用户名: 密码: 验证码:
双频段共孔径微带阵列天线研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双频、双极化微带天线在现代通信、微波成像、合成口径雷达和电子对抗等许多系统中具有广泛的应用,是国民经济和军事应用的迫切需求,也是当前天线领域的研究热点之一。论文对双频、双极化微带天线阵元及阵列进行了较深入研究,并对天线的理论及计算方法、优化方法进行了详细分析。提出了多种创新性设计方案,并完成了天线制作及实验测试,结果表明,所设计的天线满足实际应用要求。论文主要包括以下六方面内容:
     第一,采用腔体理论与传输线理论相结合对微带贴片天线进行分析,并对该方法进行了修正,给出了求解矩形及方形微带贴片天线尺寸、导纳及方向图的方法。所得结果对微带天线的工程设计具有参考价值。
     第二,辛时域有限差分方法(SFDTD)研究。对SFDTD方法的差分格式、吸收边界及稳定性等进行分析,并用SFDTD法研究了微带贴片天线参数对双频、双极化单元天线性能(谐振频率、回波损耗)的影响。
     第三,粒子群优化算法(PSO)研究。对PSO进行改进并对收敛区域进行讨论。将PSO应用到天线及阵列参数优化及方向图综合。
     第四,对双频双极化阵元进行研究。分析了天线结构尺寸及介质基板等对天线性能的影响。提出在微带单元上悬置寄生金属贴片来提高天线增益及降低单元之间互藕。并将这一结构应用于阵列天线,有效地解决盲角问题。采用枝节技术实现天线的宽带工作模式。
     第五,基于透波增强特性天线阵元设计。提出一款基于透波增强机制的X波段新颖天线阵元,研究了天线物理参数对天线性能的影响,并对所设计天线进行测量,结果表明:天线阵元增益提高了6dB,E面半功率波束宽度减小126度,前后比增加到25dB。
     第六,双频、双极化天线阵列设计。提出一款S/X波段阵列天线,实现1:3频比,实测阻抗带宽大于9%,极化隔离均优于25dB,交叉极化电平低于-27dB,测试结果表明某些指标优于国内水平。
Dual-band dual-polarized microstrip antennas are widely applied in modern communications, microwave imaging, synthetic aperture radar, electronic confrontation and other fields. The application of them to national economic and military purposes is in urgent demand. they are also a hot topic in the field of antenna research. In this paper, the double-frequency microstrip antenna and array is studied, calculation and optimization methods are analyzed in detail. A variety of novel structures of antennas is given. The results show that the design of antennas is satisfactory. Six main subjects included are:
     First, microstrip antenna are analyzed using the modified theory of cavities, the formula of admittance, size and radiation pattern of microstrip antenna about rectangle and square structures is given. The results have a reference value for the engineering design of the microstrip antenna.
     Secondly, the symplectic finite difference time domain method (SFDTD) is studied. The scheme, absorbing boundary and stability are analyzed, the resonant frequency, reflection losses of double-frequency dual-polarized antenna are studied using SFDTD.
     Third, particle swarm optimization (PSO) algorithm is studied. To improve PSO and to convergence region are discussed. PSO is applied to antenna array parameter optimization and antenna pattern comprehension.
     Fourth, double-frequency double-polarization antenna is studied. The influence of size and medium on the performance of the antenna is analyzed. We put a parasitic strip on the major unit to improve antenna gain and reduce mutual coupling. And this structure will be used in array antenna to solve the problem of blind angle. We use matching structure to enhance bandwidth of the antenna.
     Fifth, Based on enhanced transmission character, a novel x-band antenna is designed. The influence of physical parameters on the performance of antenna is studied. The measurements results show that:the antenna gained6dB enhancement, E plane half power beam width reduced126degrees, the front-to-back ratio of the antenna radiation pattern increased to25dB.
     Sixth,A double-frequency double-polarized S/X band antenna array is designed. The antenna array has a frequency ratio of1:3, the impedance bandwidth is greater than9%, polarization isolation is better than25dB, cross polarization level lower than-27dB, and some parameters were superior to the domestic level.
引文
[1]J.R.James and P.S.Hall. Handbook of microstrip antennas [M].Peter Peregrinus,London,1989.
    [2]D.M.Pozar,and D.H.Schaubert.Microstrip antenna[M].Editors,IEEE Press,1995.
    [3]黄继学.星载合成孔径雷达天线的现状与发展[J].上海航天,2001(6):50-57.
    [4]Pokuls R, et al. Dual-frequency and dual-polarization microstrip antennas for SAR application[J]. IEEE Trans Antennas and Propagat,1998,46(9):1289-1296.
    [5]Shafai L L, Chamma W A, Barakat M, et al. Dual-band dual-polarized perforated microstrip antennas for SAR application[J]. IEEE TransAntennas and Propagat, 2000,48 (1):58-66.
    [6]PozarD M, Targonski S D. A shared-aperture dual-band dual-polarized microstrip array[J]. IEEE Trans Antenna and Propagat,2001,49 (2):150-157.
    [8]Li Q, Shen Z, Teo P T. Inverted Micorstrip-fed cavitybacked slot antennas [J]. IEEE Antennas and Wireless Propagation Letters,2002,1:98-101.
    [9]Lee Gil-Young, et al. Size reduction of microstrip-fed slot antenna by inductive and capacitive loading [C]. IEEE Antennas and Propagation Society International Symposium, Columbus, OH,2003:312-315.
    [10]K.S.Kona,M.Manteghi,Y.Rahmat-Samii. A Nevel Feed System for Soil Moisture Spaceborne Radar:Dual-Frequency Dual-Polarized Stacked Patch Microstrip Array[J].IEEE Antennas and Propagation Soc.Int.Symp.,June 2004,4:4368-4371.
    [11]C.A.巴拉尼斯,于志远,关秉田,江贤祚译.天线理论—分析与设计[M].北京:电子工业出版社,1988.
    [12]K.Woelders,J.Granholrn.Cross-Polarization and Sidelobe Suppression in Dual Linear Polarization Antennas Arrays [J].IEEE Trans.Antennsa Propagation, August 1994,45(12):1727-1113.
    [13]R.Hallond,J.Williams.Total Filed Versus Scattered Field Finite Difference Codes:A Comparative Assesment[J].IEEE Trans.,1983, NS-30:4583-4588.
    [14]Warren L. Stutzman, Gary A. Thiele著,朱守正,安同一译,天线理论与设计(第二版),人民邮电出版社,2006.
    [15]张钧,刘克诚,张贤铎等.微带天线理论与工程.一版.北京:国防工业出版社,1988.
    [16]林昌禄,宋锡明.圆极化天线.第一版.北京:人民邮电出版社.1986.
    [17]T.Hirono, W.W.Lui, K.Yokoyanma. Time-domain simulation of electromagnetic field using a symplectic integrator [J]. IEEE Microwave and Guide Wave Letters.,1997,7(9):279-281.
    [18]T.Hirono, W.W.Lui, K.Yokoyanma, S.seki. Stability and numerical dispersion of symplectic fourth-order time-domain schemes for optical field simulation [J] Journal of Lightwave Technology.,1998,16(10):1915-1920.
    [19]Karl S. Kunz, Raymond J. Luebbers. The Finite Difference Time Domain Method for Electromagnetics[M]. CRC Press:Boca Raton, FL,1993.
    [20]K.S.Yee.Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media[J]. IEEE Trans. Antennas and Propagation, 1966,14:302-307.
    [21]Allen Taflove. Advances in Computational Electrodynamics:The Finite-Difference Time-Domain Method[M]. Boston, MA:Artech House,1998.
    [22]葛德彪,闫玉波.电磁波时域有限差分方法[M].西安:西安电子科技大学出版社,2001.
    [23]高本庆,时域有限差分法[M].北京:国防工业出版社,1995.
    [24]J.P. Bergener, A perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of computational Physics.,1994,114:185-200.
    [25]D. S. Katzetal, Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FDTD meshes[J].IEEE Microwave and Guided wave Letters.,1994,4(8):268-270.
    [26]J.P.Bergener,Three-dimensional perfectly matched layer for the absorption of electromagnetic waves[J]. Journal of Computational Physics.,1996,127: 363-379.
    [27]T. Hirono, W. Lui, S. Seki, Y. Yoshikuni. A three-dimensional fourth-order finite-difference time-domain scheme using a symplectic integrator propagator[J]. IEEE Transactions on Microwave Theory and Techniques.,2001,49:1640-1648.
    [28]T. Deveze, L. Beaulieu, andW. Tabbara.A fourth-order scheme for the FDTD algorithm applied to Maxwell's equations[C]. IEEE Antennas and Propagation Society International Symposium, AP-S Int. Symp.,1992,1:346-349.
    [29]C. W. Manry, S. L. Broschat, and J. B. Schneider.Higher-order FDTD methods for large problems[J].J. Appl. Comp. Electromagn. Soc.,1995.10:17-29.
    [30]H. Yoshida. Construction of higher order symplectic integrators[J]. Phys.Lett., 1990, A150:262-268.
    [31]M. Suzuki.General theory of higher-order decomposition of exponential operators and symplectic integrators[J]. Phys. Lett.,1992, A 165:387-395.
    [32]J. M. Sanz-Serna.Runge-Kutta schemes for Hamiltonian systems[J]. Bit,1988, 28:877-883.
    [33]K. L. Shlager, J. G. Moloney, S. L. Ray, and A. F. Peterson.Relative accuracy of several finite-difference time-domain method in two and three dimensions[J]. IEEE Trans. Antennas Propag., Dec.1993,41(12):1732-1737.
    [34]E.Forest, R.D.Ruth. Fourth-order symplectic integration [J].Physica D.,1990,43:105-117.
    [35]G.Mur.Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations[J]. IEEE Trans. Electromagn. Compt.,1981, EMC-23 (4):377-382.
    [36]Mehmet Kusaf, Abdullah Y. Oztoprak, and Daoud S. Optimized Exponential Operator Coefficients for Symplectic FDTD Method[J]. IEEE Microwave and Wireless Components Letters, February.2005,15(2):86-88.
    [37]Ikuo Saitoh, Yoshio Suzuki, and Norio Takahashi.The Symplectic Finite Difference Time Domain Method[J]. IEEE Transactions on Magentics, March.2002,38(2):3251-3254.
    [38]Ikuo Saitoh, and Norio Takahashi.Stability of Symplectic Finite-Difference Time-Domain Methods[J]. IEEE Transactions on Microwave Theory and Techniques, September.2001,49(9):665-668.
    [39]R. Rieben, D. White, andG. Rodrigue. High-Order Symplectic Integration Methods for Finite Element Solutions to Time Dependent Maxwell Equations[J].IEEE Transactions on Antennas and Propagation, August.2004, 52(8):2190-2195.
    [40]H. Yoshi da. Symplectic integrators for Hamiltonian-systems-Basic theory[J]. in Proc. IAU Symposia (152), The Netherlands,1992:407-411.
    [41]J. Candy andW. Rozmus.A symplectic integration algorithm for seperable Hamiltonian functions[J]. J. Comput. Phys.,1991,92:230-256.
    [42]T. Hirono, W. W. Lui, and K. Yokoyama.Time-domain simulation of electromagnetic fieldusing a symplectic integrator[J]. IEEE Microwave Guided Wave Lett.,1997.7(9):279-281.
    [43]G. Rodrigue and D. White.A vector finite element time-domain methodfor solving Maxwell's equations on unstructuredhe xahedral grids[J]. SIAMJ. Sci. Comp.,2001.23(3):683-706.
    [44]P. Thoma.Numerical stability of finite difference time domain methods[J]. IEEE Trans. Magn., Sept.1998,34:2740-2743.
    [45]A.Vallecchi and GGentili.Design of dual-polarized series-fed microstrip arrys with low losses and high polarization purity[J].IEEE Trans.Antennas Propagat., May 2005,53:1791-1798.
    [46]J. Kennedy and R. Eberhart.Particle swarm optimization[J], in Proc.1995 Int. Conf.Neural Networks, vol. IV, Perth, Australia,1995:1942-1948.
    [47]J. Robinson and Y. Rahmat-Samii. Particle swarm optimization in electromagnetics[J].IEEE Trans. Antennas Propagat., Feb 2004,52:397-407.
    [48]N. Jin and Y. Rahmat-Samii.Parallel particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithm for multiband and wide-band patch antenna designs[J]. IEEE Trans. Antennas Propagat., Nov 2005,53: 3459-3468.
    [49]F. Yang, X. X. Zhang, X. Ye, and Y. Rahmat-Samii.Wide-band E-shaped patch antennas for wireless communications[J]. IEEE Trans. Antennas Propagat., Jul 2001,49:1094-1100.
    [50]Y. Ge, K. P. Esselle, and T. S. Bird. E-shaped patch antennas for high-speed wireless networks[J]. IEEE Trans. Antennas Propagat., Dec 2004,52:3213-3219.
    [51]Nanbao Jin, Yahya Rahmat-Samii.Parallel Particle Swarm Optimization and Finite Difference Time Domain(PSO/FDTD) Algorithm for Multiband and Wide-Band Patch Antenna Designs[J]. IEEE Transactions on Antennas and Propagation,2005,53(11):3459-3468.
    [52]M.Khodier and C.Christodoulou. Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization[J].IEEE Trans.Antennas Propagat., Aug.2005,53(8):2674-2679.
    [53]M.Himdi and J.Daniel.Synthesis of slot coupled loaded patch antennas using a genetic algorithm through various examples[J]. IEEE Antennsa Propagat. Soc.Int.Symp.Dig., June 1997,3:1700-1703.
    [54]Y.Ge,K.P.Esselle,and T.S.Bird.E-shaped patch antennas for high speed wireless networks[J].IEEE Trans.Antennas Propagat.Soc.Int.Symp.Dig., july 2005, 1A:466-469.
    [55]D.Nashaat,H.A.Elsadek,H.Ghali.Dual-band reduced size PIFA antenna with U-slot for Bluetooth and WLAN applications[J]. IEEE Antennas Propagat. Symp,Columbus,OH,2003,2:962-965.
    [56]N.Kojima,K.Hariu and I.Chiba.Low side-lobe pattern synthesis using projection method with mutual coupling compensation[J].Proceeding of IEEE International Symposium on Phased Array System and Technology,Oct.2003:559-564.
    [57]L.I.Vaskelainen.Iterative least-squares synthesis methods for conformal array antennas with optimized polarization and frequency properties [J].IEEE Transactions on Antennas and Propagation,1997,45(7):1179-1185.
    [58]Y.C.Jiao,W.Y.Wei,L.W.Huang,et al.A new low-side-lobe pattern synthesis technique for conformal arrays[J].IEEE Transactions on Antennas and Propagation,1993,41 (6):824-831.
    [59]D.S.Weile and E.Michielssen.Genetic algorithm optimization applied to electromagnetics:a review[J].IEEE Transactions on Antennas and Propagation,March 1997,45(3):343-353.
    [60]R.C.Eberhart and J.Kennedy.A new optimizer using particle swarm theory[J].Proceedings of the 6th International Symposium on Micromachine and Human Science,Nagoya, Japan, Oct. 1995:39-43.
    [61]Xufeng Liu,Yongchang Jiao,Fushun Zhang and Yibo Chen,Design of a conformal microstrip antenna array mounted on an irregular surface[C]. Seventeenth Asia-Pacific Microwave Conference,China,2005:1518-1520.
    [62]D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, High-Impedance Electromagnetic surfaces with forbidden frequency band[J]. IEEE Trans. Microwave Theor. Tech.1999,47(11):2059-2074.
    [63]D. Sievenpiper, High-Impedance Electromagnetic surfaces[D]. Ph.D. dissertation. (Univ. California, Los Angeles, CA,1999).
    [64]R. Coccioli, F. R. Yang, K. P. Ma, and T. Itoh. Aperture-coupled patch antenna on UC-PBG substrate[J]. IEEE Trans. Microwave Theor. Tech.1999,47(11): 2123-2130.
    [65]F. Yang, and Y. Rahmat-Samii. Microstrip antennas integrated with electromagnetic band-gap (EBG) structures:A low mutual coupling design for array application[J]. IEEE Trans. Antennas and Propag.2003,51(10):2939-2949.
    [66]T. H. Liu, W. X. Zhang, M. Zhang, and K. F. Tsang.Low profile spiral antenna with PBG substrate[J]. Electron. Lett.2000,36(9):779-780.
    [67]L. Li, X. J. Dang, B. Li, and C. H. Liang, Analysis and design of waveguide slot antenna array integrated with electromagnetic band-gap structure[J]. IEEE Antennas and Wireless Propagat. Lett.2006,5:111-115.
    [68]H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, Beaming of light from a sub wavelength aperture[J].2002,Science 297:820-822.
    [69]A.F.Sheta,A.Mohra and S.F.Mahmoud,Multi-band operation of a compact H-shaped microstrip antenna,Microwave and Optical Technology Letters,2002, 35(5):363-367.
    [70]C. Wang, C. Du, Y. Lv, and X. Luo, Surface electromagnetic wave excitation and diffraction by subwavelength slit with periodically patterned metallic grooves[J]. Opt.2006,Express 14(12):5671-5681.
    [71]S. S. Akarca-Biyikli, I. Bulu, and E. Ozbay, Enhanced transmission of microwave radiation in onedimensional metallic gratings with subwavelength aperture[J]. Appl. Phys. Lett.2004,85:1098-1100.
    [72]M. J. Lockyear, A. P. Hibbins, J. R. Sambles, and C. R. Lawrence, Surface topography induced enhanced transmission and directivity of microwave radiation through a subwavelength circular metal aperture[J]. Appl. Phys. Lett. 2004,84:2040-2042.
    [73]H. Caglayan, I. Bulu, and E. Ozbay, Plasmonic structures with extraordinary transmission and highly directional beaming properties[J]. Microwave and Opt. Technol. lett.2006,48(12):2491-2496.
    [74]M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodriguez-Seco, E. Perea, F. Falcone, and M. Sorolla, Very low profile "Bull's Eye" feeder antenna[J]. IEEE Antennas Wireless Propag. Lett.2005,4:365-368.
    [75]M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodriguez-Seco, E. Perea, F. Falcone, and M. Sorolla, Dual-Band Low-Profile Corrugated Feeder Antenna[J]. IEEE Trans. Antennas Propag.2006,54(2):340-350.
    [76]C. Huang, C. Du, and X. Luo, A waveguide slit array antenna fabricated with subwavelength periodic grooves[J]. Appl. Phys. Lett.2007,91:143512.
    [77]D.M. Pozar.Microstrip antenna aperture-coupled to a microstrip line[J]. Electronics Letters, Jan.1985.21(2):49-50.
    [78]T.M.Au,K.M.Luk.Effect of parasitic element on the characteristics of microstrip antenna[J].IEEE Trans.Antennas Propagat.,1991,39:1247-1251.
    [79]Y.J.Wang,C.K.Lee,W.J.Koh.Single-patch and single layer square microstrip antenna with 67.5% bandwith[J].IEEE Proceeding Microwave on Antennas Progatation,2001,148(6)
    [80]J.S.Chen.Dual-frequency annular-ring slot antennas fed by CPW feed and microstrip line feed[J].IEEE Transaction on Antennas and Propagation.2005, 53(1):569-571.
    [81]T.W. Ebbesen, H.J. Lezec, T. Thio, and P.A. Wollf. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, Feb.1998,391:667-669.
    [82]秦顺友,杨可忠,陈辉.不同极化天线增益测量技术.电子测量与仪器学报.2003(1):7-11.
    [83]F.J. Garcia-Vidal, H.J. Lezec, T.W. Ebbesen, and L. Martin-Moreno. Multiple paths to enhance optical transmission through a single subwavelength slit[J]. Phys. Rev. Lett, May.2003,90:213901-1-213901-4.
    [84]M.J. Lockyear, A.P. Hibbins, J.R. Sambles, and C.R. Lawrence.Surface-topography-induced enhanced transmission and directivity of microwave radiation through a sub-wavelength circular metal aperture[J]. Appl. Phys. Lett., May.2004,84:2040-2042.
    [85]J.Christensen, L. Martin-Moreno, and F. J. Garcia-Vidal. Extraordinary grating-coupled microwave transmission through a sub-wavelength annular aperture[J]. Optics Express, Feb.2005,13:1666-1671.
    [86]M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodriguez-Seco, E. Perea, F. Falcone, and M. Sorolla. Dual-band low-profile corrugated feeder antenna[J]. IEEE Trans. Antennas Propag., Feb.2006,54,(2):340-350.
    [87]H.M.Hsiao,J.W.Wu and Y.D.Wang.Novel dual-broadband rectangular-slot antenna for 2.4/5GHz wireless communication[J].Microwave and Optical Technology Letters.2005,46:197-201.
    [88]林昌禄.天线测量[M].成都电讯工程学院,1988.
    [89]毛乃宏,俱新德.天线测量手册[M].国防工业出版社,1987.
    [90]M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodriguez-Seco, E. Perea, F. Falcone, and M. Sorolla. Very low profile "Bull's Eye" feeder antenna[J]. IEEE Antennas Wireless Propag. Lett., Apr.2005,4:365-368.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700