用户名: 密码: 验证码:
高效率紧凑型阵列天线理论与技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动通信系统、雷达系统、电子战对抗系统和微波成像系统等科技领域的迅猛发展推动着作为系统前端的重要部件-天线的不断革新。在不同应用背景下,阵列天线具有不同的性能,或高增益、低旁瓣,或宽波束,或易于与其他微波毫米波电路集成,或具有不同的极化,如线极化,圆极化,双极化等。特别是在弹载、机载和星载等高速运行的平台上,对高效率、紧凑型阵列天线有迫切需要。在实际使用过程中,为减小周围环境、气候对阵列天线的影响,有必要给阵列天线加装天线罩。因此需要研究和设计出能提高阵列天线性能的天线罩。本文对应用于通信领域的高效率阵列天线、应用于合成孔径雷达中的紧凑型阵列天线以及新型左手材料天线罩做了较深入的研究,并完成了仿真、实验验证。论文的研究主要包括以下几方面内容:
     1.在线极化波导馈电微带阵列天线的基础上,提出了高效率的主瓣圆极化波导馈电微带阵列天线。该高效率阵列天线可以应用于通信领域。首先,对新的波导馈电-中心微带贴片结构进行仔细研究和分析。中心微带贴片结构较之前线极化波导馈电微带阵列天线的中心微带贴片结构有较大改变。中心微带贴片结构的改变使波导馈电微带阵列天线具有主瓣圆极化特性成为可能。其次,基于微扰法,对用微带线串联馈电的其他微带贴片单元进行切角,使每个微带贴片单元具有一定的圆极化特性。最后,给出了元和8 ? 8元主瓣圆极化波导馈电微带阵列天线的仿真结果。
     2.提出一种紧凑型的基片集成波导终端缝隙天线。该天线具有高效率、紧凑的特性,可以为合成孔径雷达提供具有共口径、双频和双极化特性的阵列天线。提出了用新型基片集成波导同轴传输线对其馈电的馈电方式。组阵时,该天线单元在口径面上是一条超薄的缝隙,故与传统的波导宽边缝隙天线阵相比,较易实现双频双极化共口径天线阵。设计出的天线进行了测试,得到了较好的结果。
     3.根据波导宽边缝隙天线设计原理设计出基片集成波导宽边缝隙天线及其天线阵,并通过软件仿真了此类阵列天线的驻波、增益等特性。其次,用多个紧凑型基片集成波导终端缝隙天线进行组阵,并测试出这些天线阵的性能。最后将两种阵列天线的性能进行了比较。
     4.自从左手材料诞生起,就成为微波毫米波领域的一个研究热点。本文提出了一种工作在Ku波段的高效率左手材料天线罩。用一个宽波束和宽频带的阿基米德螺旋天线作为被罩天线,研究了该左手材料天线罩的性能。通过实测结果,证明了该左手材料天线罩能汇聚波束,提高增益。
The rocketing developments of mobile communication systems, radar systems, electronic warfare systems, and microwave imaging systems are pushing the innovation of the most important part of these systems-antennas. In different applications, antenna arrays might seek different characteristics, such as high gain and low sidelobe, broad main beam, being easily integrated with other microwave and millimeter wave circuits in one system, or different polarizations, e.g. linear polarization, circular polarization or dual polarization, etc. Especially, on the moving platform with high speed, such as airplane, missile, and satellite, etc., high efficient and compact antenna arrays are much needed. Actually, radomes are needed to protect antenna arrays from bad weather or other situations in the field. Radomes are designed to improve the properties of these antennas. Based on the applications for the communication systems and synthetic aperture radar systems, and etc., some high efficient and compact arrays and the radome are expanded in this thesis.
     1. Based on the linear waveguide-fed microstrip patch array, a high efficient waveguide-fed microstrip patch array antenna with circular polarization in the main beam is presented. This kind of array can be applied for the communication systems. The new waveguide-fed central microstrip patch structure is studied. This central microstrip patch element is totally different from the one of the linear waveguide-fed microstrip patch array. Secondly, according to the perturbation method, other microstrip patch elements fed by microstrip line are designed. Both the new central microstrip patch elements and other microstrip patch elements show the characteristic of circular polarization. Finally, and 8 ? 8 arrays of this new structure are simulated. The results verify circular polarization characteristic of this structure.
     2. A high efficient and compact substrate integrated waveguide end slot antenna is proposed. This kind of antenna can provide dual frequency bands and dual polarizations in one aperture for synthetic aperture radar. A new substrate integrated waveguide coaxial transmission line is designed to feed this antenna. In the array aperture, this antenna element shows the super-thin characteristic. Compared to the traditional waveguide broadside slots array or substrate integrated waveguide broadside slots array, the arrays consisted by this compact antenna are prone to easily realize dual frequency bands and dual polarizations. The measured results verify the good properties of this antenna.
     3. The traditional substrate integrated waveguide slots arrays are designed based on the design principles of waveguide broadside slots arrays. The S parameters and gain of these arrays are simulated and given. Then, several arrays constructed by the substrate integrated waveguide end slot antenna are analyzed. The tested results are compared with the simulated results of the traditional substrate integrated waveguide slots arrays.
     4. Since the debut of the left-hand material, it quickly becomes a hot topic in the microwave and millimeter wave field. A high efficient Ku band left-hand material radome is depicted. To obtain the characteristics of the left-hand material radome, an Archimedean antenna with broad main beam and broad frequency band is set behind it. The measured results prove the left-hand material radome can narrow the beam width and raise the gain of the antenna.
引文
[1] Kraus J. D., Marhefka R. J.天线(第三版)[M].北京:电子工业出版社, 2004.
    [2] Sandau R., Roser H.-P. Small Satellite Missions for Earth Observation[M]. Verlag Berlin Heidelberg: Springer, 2010.
    [3] Gross F. B. Smart Antennas for Wireless Communications[M]. New York: The McGraw-Hill Companies, Inc., 2005.
    [4] Kaiser T., Bourdoux A. Smart Antennas-State of the Art[M]. New York: Hindawi Publishing Corporation, 2005.
    [5] Godara L. C. Smart Antennas[M]. Boca Raton?London?New York: CRC Press, 2004.
    [6] Skolnik M. I. Radar HandBook[M]. New York: McGraw-Hill, 1990.
    [7] Skolnik M. I. Introduction to Radar System[M]. New York: McGraw-Hill, 1980.
    [8]环球时报.德媒:秘鲁正在与中国谈判准备购买军事卫星[EB/OL]. http://mil.qianlong.com/37076/2008/11/25/2500@4760050_2.htm, 2008.
    [9]魏钟铨.合成孔径雷达卫星[M].北京:科学出版社, 2001.
    [10] Cumming I. G., Wong F. H.合成孔径雷达成像-算法与实现[M].北京:电子工业出版社, 2007.
    [11]王超.全极化合成孔径雷达图像处理[M].北京:科学出版社, 2008.
    [12] Oliver C., Quegan S.合成孔径雷达图像理解[M].北京:电子工业出版社, 2009.
    [13] Stegen R. J. Theory of slot in Rectangular waveguide[J]. Applied physics, 1948, 19: 24~28.
    [14] Watson W. H. The physical principles of waveguide transmission and antenna systems[M]. Oxford: Clarendon Press, 1949.
    [15] Shan X. Y., Shen Z. X. Transverse slot antenna array in the broad wall of a rectangular waveguide partially filled with a dielectric slab[J]. IEEE Transactions on Antennas and Propagation, 2004, 52(4): 1030~1038.
    [16] Hwang J. H., Oh Y. Millimeter-Wave Waveguide Slot-Array Antenna Covered by a Dielectric Slab and Arrayed Patches[J]. Antennas and Wireless Propagation Letters, IEEE, 2009, 8: 1050~1053.
    [17] Rengarajan S. R., Zawadzki M. S., Hodges R. E. Waveguide-slot array antenna designs for low average-sidelobe specifications[J]. IEEE Transactions on Antennas and Propagation, 2010, 52(6): 89~98.
    [18] Stevenson A. F. Theory of slots in rectangular waveguide[J]. Applied physics, 1948, 19: 2~28.
    [19] Oliner A. The impedance properties of narrow radiating slots in the broad face of rectangular waveguide.partⅠ-theory[J]. IRE Transactions on Antennas and Propagation, 1957, 5(1): 4~11.
    [20] Yee H. Y. Impedance of a narrow longitudinal shunt slot in a slotted waveguide array[J]. IEEE Transactions on Antennas and Propagation, 1974, 22(4): 589~592.
    [21] Elliott R. S. The design of small slot arrays[J]. IEEE Transactions on Antennas and Propagation, 1978, 26: 214~219.
    [22] Elliott R. S. On the design of traveling-wave-fed longitudinal shunt slot arrays[J].IEEE Transactions on Antennas and Propagation, 1979, 27(5): 717~720.
    [23] Elliott R. S. An improved design procedure for small arrays of shunt slots[J]. IEEE Transactions on Antennas and Propagation, 1983, 31: 48~54.
    [24] Gatti R. V., R.Sorrentino, M.Dionigi. Equivalent circuit of radiating longitudinal slots in dielectric filled rectangular waveguides obtained with FDTD method[J]. Microwave Symposium Digest, IEEE MTT-S International, 2002: 871~874.
    [25] Gatti R. V., Dionigi M., Sorrentino R. Low cost active scanning antenna for mobile satellite terminals[Z]. 2003, 680~683.
    [26] Gatti R. V., Sorrentino R. A fast and accurate CAD tool for slotted waveguide arrays for radar applications[Z]. 2004, 181~184.
    [27]张敏. CST微波工作室用户手册[M].四川成都:电子科技大学出版社, 2004.
    [28] Hirokawa J., Ando M. Single-layer feed waveguide consisting of posts for plane TEM wave excitation in parallel plates[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(5): 625~630.
    [29] Ando M., Hirokawa J., Yamamoto T. Novel single-layer waveguide for high efficiency millimeter wave arrays[J]. IEEE Transactions on Microwave Theory and Techniques, 1998, 46(6): 792~799.
    [30] Uchimura H., Takenoshita M. Development of the "laminated waveguide"[Z]. 1998, 3, 1811~1814.
    [31] Wu K., Han L. Integrated planar NRD oscillator suitable for low cost millimeter-wave applications[J]. IEEE Microwave and Wireless Components Letters, 1996, 6(9): 329~331.
    [32] Abidi A. A. Substrate integrated nonradiative dielectric waveguide[J]. IEEE Journal of Solid-State Circuits, 2004, 39(4): 549~561.
    [33] Cassivi Y., Wu K. Substrate integrated nonradiative dielectric waveguide[J]. IEEE Microwave and Wireless Components Letters, 2004, 14(3): 89~91.
    [34] Deschamps G. A. Microstrip Microwave Antennas[Z]. 1953.
    [35] Lo Y. T., Solomon D., Richards W. F. Theory and experiment on microstrip antennas[J]. IEEE Transactions on Antennas and Propagation, 1979, 27(3): 137~145.
    [36] James J. R., Hall P. S., Wood C. Microstrip Antenna Theory and Design[M]. London: Peter Peregrinus LTD, 1981.
    [37]钟顺时.微带天线理论与应用[M].西安:西安电子科技大学出版社, 1991.
    [38] Pozar D. Microstrip antennas[C]. Proceedings of the IEEE, 1992: 79~91.
    [39] Kumar G., Ray K. P. Broadband microstrip antennas[M]. Norwood: Artech house, INC, 2003.
    [40] Chen Z. N., Chia M. Y. W. Broadband planar antennas[M]. England: John Wiley&Sons, Ltd, 2005.
    [41] Howell J. Q. Microstrip Antennas[Z]. 1972, 177~180.
    [42] Howell J. Q. Microstrip Antennas[J]. IEEE Transactions on Antennas and Propagation, 1975, 23: 90~93.
    [43] Munson R. E. Conformal Microstrip Antennas and Microstrip Phased Arrays[J]. IEEE Transactions on Antennas and Propagation, 1974, 22: 74~78.
    [44] Bahl I. J., Bhartia P. Microstrip antennas[M]. Norwood: Artech House, 1980.
    [45]林昌禄,聂在平.天线工程手册[M].北京:电子工业出版社, 2002.
    [46] Rao J. S., Joshi K. K., Das B. N. Analysis of Small Aperture Coupling Between Rectangular Waveguide and Microstrip Line[J]. IEEE Transactions on Microwave Theory and Techniques, 1981, 29(2): 150~154.
    [47] Ho M. H., Michalski K. A., Chang K. Waveguide Excited Microstrip Patch Antenna-Theory and Experiment[J]. IEEE Transactions on Antennas and Propagation, 1994, 42: 1114~1125.
    [48] Wilt F. P. V. D., Strljbos J. H. M. A 40GHz Planar Array Antenna Using Hybrid Coupling[J]. Perspectives on Radio Astronomy-Technologies for Large Antenna Arrays, 1999.
    [49] Veselago V. G. The Electrodynamics of Substances with Simultaneously Negative Value ofεandμ[J]. Soviet Physics, 1968, 10(4): 509~514.
    [50] Seddon N., Bearpark T. Observation of the Inverse Doppler Effect[J]. Science, 2003, 302(5650): 1537~1540.
    [51] Yuan Y., Feng Y. J., Jiang T. Observation of reverse Doppler effect in a composite right/left-handed transmission line[Z]. 2011, 1~4.
    [52] Hansen R. C. Negative Refraction Without Negative Index[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(2): 402~404.
    [53] Derov J. S., Turchinetz B. W., Crisman E. E., et al. Free space measurements of negative refraction with varying angles of incidence[J]. Microwave and Wireless Components Letters, IEEE, 2005, 15(9): 567~569.
    [54] Nicholson K. J., Rowe W. S. T., Ghorbani K. Design and demonstration of a metamaterial with electronically tunable negative refraction across the C microwave band[J]. Microwave, Antennas & Propagation, IET, 2011, 5(6): 631~636.
    [55] Zou D. Y., Jiang A. M., Wu R. X. Ferromagnetic metamaterial with tunable negative index of refraction[J]. Journal of Applied Physics, 2010, 107(1): 03507~013507-4.
    [56] Chen H. S., Ran L. X., Jiang H. F., et al. Negative refraction of a combined double S-shaped metamaterial[J]. Applied Physics Letters, 2005, 86(15): 151909~151909-3.
    [57] Marques R., Martin F., Sorolla M. Metamaterials with negative parameter: theory, design, and Microwave Applications[M]. Hoboken: Wiley, 2008.
    [58] Pendry J. B., Holden A. J., Stewart W. J. Extremely low frequency plasmons in mesostructures[J]. Physical Review Letters, 1996, 76(25): 4773~4776.
    [59] Pendry J. B., Holden A. J., Robbins D. J., et al. Low frequency plasmons in thin-wire structures[J]. Journal of Physics-Condensed Matter, 1998, 10: 4785~4809.
    [60] Pendry J. B., Holden A. J., Robbins D. J. Magnetism from conductors and enhanced nonlinear phenomena[J]. IEEE Transactions on Microwave Theory and Techniques, 1999, 47(11): 2075~2095.
    [61] Smith D. R., Pendry J. B., Wiltshire M. C. K. Metamaterials and negative refractive index[J]. Science, 2004, 305: 788~792.
    [62] Smith D. R., Vier D. C. Design of metamaterials with negative refractive index[J]. Proceedings of SPIE, 2004, 5359: 52.
    [63] Yen T. J., Padilla W. J., Fang N., et al. Terahertz magnetic response from artificial materials[J]. Science, 2004, 303: 1494~1496.
    [64]吴群,孟繁义,傅佳辉.左手材料理论及其应用[M].北京:国防工业出版社, 2010.
    [65] Chen X., Ma H. F., Zou X. Y., et al. Three-dimensional broadband and high-directivity lens antenna made of metamaterials[J]. Journal of Applied Physics, 2011, 110(4): 044904~044904-8.
    [66] Freire M. J., Marques R., Baena J. D. 3D sub-diffraction imaging by a planar metamaterial lens[Z]. 2005, 2.
    [67] Yang Y., Zhao X. M. Beam-scanning antennas based on metamaterial planar lens antennas[Z]. 2011, 1105~1108.
    [68] Chen X., Ma H. F., Yang X. M., et al. X-band high directivity lens antenna realized by gradient index metamaterials[Z]. 2009, 793~797.
    [69] Casaletti M., Caminita F., Maci S. Lens effect in parallel plate waveguide realized by using a metamaterial surface[Z]. 2010, 1~3.
    [70] Islam R., Elek F., Eleftheriades G. V. Coupled-line metamaterial coupler having co-directional phase but contra-directional power flow[J]. Electronics Letters, 2004, 40(5): 315~317.
    [71] Nguyen H. V., Caloz C. Generalized coupled-mode approach of metamaterial coupled-line couplers: coupling theory, phenomenological explanation, and experimental demonstration[J]. Microwave Theory and Techniques, IEEE Transactions on, 2007, 55(5): 1029~1039.
    [72] Kim T.-G., Lee B. Metamaterial-based wideband rat-race hybrid coupler using slow wave lines[J]. Microwaves, Antennas & Propagation, IET, 2010, 4(6): 717~721.
    [73] Chi P. L., Itoh T. Miniaturized dual-band directional couplers using composite right/left-handed transmission structures and their applications in beam pattern diversity systems[J]. IEEE Transactions on Microwave Theory and Techniques, 2009, 57(5): 1207~1215.
    [74] Tseng C. H., Chang C. L. Improvement of return loss bandwidth of balanced amplifier using metamaterial-based quadrature power splitters[J]. Microwave and Wireless Components Letters, IEEE, 2008, 18(4): 269~271.
    [75] Abdalla M. A. Y., Khoman P., Eleftheriades G. V. A tunable metamaterial phase-shifter structure based on a 0.13μm CMOS active inductor[Z]. 2006, 325~328.
    [76] Antoniades M. A., Eleftheriades G. V. Compact linear lead/lag metamaterial phase shifters for broadband applications[J]. Antennas and Wireless Propagation Letters, IEEE, 2003, 2(1): 103~106.
    [77] Abdalla M. A. Y., Khoman P., Eleftheriades G. V. A metamaterial-based passive MMIC tunable phase shifter[Z]. 2010, 1~4.
    [78] Siso G., Gil M., Bonache J., et al. Application of metamaterial transmission lines to design of quadrature phase shifters[J]. Electronics Letters, 2007, 43(20): 1098~1100.
    [79] Serebryakova E., Kolmakova I., Kholodnyak D., et al. Broadband digital phase shifters using metamaterial transmission lines with negative dispersion[Z]. 2006, 679~682.
    [80] Choi J., Seo C. Novel low phase noise vco using high-Q metamaterial transmission line based on complementary spiral resonators[Z]. 2009, 1501~1504.
    [81] Jelinek L., Machac J. An FET-based unit cell for an active magnetic metamaterial[J]. Antennas and Wireless Propagation Letters, IEEE, 2011, 10: 927~930.
    [82] Dupuy A., Leong K. M. K. H., Itoh T. Power combining tunnel diode oscillators using metamaterial transmission line at infinite wavelength frequency[Z]. 2006, 751~754.
    [83] Hwang C. G., Myung N. H. Novel methods for phase noise reduction and harmonic suppression in a planar oscillator circuit based on split ring resonators[Z]. 2006, 619~622.
    [84] Choi J., Seo C. Dual-band VCO using composite right/left-handed transmission line and tunable negative resistance based on pin diode[Z]. 2008, 241~244.
    [85] Dong Y. D., Itoh T. Composite right/left-handed substrate integrated waveguide and half mode substrate integrated waveguide leaky-wave structure[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(3): 767~775.
    [86] Basharin A. A., Balabukha N. P., Semenenko V. N. The radiation from a planar metamaterial waveguide[J]. Journal of Applied Physics, 2010, 107(11): 113301~113301-5.
    [87] Mao S. G., Chen S. L., Huang C. W. Effective electromagnetic parameters of novel distributed left-handed microstrip lines[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(4): 1515~1521.
    [88] Arnedo I., Illescas J., Flores M., et al. Forward and backward leaky wave radiation in split-ring-resonator-based metamaterials[J]. Microwave, Antennas & Propagation, IET, 2007, 1(1): 65~68.
    [89] B.I.Wu, Lu J., J.A.Kong, et al. Left-handed metamaterial design for Cerenkov radiation[J]. Journal of Applied Physics, 2007, 102(11): 114907~114907-5.
    [90] Vrba D., Polivka M. Improvement of the Radiation Efficiency of the Metamaterial Zero-Order Resonator Antenna[Z]. 2008, 1~3.
    [91] Ochetan A. B., Lojewski G. Metamaterial leaky-wave and resonant type antennas[Z]. 2010, 57~60.
    [92] Alu A., Bilotti F., Engheta N., et al. Theory and Simulations of a Conformal Omni-Directional Subwavelength Metamaterial Leaky-Wave Antenna[J]. IEEE Transactions on Antennas and Propagation, 2007, 55(6): 1698~1708.
    [93] Sungjoon L., Caloz C., Itoh T. Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth[J]. IEEE Transactions on Microwave Theory and Techniques, 2005, 53(1): 161~173.
    [94] Casares-Miranda F. P., Camacho-Penalosa C., Caloz C. High-gain active composite right/left-handed leaky-wave antenna[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(8): 2292~2300.
    [95] Jackson D. R., Burghignoli P., Lovat G., et al. The fundamental physics of directive beaming at microwave and optical frequencies and the role of leaky waves[J]. Proceedings of the IEEE, 2011, 99(10): 1780~1805.
    [96] Otto S., Rennings A., Solbach K., et al. Transmission line modeling and asymptotic formulas for periodic leaky-wave antennas scanning through broadside[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(10): 3695~3709.
    [97] Fleisch D. A. A student's guide to Maxwell's equations[M]. Cambridge: Cambridge University Press, 2008.
    [98] Huray P. G. Maxwell's equations[M]. Hoboken: John Wiley & Sons. Inc, 2010.
    [99] Stratton J. A.电磁理论[M].北京:北京航空学院出版社, 1986.
    [100] Harrington R. F. Time-Harmonic Electromagnetic Fields[M]. New York: McGraw-Hill, 1961.
    [101] Collin R. E.导波场论[M].上海:科学技术出版社, 1966.
    [102] R.F.Harrington. Field Computation by Moment Methods[M]. The MacmillanCompany, 1968.
    [103] K.S.Yee. Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media[J]. IEEE Transactions on Antennas and Propagation, 1966, 14(3): 302~307.
    [104]王秉中.计算电磁学[M].北京:科学出版社, 2002.
    [105]王长清,祝西里.电磁场计算中的时域有限差分法[M].北京:北京大学出版社, 1994.
    [106] Taflove A. Computational Electrodynamics: The Finite Difference Time Domain Method[M]. Norwood: Artech House, 1995.
    [107]高本庆.时域有限差分法[M].北京:国防工业出版社, 1995.
    [108] Taflove A. Review of the formulation and applications of the finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures[J]. Wave Motion, 1998, 10: 547~582.
    [109] R.F.Harrington. Matrix methods for field problems[C]. Proceedings of IEEE, 1967: 136~140.
    [110]吕英华.计算电磁学的数值方法[M].北京:清华大学出版社, 2006.
    [111] Weiland T. A Discretization Method for the Solution of Maxwell's Equations for Six-Component Fields[J]. Electronics and Communication, 1977, 31(3): 116~120.
    [112]王长清.现代计算电磁学基础[M].北京:北京大学出版社, 2005.
    [113] Collin R. E.微波工程基础[M].北京:人民邮电出版社, 1981.
    [114]葛德彪,闫玉波.电磁波时域有限差分方法[M].西安:西安电子科技大学出版社, 2005.
    [115]吴微微.一种新型的波导馈电微带贴片天线阵的研究与设计[D].湖南长沙:国防科技大学, 2005.
    [116]尹家贤.时域有限差分法在天线计算中的理论和应用研究[D].湖南长沙:国防科技大学, 2003.
    [117] Kaminow I. P., Stegen R. J. Waveguide Slot Array Design[J]. Technical Memo, 1954: 194.
    [118] Rengaraan S. R. Characteristics of a longitudinal/transverse coupling slot in crossed rectangular waveguides[J]. IEEE Transactions on Microwave Theory and Techniques, 1989, 37: 1171~1177.
    [119]吴微微,尹家贤,袁乃昌. X波段微带天线阵的新型高效馈电方式研究[J].电波科学学报, 2007, 22(5): 785~789.
    [120]张钧,刘克诚,张贤铎, et al.微带天线理论与工程[M]. 1988.
    [121] Hua G., Hong W., Sun X. H., et al. Design of an omnidirectional line array with SIW longitudinal slot antenna[Z]. 2008, 3, 1114~1117.
    [122] Liu B., Hong W., Kuai Z. Q., et al. Substrate Integrated Waveguide(SIW) Monopulse Slot Antenna Array[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(1): 275~279.
    [123] Cai B. X., Li X. G., Dong L. X. SIW U shape dual-polarized slot antenna[Z]. 2010, 9, V9-407~V9-409.
    [124] Navarro-Mendez D. V., Carrera-Suarez L. F., Baquero-Escudero M., et al. Two layer slot-antenna array in SIW technology[Z]. 2010, 1492~1495.
    [125] Liu J., Jackson D. R., Long Y. Substrate Integrated Waveguide (SIW) Leaky-Wave Antenna with Transverse Slots[J]. IEEE Transactions on Antennasand Propagation, 2011, pp(99): 1.
    [126] Xu J. F., Hong W., Chen P., et al. Design and implementation of low sidelobe substrate integrated waveguide longitudinal slot array antennas[J]. Microwave, Antennas & Propagation, IET, 2009, 3(5): 790~797.
    [127] Luo G. Q., Hu Z. F., Liang Y. P., et al. Development of low profile cavity backed crossed slot antennas for planar integration[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(10): 2972~2979.
    [128] Chen Y. J., Hong W., Wu K. Millimeter-wave half mode substrate integrated waveguide frequency scanning antenna with quadri-polarization[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(6): 1848~1855.
    [129] Awida M. H., Suleiman S. H., Fathy A. E. Development of a substrate-integrated Ku-band cavity-backed microstrip patch sub-array of dual linear/circular polarization for DBS applications[J]. Radio and Wireless Symposium (RWS), 2010 IEEE, 2010: 92~95.
    [130] Song L., Elsherbini A., Yang S. N., et al. Experimental development of a circularly polarized antipodal tapered slot antenna using SIW feed printed on thick substrate[J]. Antennas and Propagation Society International Symposium, 2007 IEEE, 2007: 1533~1536.
    [131] Chen Z. J., Hong W., Kuai Z. Q., et al. Circularly polarized slot array antenna based on substrate integrated waveguide[Z]. 2008, 3, 1066~1069.
    [132] Chen P., Hong W., Kuai Z. Q., et al. A Substrate Integrated Waveguide Circular Polarized Slot Radiator and Its Linear Array[J]. Antennas and Wireless Propagation Letters,IEEE, 2009, 8: 120~123.
    [133] Kim D. Y., Lee J. W., Lee T. K., et al. Design of SIW cavity-backed circular-polarized antennas using two different feeding transitions[J]. IEEE Transactions on Antennas and Propagation, 2011, 59(4): 1398~1403.
    [134] Cheng Y. J., Hong W., Wu K. Multimode substrate integrated waveguide H-plane monopulse feed[J]. Electronics Letters, 2008, 44(2): 78~79.
    [135] Wang H., Fang D. G., Zhang B., et al. Dielectric Loaded Substrate Integrated Waveguide(SIW) H-plane Horn Antennas[J]. IEEE Transactions on Antennas and Propagation, 2010, 58(3): 640~647.
    [136] Yeh C. I., Yang D. H., Liu T. H., et al. MMIC compatibility study of SIW H-plane horn antenna[Z]. 2010, 933~936.
    [137]滕飞.基片集成波导缝隙阵天线设计[D].南京:东南大学, 2007.
    [138] Barton D. K., Leonov S. A. Radar Technology Encyclopedia[M]. Boston London: Artech House, 1997.
    [139] Brookner E. Aspects of modern radar[M]. Boston: Artech House, 1988.
    [140] Brookner E. Radar Technology[M]. Boston: Artech House, 1977.
    [141] Meikle H. Modern radar systems[M]. Norwood: Artech House, 2008.
    [142] Carpentier M. H. Principles of modern radar systems[M]. Boston.London, 1988.
    [143] Fitch J. P., Burrus C. S. Synthetic aperture radar[M]. Verlag: Springer, 1988.
    [144] Curlander J. C., McDonough R. N. Synthetic aperture radar[M]. Hoboken.San Francisco: Wiley, 1991.
    [145] Franceschetti G., Lanari R. Synthetic aperture radar processing[M]. Boca Raton: CRC Press, 1999.
    [146]梁仙灵.双极化微带天线阵与超宽带、多频段印刷天线[D].上海:上海大学, 2006.
    [147]孙兴华.基片集成波导缝隙阵天线设计[D].南京:东南大学, 2005.
    [148]颜力.基片集成波导传输特性及阵列天线的理论与实验研究[D].南京:东南大学, 2005.
    [149]杨钊.新型超薄波导缝隙阵研究[D].湖南长沙:国防科技大学, 2006.
    [150]张世鸿,陈良,徐彬彬, et al.左手材料研究进展及应用前景[J].功能材料, 2006, 37: 1~5.
    [151] Caloz C., Itoh T. Electromagnetic metamaterials:transmission lin theory and microwave applications[M]. New Jersey: John Wiley&Sons, Inc., 2006.
    [152] Eleftheriades G. V., Balmain K. G. Negative-refraction metamaterials: fundamental principles and applications[M]. New Jersey: John Wiley&Sons, Inc., 2005.
    [153] Engheta N., Ziolkowski R. W. Metamaterials: physics and engineering explorations[M]. New Jersey, 2006:438.
    [154] Cui T. J., Smith D. R., Liu R. Metamaterials: theory, design, and applications[M]. New York: Springer, 2009.
    [155]杜秉初.电子光学[M].清华大学出版社, 2002.
    [156] Nicolson A. M., Ross G. F. Measurement of the intrinsic properties of materials by time domain techniques[J]. IEEE Transactions on Instrumentation and Measurement, Nov. 1970, 19(4): 377~382.
    [157] Weir W. B. Automatic measurement of complex dielectric constant and permeability at microwave frequencies[J]. Proceedings of the IEEE, Jan. 1974, 62(1): 33~36.
    [158] Wu W. W., Huang J. J., Yuan N. C. A novel Ku band left-handed media antenna radome[J]. Microwave and optical technology letters, 2009, 54(4): 1043~1046.
    [159]吴微微,黄敬健,胡俊伟, et al. Ku波段新型左手材料平面天线罩[J].宇航学报, 2009, 30(5): 1953~1956.
    [160] Ziolkowski R. Z. Design, Fabrication, and Testing of Double Negative Metamaterials[J]. IEEE Transactions on Antennas and Propagation, 2003, 51(7): 1516~1529.
    [161] Erentok A., Luljak P. L., Ziolkowski R. W. Characterization of a Volumetric Metamaterial Realization of an Artificial Magnetic Conductor for Antenna Applications[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(1): 160~172.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700