与铸锭[M].北京:冶金工业出版社,2006:196-198.
    [59]程巨强,刘志学,胡垚.Ti变质对ZCuZn40Pb2组织和力学性能的影响[J].特种铸造及有色合金,2009,29(1):91-94.
    [60]陆文华,李隆盛,黄良余.铸造合金及其熔炼[M].北京:机械工业出版社,1997:340-358.
    [61]郑来苏.铸造合金及其熔炼[M].西安:西北工业大学出版社,1994:343-352.
    [62]Yang Mingbo, Pan Fusheng, Cheng Renju, et al. Effect of Semi-Solid Isothermal Heattreatment on the Microstructure of Mg-6Al-1Zn-0.7Si Alloy[J]. Journal of Materials Processing Technology,2008,26:374-381.
    [63]Yang Mingbo, Shen Jia, Pan Fusheng. Effect of Sb on Microstructure of Semi-Solid Iisothermal Heat-treated AZ61-0.7Si Magnesium. Alloy[J].Transactions of Nonferrous Metals Society of China,2009,19:32-39.
    [64]Qin Qingdong, Zhao Yangguang, Liang Yanhe, et al. Effect of Melt Superheating Treatmenton Microstructure of Mg2Si/Al-Si-Cu Composite [J]. Journal of Alloys and Compounds,2005,399:106-109.
    [65]Zhang Gu, Wang Huiyang, Zheng Nan, et al. Effect of Melt Superheating Treatment on the Cast Microstructure of Mg-1.5Si-1Zn Alloy[J]. Journalof Materials Science,2008, 43:980-984.
    [66]庄心辅主编.新型金属切削刀具设计制造与新材料选用及检测标准汇编实用手册[M].北京:中国电子科技出版社,2006(11):194.
    [67]Ernst H, Merchant ME. Chip Formation, Friction and High Quality Machined Surfaces[J]. Surface Treatment of Metals,1941,29:299-378.
    [68]扬荣福,董申编.金属切削原理[M].北京:机械工业出版社,1988:3.
    [69]冯道主编.机械零件切削加工工艺与技术标准实用手册[M].合肥:安徽文化音像出版社,2003:205-224.
    [70]郭成,程羽,尚春阳.SiC颗粒增强铝合金基复合材料断裂与强化机理[J].复合材料学报,2001.11,18(4):54-57.
    [71]全燕鸣,周泽华.硬脆颗粒增强金属基复合材料切削区的变形[J].华南理工大学学报(自然科学版),1998,26(4):4-6.
    [72]Mariam S.EI-Gallab. Machining of Particulate Metal Matrix Composites [D]. Canada: McMaster University,1999.
    [73]R.Komanduri, R. H.Brown. On the Mechanics of Chip Segmentation in Achining[J]. Journal of Engineering for Industry,1981,103:33-51.
    [74]宫能平,周元鑫,夏源明.应变率对SiC颗粒增强铝基复合材料拉伸性能的影响[J].力学季刊,2000,21(4):415-420.
    [75]庞晋山,肖寅昕.无铅易切削黄铜的研究[J].广东工业大学学报,2001,18(3):63-66.
    [76]Davim J P, Jose Silva, Baptista A M.Experimental Cutting Model of Metalmatrix Composites[J]. Journal of Materials Processing Technology,2007,183:385-362.
    [77]I.Massalski and B. Thaddeus.Binary Alloy Phase Diagrams[M].Washington, DC:Metals Park,1986:43-45.
    [78]Liang H, Chang Y. A. A Thermodynamic Description for the Ternary Cu-Mg-Zn System[J].Z.Metallkd,1997(88):836-841.
    [79]朱祖芳.有色金属的耐腐蚀性及其应用[M],北京:化学工业出版社,1995:147-148.
    [80]余宗森,田中卓.金属物理[M].北京:冶金工业出版社,1982.158-180.
    [81]赵莉,金荣涛.铜及铜合金切削性评定方法研究[J].有色金属加工,2009,38(5):40-43.
    [82]野浩二,河村末久,北野昌则.理论切削学[M].高希正,译.北京:国防工业出版社,1985:20-24.
    [83]We Hofmann, Essam El-Magd. Behavior of Cu-Zn Alloys in High Speed Shear Tests and in hip Formati on Processe[J].Materials Science and Engineering A,2005,39: 129-140.
    [84]范继美,万光氓.位错理论及其在金属切削中的应用[M].上海:上海交通大学出版社,1991:201-208.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700