用户名: 密码: 验证码:
湘西盲高原鳅遗传多样性与生理学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湘西盲高原鳅(Triplophysa xiangxiensis)属鲤形目(Cypriniformes)、鳅科(Cobitidae)、高原鳅属(Triplophysa)鱼类,分布于湖南龙山县火岩乡多个溶洞的地下河中,属当地特有洞穴鱼类,1986年湘西盲高原鳅首次被杨干荣等描述并被定名为湘西盲条鳅(Noemacheilinae xiangxiensis sp.nov.);1992年中国科学院昆明动物研究所的陈银瑞等对模式标本分析后,根据新的分类系统重新定名为湘西盲高原鳅(Triptophysa xiangxiensis Yang et al.)。湘西盲高原鳅是典型的洞穴鱼类,具有典型洞穴鱼类的一般特征:全身裸露无鳞,身体呈半透明状,从外表可见内脏器官和皮下血管,视觉器官完全退化。洞穴鱼类在进化生物学、比较生理学研究上有巨大的价值,然而普遍处于濒危之中。目前对湘西盲高原鳅研究较少,本文对湘西盲高原鳅微卫星、线粒体DNA中D-LOOP基因和Cyt-b基因进行了分析,查明其种群遗传多样性;同时对其生境水环境进行了调查并分析了其在饥饿、低溶氧条件下的生理代谢,为对该洞穴鱼的保护提供了依据,具体结果及内容如下:
     1.湘西盲高原鳅遗传多样性的微卫星分析
     利用筛选的16对微卫星标记对来自于湖南湘西龙山县乌龙山3个不同的洞穴的盲高原鳅群体进行遗传多样性及遗传分化分析。通过计算多态信息含量、平均杂合度、等位基因数、遗传距离、基因流、F-统计量等参数,评估各盲高原鳅群体遗传多样性和各群体间遗传分化。16个微卫星标记在3个群体中共检测出83个等位基因。每个座位检测到3~8个等位基因不等。3个群体各个多态位点的平均观测杂合度分别为0.3625~0.9465,平均期望杂合度为0.5386~0.9065。3个群体多态微卫星位点的PIC平均为0.2632、0.2313、0.3035。3个群体的遗传多样性均较低,分子变异方差分析(AMOVA)结果表明,遗传变异大部分(92.84%)来自群体内,仅有7.16%的变异来自于群体间,数据表明3个群体处于未分化状态,遗传一致性较大。
     2.基于线粒体Cytb基因和D-loop序列变异的湘西盲高原鳅遗传多样性分析
     运用线粒体Cyt b基因序列和d-loop基因序列对来自湖南湘西龙山县乌龙山3个不同的洞穴的群体的82尾湘西盲高原鳅遗传多样性及遗传分化进行了分析。湘西盲高原鳅线粒体Cyt b基因序列片段长1140bp,线粒体控制区序列片段长934bp,在控制区中发现6个多态位点且全部为单一变异位点,序列中检测到7个单倍体,单倍型多样性指数介于0.230到0.282,核苷酸多样性指数介于0.00009到0.00032。3个群体的遗传多样性均较低,所有样本的Cyt b序列完全一致,没有发现变异,基于d-loop的分子变异方差分析(AMOVA)结果表明,湘西盲高原鳅遗传变异系数FST=-0.0089,为负值,总遗传变异中,年度种群间变异占-0.89%,各年度种群内变异占101.57%,变异主要来自种群内部。
     3.湘西盲高原鳅栖息地水质季节变化研究
     本研究对湘西盲高原鳅的生境进行了调查,分析了湘西盲高原鳅所在洞穴暗河的主要环境因子年度变化。发现该暗河水质年度变化较小,水体主要离子年度波动平缓,水温基本稳定,在12--16℃波动,水体偏碱性,硬度较高,DO稳定在6mg/L左右,水体一直很清澈。
     4.饥饿和再投喂对湘西盲高原鳅体组成及肠道消化酶活性的影响
     研究了湘西盲高原鳅经不同饥饿时间处理,再恢复喂食后的生长情况。结果表明:5个月饥饿期导致鱼体重损失约23%,恢复投喂后1个月产生了部分补偿生长效应;饥饿30d对鱼体蛋白质、灰分基本没影响;而脂肪含量显著下降(p<0.05),水分含量轻微上升;恢复投喂后,各饥饿处理组体组分基本在5天内恢复到对照组水平。饥饿期间肠道脂肪酶、蛋白酶、淀粉酶均表现出明显下降,饥饿前10天下降最快,以后逐渐趋于平稳,恢复投喂后基本在5天内恢复到正常水平,只有30天饥饿组脂肪酶在10天内恢复到正常水平。
     5.湘西盲高原鳅耗氧率及低氧条件下呼吸代谢研究
     本实验用流水装置研究了湘西盲高原鳅的耗氧率与体重、水温的关系及昼夜变化,同时研究了在溶氧逐渐降低过程中湘西盲高原鳅呼吸反应。结果表明:1.湘西盲高原鳅的耗氧率随体重增加而下降,随水温增加而升高,耗氧率没有昼夜变化;2.在4.89-7.68mg/L的正常溶解氧(DO)范围内,其呼吸频率(fR)、吸水量(VSR)、鳃通量(Vc)以及氧利用率(Eo2)变化差异不显著(P>0.05);当DO水平降低至2.58mg/L后,湘西盲高原鳅的fR、US.R及VG显著增加,而E02显著下降(P<0.05):当DO水平下降至2.58mg/L时,湘西盲高原鳅的耗氧率(Vo2)达到最高值。
The cavefish Triptophysa xiangxiensis, a species of ray-finned fish in the genus Triplophysa, occurs in feihu cave of western Hunan Province of china. it was first described in1987by yang et al.. The fish shares many characters with other cave-dwelling Triplophysa species, such as the reduction of eyes, scaleless or with rudimentary scales and colorless or with shallow dark bars and blotches body, developed barbells. Cave-dwelling fish has great value on the comparative physiology and regressive evolutionary studying. Most cave environments must be considered to be under threat. Cave-dwelling fish also must be considered to be under threat. The limited knowledge of Triptophysa xiangxiensis would be unfavorable to its protection. In this study, first we used mitochondrial DNA (mtDNA) D-loop sequences, Cytochrome b(cytb)gene sequences and microsatellite to examine the genetic structure of the Triplophysa xiangxiensis populations in feihu cave of western Hunan Province of china; second, the habitat of T. xiangxiensis were investigated;then we examined the influence of reduced oxygen concentrations on the respiratory metabolism and some of the physiological response to starvation and subsequent re-feeding. The information generated in this study will contribute to the knowledge of this endangered Triplophysa xiangxiensis species and would be favorable to its protection. The contents are as follows:1. Microsatellite analysis of population genetic diversity in Triplophysa xiangxiensis
     In this study, the genetic diversity and genetic differentiation of a total of82individuals from three T. xiangxiensis populations which obtained from three caves in wulongshan mountain were evaluated using mitochondrial DNA (mtDNA) D-loop sequences and Cytochrome b(cytb) gene.
     1140bp of the mitochondrial cytochrome b and934bp of control region were sequenced for82individuals of T.xiangxiensi. No genetic variation were found in cytochrome b, and all sequences were identical. In the control region,6polymorphic sites were found from all samples, and all singleton variable Seven haplotypes were detected among the sequences, with one of them (haplotype1) being popular and represented by73individuals. The remaining haplotypes were represented by one to three individuals. As for annual samples, sequences of all individuals from year2008were completely identical except one. Four and five haplotypes were determined from specimens of year2009and2010, respectively. The haplotype and nucleotide diversisty ranged from0.230to0.282and from0.00009to0.00032, respectively. All of which revealed that the genetic diversity in these three T. xiangxiensis populations were low. The AMOVA analysis indicates that100.89%of the genetic variability occurred within annual temporary samples, and negative value of0.89%was contributed from among temporary samples. The network constructed by sequences of control region displayed a star-like topology, with the haplotype1in center and the other haplotypes connecting with it by one step of mutation reveals.
     2. Low variation in mitochondrial DNA of the cavefish, Triplophysa xiangxiensis
     In this study, A total of103individuals from three T. xiangxiensis populations which obtained from three caves in wulongshan mountain were studied using16pairs of microsatellite markers. Using polymorphism information content (PIC), mean heterozygosity (H), number of effective alleles and F-statistics, the genetic diversity and genetic differentiation were evaluated. A total of83different alleles were detected in all examined loci. The number of alleles ranged from3to8, with an average number of about5per locus. The observed (HO) and expected heterozygosity(HE) ranged from0.3625to0.9465and from0.5386to0.9065, respectively. The polymorphism information content for these three populations were0.2632、0.2313、0.3035. All of which revealed that the genetic diversity in these three T. xiangxiensis populations were low. The analysis of molecular variance(AMOVA) indicated that almost majority of the variance in the T. xiangxiensis was within stocks(92.84%),and7.16%was among stocks. The result of AMOVA、F-statistics, Nei's genetic distance and genetic identity indicated that genetic difference was relatively small and genetic differentiation was low, with high genetic identity between all two populations. The information generated in this study will contribute to the conservation of this endangered T. xiangxiensis species.
     3. Study the habitat of T. xiangxiensis within one year
     In this study, the habitat of T. xiangxiensis were investigated. The main conclusions have been summarized as follows:
     (1).The main environmental factors of the sub river changes very little within the year.
     (2) The water quality is in Grade I except total hardness and Fe according to groundwater quality standard. The water is very clear within the year.
     (3) The water temperature is mainly steady at12-16℃within the year.
     (4) The water is slightly alkaline and DO is about6mg/L
     4. Effects of starvation and subsequent re-feeding on biochemical composition and digest enzymes of T. xiangxiensis
     Because of high variation of food availability in cave aquatic systems, cave-dwelling fish may experience serve starvation during their growth, which may lead to variation in body weight, main biochemical composition of carcass and digestive enzyme activities in fish. The present experiment was designed to study the effects of starvation and subsequent re-feeding on body weight, main biochemical composition of muscle, intestine digestive enzyme activity in T. xiangxiensis cultured in basement aquarium at water temperature16-18℃.The fish were divided into three groups, of which three groups were prepared for sampling during a different periods of starvation (0d,10d,20d and30d), and the others were prepared for sampling during a different period of re-feeding (5d,10d,15d). Each treatment was assigned to duplicate aquariums. The results were as follows:body weight decreased to about23%after5-month-starvation; T. xiangxiensis exhibited partial compensatory growth in one month after re-feeding; There was no difference in protein and ash content during the30-day-starvation (P>0.05). The lipid content of muscle decreased significantly in10-day-starvation (P<0.05) and got back to normal level after5-day-re-feeding.(P>0.05); The water content of muscle increased slightly in10-day-starvation (P<0.05).The activities of digest enzyme (protease、amylase、lipase) in the intestine all decreased significantly in first5-day-starvation and then decreased gradually. The activities of digest enzyme got back to normal level after5-day-re-feeding except lipase of s30. The activities of lipase of s30got back to normal level after10-day-re-feeding.
     5. Effects of Hypoxia on the Rate of Oxygen Consumption of Respiratory Metabolism of T. xiangxiensis
     In this study, the diurnal rhythms of oxygen consumption and the oxygen consumption rate in relation to body weight、water temperature in T. xiangxiensis were examined. We also examined the influence of reduced oxygen concentrations on the respiratory metabolism. The results showed that (1) The oxygen consumption rate(VO2)of the T. xiangxiensis decreases with the body weight inereasing;(2) The water temperature affects of oxygen consumption rate in T. xiangxiensis,it increases gradually with water rising at6-23℃;(3) Diurnal rhythms of the oxygen consumption rate were not found;(4) Normal DO levels (4.89-7.68mg/L) did not affect significantly the respiration of T. xiangxiensis in terms of respiratory frequency (fR), respiratory stroke volume (VS.R), gill ventilation (Vg) and oxygen extraction efficiency (EO2)(P>0.05); while DO level declined to2.58mg/L fR, VS.R and VG increased significantly and EO2decrease significantly (P<0.05); The oxygen consumption rate (VO2) of T. xiangxiensis reached the peak when DO levels declined to2.58mg/L.
引文
1.冉景丞.中国洞穴生物研究概述.中国岩溶.1998,17(2):151—159.
    2.巴家文,黎道洪.中国洞穴蜘蛛多样性及其对洞穴环境的适应.动物分类学报.2009,001:98-105.
    3.蔡奕雄.中国洞穴盲虾一新种.动物分类学报,1995,20(2):157--160.
    4.蔡运龙.中国西南岩溶石山贫困地区的生态重建.地球科学进展,1996,11(6):602-606.
    5.陈海峰,李枢强.丰富多样的洞穴动物.动物学杂志.2004,39(1):59-59.
    6.陈宁生,施泉芳.草鱼、白鲢和花鲢的耗氧率.动物学报,1955,7(1):43-53.
    7.陈浒,熊康宁等.贵州喀斯特洞穴动物多样性及其生境研究——以黔西县红林地区为例.中国岩溶.2005,24(1):56-64.
    8.褚新洛等.中国首次发现盲鱼.自然.1978,1(6):343
    9.楮新洛等.地下河中盲鱼一新种一个旧盲条鳅.动物学报.1979,6(3):285-287.
    10.楮新洛等.鲤科盲鱼一新属新种及其系统关系的探讨.动物学报.1982,28(4):283-288.
    11.褚新洛,崔桂华.金线鲃属的初步整理及其种间亲缘关系.动物分类学报.1985,10(4):435-441.
    12.陈小勇,崔桂华,杨君兴.广西高原鳅属鱼类一穴居新种记述.动物学研究.2004,25(3):227—231.
    13.陈银瑞.我国洞穴鱼类的研究.生科学信息.1990,2(3):117--119.
    14.陈银瑞,褚新洛,罗泽雍,等.无眼金线鲃及其性状演化.动物学报.1988,34(1):64-70.
    15.陈银瑞,斯盖特B.穴居盲副鳅及其性状演化.动物学研究.1998,19(001):59-61.
    16.陈银瑞,杨君兴,蓝家湖.广西盲鱼一新种及其系统关系分析(鲤形目:鲤科:鲃亚科).动物分类学报.1997,22(2):219-223.
    17.陈银瑞,杨君兴,徐国才.云南石林盲高原鳅的发现及其分类地位的讨论.动物学研究.1992,13(1):17-23.
    18.陈银瑞,杨君兴,祝志刚.云南金线鲃一新种及其性状的适应性(鲤形目:鲤科).动物分类学报.1994,19(2):246-253
    19.符丹凤.西南鼠耳蝠湖南分布新纪录.吉首大学学报,2011,31(3)106-108
    20.苟鹏飞.岩溶地下水质变化及影响因素研究.[硕士学位论文].重庆:西南大学, 2011
    21.郭新红,刘少军,刘巧,等.鱼类线粒体DNA研究新进展.遗传学报.2004,.31(9):983—1000.
    22.郭照良,张明松.湖南米虾属一新种.四川动物,1992,11(2):44.
    23.韩杰,李铁成,毛东利,等.吉林省喀斯特洞穴的基础研究.东北师范大学学报,199
    24.何德奎,陈咏霞,陈毅峰.高原鳅Triptophysa鱼类的分子系统发育和生物地理学研究.自然科学进展,2006,16(11):1359-1404.
    25.何大力译鱼类生理学.上海:上海科学技术出版社.1955
    26.贺刚,何力,许映芳,等.湘西盲高原鳅群体同工酶分析.生态学杂志.2009,28(10):2037-2041.
    27.何力,王雪光,陈清纯,等.湘西盲高原鳅的形态特征描述.淡水渔业.2006,36(4):56-58.
    28.黄福勇,李明云.凫溪香鱼群体同工酶的生化遗传分析.水产学报.2004,28(5):579-584
    29.金一春,胡萍华,曲学伟,等.两种“吉富”罗非鱼耗氧率,窒息点的初步研究.安徽农业科学,2009,37(13):6009-6011
    30.郎赞超.喀斯特地下水文系统物质循环的地球化学特征.[博士学位论文].北京:中国科学院地球化学研究所,2005
    31.廖朝兴,黄忠志.草鱼在不同的状况下耗氧率的测定.淡水渔业,1986(3):14-16.
    32.黎道洪.2007·贵州喀斯特洞穴动物研究.北京:地质出版社
    33.黎道洪,陈德牛,罗泰昌,罗蓉,彭涛.贵州洞穴螺类的物种多样性及分布初步研究.中国岩溶.2003,22(003):212-218.
    34.黎道洪,罗泰昌.云南石林地区岩溶洞穴动物种多样性初步研究.贵州师范大学学报:自然科学版.2002,20(1):1—5.
    35.刘宏盈,程道品,王金叶.桂林喀斯特洞穴景观的生态环境现状及其保护研究.长春大学学报,2006,16(4):92-95
    36.林浩然,彭纯,粱坚勇,等.鱼类生理学实验技术和方法.广州:中山大学出版社,1988:12-44.
    37.李楠.贵州茂兰喀斯特洞穴鱼类与洞穴水环境的关系研究.硕士学位论文.贵州师范大学.2007.
    38.李坡,朱文孝,宋林华,等.贵州织金洞的环境监测与评价.北京:地震出版社,1994
    39.刘奇.贵阳岩溶地下水水质评价及污染风险性研究.[硕士学位论文].贵阳:贵州大学,2006
    40.李太平,李均祥.小眼高原鳅线粒体DNA细胞色素b基因序列分析.青海畜牧兽医杂志.2003,33(3):10—11.
    41.刘光兴,林坚.遗传标记技术在海洋桡足类生物多样性和系统发生研究中的应用.中国海洋大学学报.2007,37(1):33-37
    42.李维贤,武德方,陈爱玲.犀角金线鲤的地理分布及其对穴居环境生态适应的初步研究.云南农业大学学报.2000,15(1):1-4.
    43.李维贤,武德芳,陈爱玲.犀角金线鲍的研究进展.上海水产大学学报.1998,7(2):155—157
    44.李维贤,杨洪福,陈宏,等.中国云南高原鳅属洞穴盲鱼一新种——邱北盲高原鳅.动物学研究.2008,6:674--678
    45.李维贤,祝志刚.洞穴高原鳅属新种记述.云南大学学报(自然科学版),2000,22(5):396398.
    46.李学珍,牛长缨,雷朝亮,等.中国洞穴无脊椎动物的研究概况.2007,26(3):255-261
    47.李志华,谢松,王军霞,等.间歇性饥饿对日本沼虾生长和几种消化酶的影响.水产学报,2007,31(4):456-462.
    48.龙章强,彭士明,陈立侨.饥饿与再投喂对黑鲷幼鱼体质量变化.中国水产科学,2008,15(4):606-614
    49.陆霞,李竹,安建梅.中国洞穴甲壳动物多样性及其对洞穴环境的适应性.动物分类学报.2010,001:108—116.
    50.骆作勇,王雷,王宝杰,等.奥利亚罗非鱼饥饿后补偿生长对血液理化指标的影响.海洋科学进展,2007,25(3):340-345.
    51.庆宁,丘城锋,廖伟群,等.华南沿海西部美丽小条鳅基于线粒体控制区的种群遗传变异及亲缘地理格局.生态学报.2010,30(1):258--264.
    52.区又君,刘泽伟.饥饿和再投喂对千年笛鲷幼鱼消化酶活性的影响.海洋学报,2007,29(1):86-91
    53.施立明,贾旭,胡志昂.中国的生物多样性:现状及其保护对策.北京:科学出版社,1993
    54.沈文英,寿建听,金叶飞.温度对银鲫肠道消化酶活性的影响.浙江农业学报.2003,15(1):39--41
    55.孙效文,鲁翠云,梁利群.磁珠富集法分离草鱼微卫星分子标记.水产学报,2005,29(4):482-486.
    56.孙玉华,王伟,刘思阳,等.中国胭脂鱼线粒体控制区遗传多样性分析.遗传学报.2003,29(9):787—790.
    57.宋林华.喀斯特地貌研究进展与趋势.地理科学进展.2000,19(3):193-202.
    58.孙向军,梁拥军,张升利,等饥饿后再投喂对星斑川鲽生化组成以及能值的影响.渔业科学进展,2001,32(1):24-31
    59.陶聪.贝氏高原鳅线粒体Cytochrome b和Control region序列的遗传分化研究.西南大学,[硕士学位论文],2009
    60.唐琼英,刘焕章,杨秀平,等.沙鳅亚科鱼类线粒体DNA控制区结构分析及系统发育关系的研究.水生生物学报.2005,29(6):645—653.
    61.田宏杰,庄平,高露姣.生态因子对鱼类消化酶活力影响的研究进展[J].海洋渔业,2006,28(2):158-162
    62.王大忠,陈宜瑜.金线鲃属鱼类的起源及适应演化.水生生物学报.2000,24(6):630-634.
    63.王大忠,李德俊.贵州高原鳅属鱼类二新种(鲤形目:鳅科:条鳅亚科).动物分类学报.2001,26(1):98—101.
    64.王伟,何舜平等.线粒体DNAd_loop序列变异与鳅鮀亚科鱼类系统发育.自然科学进展2002,12(1);33—36.
    65.汪松,解焱.中国物种红色名录第一卷:红色名录.北京:高等教育出版社,2004.
    66.吴立新,蔡勋,陈炜.饥饿和再喂食对泥鳅生化组成的影响.生态学杂志,2006,25(1):101-104
    67.武云飞,吴翠珍.青藏高原鱼类.成都:四川科学技术出版社,1992
    68.熊康宁,刘军.盘县大洞的发育与演化.人类学学报,1997,16(3):239-246
    69.肖武汉,张亚平.鱼类线粒体DNA的遗传与进化.水生生物学报.2000.24(4):384--391
    70.谢小军,邓利,张波.饥饿对鱼类生理生态学影响的研究进展.水生生物学报,1998,22(2):181-188
    71.许再富.云南植物多样性保护有效性的若干问题探讨//吴征镒.云南生物多样性学术讨论会论文集,昆明:云南科技出版社,1993:202.
    72.徐致云,陆林.旅游地生命周期研究进展.安徽师范大学学报,2006,6:23-29
    73.杨干荣,袁凤霞,廖荣谋.中国鳅科鱼类一新种——湘西盲条鳅.华中农业大学学报.1986,5(3):219-223.
    74.杨汉奎,朱文孝,李坡等.喀斯特环境质量变异.贵阳:贵州科技出版社,1994
    75.杨集昆,张学敏.中国洞穴昆虫探索之一.武夷科学,1995,12(12):84—88.
    76.杨君兴,陈小勇,蓝家湖.高原特有条鳅鱼类两新种在广西的发现及其动物地理学意义.动物学研究.2004,25(2):111-116.
    77.袁道先.对南方岩溶石山地区地下水资源及生态环境地质调查的一些研究.中国岩溶,2000,19(2):103-108
    77.袁道先,蔡桂鸿.岩溶环境学.重庆:重庆出版社,1988
    78.张天时,刘萍,李健,等.用微卫星DNA技术对中国对虾人工选育群体遗传多样性的研究.水产学报.2005,29(1):6-12.
    79.张晓杰,代应贵.我国喀斯特洞穴鱼类研究进展.上海海洋大学学报.2010,19(3):364-371.
    80.张远海,艾琳.林奇.洞穴探险.上海:上海科学普及出版社,2004:1-16.
    81.张波,孙耀.饥饿对真鲷生长及生化组成的影响.水产学报,2000,24(3):206-210
    82.章典.贵州喀斯特洞穴的气象特征和气候分带研究.中国岩溶,2005,4(1):140-147
    83.郑葆珊.广西鱼类志.广西人民出版社.1981:162-163,,
    84.郑光明,朱新平.鱼类种质鉴定技术与渔业管理.中国水产科学.1999,6(2):108-111.
    85.赵刚,周剑,杜军,等.长薄鳅线粒体DNA控制区遗传多样性研究.西南农业学报.2010,23(003):930—937.
    86.周蓓,李艳娜.金佛山岩溶生态环境特征及可持续发展策略研究.重庆环境科学,2003,25(2):71-82
    87.朱松泉.中国条鳅志.南京:江苏科学技术出版社,1989
    88.朱松泉.中国条鳅亚科鱼类的鳔和骨质鳔囊的研究.水生生物学报.1986,10(2):136—143.
    89.张太平.分子标记及其在生态学中的应用.生态科学.2000,1:51-58.
    90.朱文孝,李坡.织金洞的气候环境及空气中二氧化碳.中国岩溶,1993,12(4):407-417
    91.朱学稳.洞穴学研究的进展.科技导报.1997,12:26-29
    92.赵业辉,张春光.洞穴鱼类:概念,多样性及研究进展.生物多样性.2006,14(5):451-460.
    93.张耀光.西南喀斯特贫困地区的生态环境效应.中国岩溶,1995,14(1):71-78,
    94.赵仲如.广西武鸣发现的洞穴盲鱼.中国岩溶.1983,1:57—59.
    95.周忠发.喀斯特洞穴信息系统及其在黔南洞穴旅游资源开发中的应用.贵州师范大学学报2004,22(2):40-44
    96.章至洁,韩宝平,张月华.水文地质学基础.北京:中国矿业大学出版社,1995
    97. Ahearn G A, Howarth F.G. Physiology of cave arthropods in Hawaii. J. Exp. zool.1982,222(3):227-238
    98. Aljanabi SM, Martinez I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research.1997,25 (22):4692-4693.
    99.Allegrucci G,Todisco V,Sbordoni V.Molecular phylogeography of Dolichopoda cave crickets(Orthoptera, Rhaphidophoridae):a scenario suggested by mitochondrial DNA. Mol Phylogenet Evol.2005,37(1); 153-164.
    100.Aris-Brosou S, Excoffier L. The impact of population expansion and mutation rate heterogeneity on DNA sequence polymorphism. Mol. Biol. Evol,1996,13:494-504.
    101.Armitage K.B, Wall T.J. The effects of body size, starvation and temperature acclimation on oxygen consumption of the crayfish Orconectes nais. Comparative Biochemistry and Physiology Part A:Physiology,1982,73(1):63-68
    102.Avise JC,Selander RK. Evolutionary genetics of cave-dwelling fishes of the genus Astyanax. Evolution 1972,26:1-19.
    103.Avise JC. Molecular Markers,Natural History and Evolution.New York:Chapman and Hall,1994
    104. Bandelt HJ, Forster P. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol.1999,16(1):37-48.
    105. Banner J. Controls on the spatial and temporal variability of vadose dripwater geochemistry:Edwards Aquifer, central Texas. Geochimicaet Cosmochimica Acta, 2004,68:1007-1020.
    106. Barr Jr T.C. Observations on the ecology of caves. American Naturalist. 1967:475-491.
    107.Barr Jr T. C. Evolution of cave biology in the United States,1882-1965.1966,28: 15--21
    108.Barr T C, Holsinger J R. Speciation in cave faunas. Annual Review of Ecology and Systematics.1985,16:313-337.
    109.Bennett. Demystified...Microsatellites. Molecular Pathology.2000,53(4):177 — 183
    110.Billington N, Hebert PDN. Mitochondrial DNA diversity in fishes and its implication for introduction. Can J Fish Aquat Sci,1991,48(Supp11):80-94.
    111.Biswas J.Metabolic efficiency and regulation of body weight:a comparison between life in hypogen and epigen ecosys-tem.Int.J.Speleol.1991,20(1):15-22.
    112. Borowsky R, Wilkens H. Mapping a Cave Fish Genome Polygenic Systems and Regressive Evolution. J. Hered.2002,93(1):19-21.
    113. Borowsky RB, L Mertz. Genetic differentiation among populations of the cave fish Schistura oedipus (Cypriniformes:Balitoridae). Environmental Biology of Fishes.2001,62:225-231.
    114. Botstein D, While R L. Construction of genetic linkage map in man using restriction fragment length polymorphisms.American Journal of Animal Genetics.1980,32(3): 314-331.
    115.Buhay J E. Subterranean phylogeography of freshwater cray—fishs shows extensive gene flow and surprisingly large popula—tion sizes. Mol Ecol.2005,14(14): 4259—4273.
    116. Buhay J E, Moni G.Molecular taxonomy in the dark:evolutionary history, phylogeography, and diversity of cave crayfish in the subgenus Aviticambarus, genus Cambarus. Molecular Phylogenetics and Evolution.2007,42(2):435—448.
    117. Caterino M S, Cho S, Sperling F A H. The current state of insect molecular systematics:A thriving Tower of Babel. Annual Review of Entomology.2000:1-54.
    118. Chen Y R, Yang J X,Zhu Z G. A new fish of the genus Sinocyclocheilus from Yunnan with comments on its characteristic adaptation.Acta Zootaxonomica Sinica.1994. 19(2):246-253.
    119. Chen X Y, Yang J X. Triplophysa rosa sp. NOV:A new blind loach from China. J of Fish Biol.2005,66:599—608.
    120. Christiansen K A. Regressive evolution in collembolan. Nat.Speleol. Soc. Bull.1985, 47(2):89-100.
    121. Clausen R C.Oxygen consumption in freshwater fishes. Ecology,1936,17(2):216-226.
    122. Cooling MP, Boulton AJ. Aspects of the hyporheic zone below the terminus of a South Australian arid-zone stream. Marine and Freshwater Research.1993, 44(3):411-426.
    123. Cooper, J. E. and Cooper, M. R. Comparative reproductive strategies of troglobitic crayfishes in Shelta cave.Alabama. ABS Bull.1978,25:44
    124. Cruzan M B. Genetic markers in plant evolutionary ecology. Ecology.1998 (2):400-412.
    125. Cui Y, Liu Jiankang. Comparison of energy budget among six teleosts-Ⅱ metabolic rates.Comp Biochem Physiol,1990,97(2):169-174
    126. Culver D C.Cave Life:Evolution and Ecology. Cambridge:Harvard University Press,1982.
    127. Culver D C.The biology of caves and other subterranean habitats. Oxford University Press, USA,2009
    128. Culver D.C,Poulson T.L. Oxygen consumption and activity in closely related amphipod populations from cave and surface habitats. American Midland Naturalist.1971,85(1):74--84
    129. Danielopol D.L. Groundwater fauna associated with riverine aquifers. Journal of the North American Benthological Society.1989:18-35.
    130. de Bruin A, Ibelings B W, Van Donk E. Molecular techniques in phytoplankton research:from allozyme electrophoresis to genomics. Hydrobiologia.2003,1-3: 47-63.
    131. Decu,VG.A review of the terrestrial cavernicolous fauna of Romania.NSS Bull.1983,45(4):86-97
    132. Dejours P. Principles of comparative physiology of respiration. Amsterdam: North-Holland,1981
    133. Dobzhansky, T. Genetics of the Evolutionary Process. Columbia University Press, New York,1970
    134. Dowling, T.E., D.P. Martasian and W.R. Jeffery. Evidence for multiple genetic forms with similar eyeless phenotypes in the blind cavefish, Astyanax mexicanus. Molecular Biology and Evolution.2002,19:446-455.
    135. Engel A.S. Chemoautotrophy. In D.C.Culver, W.B. White, eds. Encyclopedia of caves, pp.. Elsevier Academic Press, Amsterdam, The Netherlands,2005
    136. Engel A.S, ML Porter. Ecological assessment and geological significance of microbial communities from Cesspool Cave,Virginia. Geomicrobiology, 2001.18(2):259-274.
    137. Engel SR, Linn R A,Taylor J F,et al.Conservation of microsatellite loci across species of artiodactyls:implications for population studies. Journal of Mammalogy.1996:504—518.
    138. Ercolini A,Berti R. Oxygen consumption in hypogean and epigean cyprinids (Pisces). Monit. Zool. Ital.1987,22:23-30.
    139. Excoffier L, Laval G, Schneider S. Arlequin (version 3.0):an integrated software package for population genetics data analysis. Evol Bioinform Online.2005,1: 47-50.
    140. Fernandes M.N, Rantin F.T.Relationships between oxygen availability and metabolic cost of breathing in Nile tilapia (Oreochromis niloticus):aquacultural consequences. Aquaculture,1994,127(4):339-346
    141. Flagstad, Stacy, Jakobsen. Reliable noninvasive genotyping based on excremental PCR of nuclear DNA purified with a magnetic bead protocol, Molecular Ecology.1999,8(5):879—883.
    142. Fong D.W, Kane T.C, Culver D.C.Vestigialization and loss of nonfunctional characters. Annual Review of Ecology and Systematics.1995:249-268.
    143. Frankham R, Ballou J D, Briscoe D A. Introduction to Conservation Genetics. Cambridge:Cambridge University Press,2002.
    144. Frankham R. Genetics and extinction (Review). Biological Conservation.2005, 126(2):131-140.
    145. Frankham R, Kingslover JG. Response to environmental change:adaptation or extinction. Cambridge:Cambridge University Press,2004
    146. Freeland J R. Genetic Analysis of Single Populations.West Sussex:John Wiley Sons Ltd,2005
    147. Froese R, Pauly D (2005) Fishbase. http://www.fishbase.org.version (05/2005).
    148. Garland Jr T,Carter PA. Evolutionary physiology. Annual Review of Physiology,1994,56(1):579-621.
    149. Gillooly Jf, Brown JH, West GB, et al. Effects of size and temperature on metabolic rate. Science,2001,293(5538):2248-2251.
    150. Greco A M, Gilmour K M,Fenwick J C,et al 1995. The effects of soft water acclimation on respiratory gas transfer in the rainbow trout Oncorhynchus mykiss. J. Exp.Biol.198 (2),2557-2567.
    151.Griffith D M.The effects of substrate moisture on survival of adult cave beetles
    (Neaphaenops tellkampfi) and cave cricket eggs (Hadenoecus subterraneus) in a sandy
    deep cave site.NSS Bull-1991,53(2):98-103.
    152.Hadley N.F,Ahearn GA,Howarth F.G. Water and metabolic relations of cave-adapted and epigean lycosid spiders in Hawaii. Journal of Arachnology,1981, 25(5):215-222
    153.Hartl DL, Clark AG Organization of Genetic Variation. In Hartl DL, Clark AG. Principles of Population Genetics.3ed. Sunderland, Massachusetts:Sinauer Associates, Inc. Publishers,1997
    154.Hausdorf B, Wilkens H, Strecker U. Population genetic patterns revealed by microsatellite data challenge the mitochondrial DNA based taxonomy of Astyanax in Mexico (Characidae, Teleostei). Molecular phylogenetics and evolution.2011, 60(1):89-97.
    155. Hervant F,Mathieu J. Oxygen consumption and ventilation in declining oxygen tension and posthypoxic recovery in epigean and hypogean crustaceans. Journal of Crustacean Biology.1998:717-727.
    156.Hervant F,Mathieu J. Behavioral, ventilatory, and metabolic responses of the hypogean amphipod Niphargus virei and the epigean isopod Asellus aquaticus to severe hypoxia and subsequent recovery. Physiological zoology.1996:1277-1300.
    157.Hervant F,Mathieu J. Behavioral, ventilatory, and metabolic responses to severe hypoxia and subsequent recovery of the hypogean Niphargus rhenorhodanensis and the epigean Gammarus fossarum (Crustacea:Amphipoda). Physiological zoology. 1995:223-244
    158. Hervant F,Mathieu J, Durand JP.Metabolism and circadian rhythms of the European blind cave salamander Proteus anguinus and a facultative cave dweller, the Pyrenean newt (Euproctus asper).Canadian journal of zoology.2000,78(8):1427-1432.
    159.Hervant F,Mathieu J, Barre H.Comparative study on the metabolic responses of subterranean and surface-dwelling amphipod crustaceans to long-term starvation and subsequent refeeding. J. Exp. Biol.1999,202 (1):3587-3595.
    160.Hervant F,Mathieu J, Durand J. Behavioural, physiological and metabolic responses to long-term starvation and refeeding in a blind cave-dwelling (Proteus anguinus) and a surface-dwelling (Euproctus asper) salamander J. Exp. Biol.2001,204(2):269-283
    161. Hill L.G Oxygen preference in the spring cavefish, Chologaster agassizi.American Fisheries Society Transaction,1968,97(4):448-454.
    162. Hofreiter M,Capelli C, Krings M, et al. Ancient DNA analyses reveal high mitochondrial DNA sequence diversity and parallel morphological evolution of late Pleistocene cave bears.2002,19(8):1244—1250.
    163. Holmes AJ,N A Tujula, M Holley et al.2001. Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia. Environmental Microbiology 3(4):256-264.
    164. Hooven T A,Yamamoto Y,Jeffery W R.Blind cavefish and heat shock protein chaperones:a novel role in lens apoptosis.Int J Dev Biol.2004,48:731-738.
    165. Hughes GM. Respiratory responses to hypoxia in fish. Am Zool,1973, 13(2):475-489
    166. Jeffery, W. R. Proxl in eye degeneration and sensory organ compensation during development and evolution of the cavefish Astyanax. Dev. Genes Evol.2000,210(5), 223-230.
    167. Jeffery W R. Cavefish as a model system in evolutionary developmental biology. Developmental Biology,2001,231(1):1-12.
    168. Jeffery W R.. Adaptive evolution of eye degeneration in the Mexican blind avefish. J. Hered.2005,96:185-196
    169. Jeffery W.R,Strickler A.G,Yamamoto Y. To see or not to see:evolution of eye degeneration in Mexican blind cavefish.Integrative and comparative biology.2003, 43(4):531-541.
    170. Jobling M. Bioenergetics:feed intake and energy partitioning, in Fish Ecophysiology. In:J Cliff Rankin, Frank B eds. Fish Ecophysiology. London:Chapman and Hall,1993
    171.Keller LF, Arcese P, Smith JNM, et al.Selection against inbred song sparrows during a natural population bottleneck. Nature.1994,372:356-357.
    172.Kirby R F,Thompson K W,Hubbs C. Karyotypic similarities between the Mexican and blind tetras. Copeia 1977,1977(3),578-580.
    173.Kruckenhauser L, Haring E, Seemann R, et al.Genetic differentiation between cave and surface dwelling populations of Garra barreimiae (Cyprinidae) in Oman. BMC Evolutionary Biology.2011,11 (1):172-186.
    174. Kuehn, R. and Anastassiadis, C. and Pirchner, F..Transfer of bovine microsatellites to the cervine (Cervus elaphus). Animal Genetics.1996,27(3):199—201.
    175.Lamprecht,G.and Weber,F. Time-keeping mechanisms and their ecological significance in cavernicolous animals.NSS Bull.1985,47(2):147-162
    176.Lamprecht G;Weber F. Environmental adaptation and evolution:a theoretical and empirical approach. New York:Gustav Fischer,1982
    177.Lender E S.Mappling mendelian factors underlying quantitative traits using RFLP Linkage maps. Genetics.1989,121(1):185-199.
    178. Li Shu Qiang,Zhang Bei Bei. A new species of the genus Coelotes from Tenglongdong cave, Hubei, China (Araneae:Amaurobiidae). Acta Zotaxonomica Sinica.2002,27(3):466——468.
    179. Li Z, Gan X, He S. Distinct Evolutionary Patterns Between Two Duplicated Color Vision Genes Within Cyprinid Fishes. Journal of molecular evolution.2009, 69(4):346-359.
    180. Lucarelli M, Sbordoni. JV.Humidity responses and the role of the Hamann's organ of cavernicolous Bathysciinae (Co. Catop.). Int. J. Speleol.1978,9:167-177.
    181. Lucchini V, Fabbri, E,Marucco F. Noninvasive molecular tracking of colonizing wolf (Canis lupus) packs in the western Italian Alps.Molecular Ecology.2002,11(5): 857—868.
    182. Macintyre R J. Molecular evolutionary genetics. Plenum Press,1985.
    183. Malard F,Hervant F. Oxygen supply and the adaptations of animals in groundwater. Freshwater Biology.1999,41(1):1-30.
    184. Mehner T, Wieserw. Energetic and metabolic correlates of starvation in juvenile perch. J Fish Bio,1994,45(1):325-333
    185. Mercy T V A, Krishna P N. The anatomy and histology of the alimentary tract of the blind catfish Horaglanis Krishnai Menon.Int.J.Speleol.1985,14(1-4):69-85.
    186. Mejia R. Cave-Dwelling Fish Provide Clues to the Circadian Cycle. PLoS biology,2011,9(9):1001-1006
    187. Menuet A, Alunni A,Joly J.S. Expanded expression of Sonic Hedgehog in Astyanax cavefish:multiple consequences on forebrain development and evolution.Development.2007,134(5):845-855.
    188.Morris DJ, North AW.Oxygen consumption of five species of fish from South Georgia. Journal of experimental marine biology and ecology,1984,78(1-2):75-86
    189.Montgomery, J. C., Coombs, S. and Baker, C. F. (2001). The mechanosensory lateral line system of the hypogean form of Astyanax fasciatus. Environ. Biol. Fishes.2001,62:87-96.
    190.Nakamura Y, Leppert M, Oconnell P, et al. Variable Number of Tandem Repeat (Vntr) Markers for Human-Gene Mapping. Science.1987,4796:1616-1622.
    191. Navajas M, Fenton B. The application of molecular markers in the study of diversity in acarology:A review. Experimental and Applied Acarology,2000, (10-11):751-774.
    192. Nevo E. Evolution of genome--phenome diversity under environmental stress. Proceedings of the National Academy of Sciences.1998,98(11):6233-6240.
    193.Newbury H.J, Ford-Lloyd B.V.Estimation of genetic diversity. In:Maxted N, Ford, Lioyd BV, HawkesJG(eds).Plant genetic conservation:the in situ approach.ChapmanandHall, London.1997
    194. Orlando L, Bonjean D, Bocherens,et al.Ancient DNA and the population genetics of cave bears (Ursus spelaeus) through space and time.Molecular biology and evolution.2002,19(11):1920—1933.
    195.Panaram K, R. Borowsky. Gene fl ow and genetic variability in cave and surface populations of the Mexican Tetra, Astyanax mexicanus (Teleostei:Characidae). Copeia 2005:409-416.
    196. Park L.K, Moran P. Developments in molecular genetic techniques in fisheries. Reviews in Fish Biology and Fisheries.1994,4(3):272—299.
    197.Peck SB.The cave fauna of Alabama:Part 1.The terrestrial invertebrates(excluding insects).NSS Bull.1989,51(l):11-33
    198. Peck SB.A synopsis of the invertebrate cave fauna of Jamaica.NSS Bull. 1992,54(I):37-60
    199. Plath M, Parzefall J. Sexual selection in darkness? Female mating preferences in surface-and cave-dwelling Atlantic mollies, Poecilia mexicana (Poeciliidae, Teleostei). Behavioral Ecology and Sociobiology.2004,55(6):596-601.
    200. Plath, M. and Schlupp, I.Parallel evolution leads to reduced shoaling behavior in two cave dwelling populations of Atlantic mollies (Poecilia mexicana, Poeciliidae, Teleostei).Environmental Biology of Fishes.2008,82(3):289—297.
    201. Poulson T.L, Culver D.C. Diversity in terrestrial cave communities. Ecology, 1969,50(1):153-168
    202.Poulson T. L. Cave adaptation in amblyoppsid fishes.Am.Midl. Nat.1963,70:257-290
    203. Poulson T. L..Animals in aquatic environments:animals in caves. Am. Physiol. Soc.1964,47:749-771
    204. Poulson T.L. Population size, density and regulation in cave fishes.Proc.4th Int. Congr. Speleol, Ljubljana,1969:189-192
    205. Poulson T L.Evolutionary reduction by neutral mutations:plausibility arguments and data from amblyopsid fishes and linyphiid spiders.Nat. Speleol. Soc. Bull.1985,47:109-117.
    206. Prakash S, Lewontin RC.A molecular approach to the study of genie heterozygosity in natural populations IV. Patterns of genic variation in central, marginal and isolated populations of Drosophila pseudoobscura.Genetics.1969,61(4):841.
    207.Pradeep A R, Chatterjee S N, Nair C V. Genetic differentiation induced by selection in an inbred population of the silkworm Bombyx mori, revealed by RAPD and ISSR marker systems. J Appl Genet.2005,3:291-8.
    208.Protas M,Conrad M, Gross J B,et al. Regressive evolution in the Mexican cave tetra, Astyanax mexicanus. Curr. Biol.2007,17:1-3.
    209.Protas ME, Hersey C, Kochanek D, et al. Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nature Genetics.2006, 38(1):107-111.
    209. Prokofiev A M. Review of the'Triplophysa born}丘 fro. s"group (Balitoridae: Nemacheilinae)with a description a new species from the Kam Valley, China. Vopr Ikhtiol.2002,42(4):468—474.
    210.Prokofiev A M. Revision of the species-complex of Triplophysa labiata with description of a new species, T. kaznakowi sp. n. (Osteichthyes, Balitoridae, Nemacheilinae). Sencknb Biol.2004,83(2):181—208.
    211.Ray GE.The vertebrate cave fauna of west Virginia:progress report.Proc.NSS Ann.Meet,1987(in NSS Bull.1988,50(1);29)
    212. Romero A (2001b) An introduction to the special volume on the biology of hypogean fishes. Environmental Biology of Fishes.2001,62(2):7-12.
    213.Romero,A.Introgressive hybridization in the Astyanax fasciatus (Pisces:Characidae) population at La Cueva Chica.NSS Bull.1983,45(4):81 - 85
    214.Romero, A et al.Cave Biology:life in darkness.England:Cambridge University Press, 2009
    215.Rosel PE,Dizon AE. Variability of the mitochondrial control region in populations of the harbour porpoise, Phocoena, on interoceanic and regional scales.Canadian Journal of Fisheries and Aquatic Sciences,1995,52(6):1210—1219.
    216.Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics.2003,19, 2496-2497.
    217.Savelkoul P H M, Aarts H J M, de Haas J, et al. Amplified-fragment length polymorphism analysis:the state of an art. Journal of Clinical Microbiology.1999,10: 3083-3091.
    218. Schneider K, Culver D.C. Estimating subterranean species richness using intensive sampling and rarefaction curves in a high density cave region in West Virginia. Journal of Cave and Karst Studies.2004,66(2):39-45.
    219.Schlagel S.R,Breder Jr CM. A study of the oxygen consumption of blind and eyed cave characins in light and in darkness. Zoologica; scientific contributions of the New York Zoological Society.1947,32(1-8):17-27
    220. Sibly, R. M. and Callow, P. Classification of habitats by selection pressures:a synthesis of life-cycle andr/Ktheory.In Behavioural Ecology:Ecological Consequences of Adaptive Behaviour (Sibly, R. M. and Sm ith, R. H. eds), Blackwell Sci Pub, Oxford.1985:75-90.
    221. Soltis PS, Soltis DE.Genetic variation in endemic and widespread plant species: examples from Saxifragageae and Polystichum (Dryopteridaceae).Aliso,1991, 13:215—223
    222.Stepien C. A. B,Morton K. A,Dabrowska et al. Genetic diversity and evolutionary relationships of the troglodytic'living fossil' Congeria kusceri (Bivalvia:Dreissenidae). Molecular Ecology.2001,10:1873-9.
    223. Strecker U, Faundez V.H, Wilkens H. Phylogeography of surface and cave Astyanax(Teleostei) from Central and North America based on cytochrome b sequence data.Mol. Phylogenet. Evol.2004,33(1),469-481.
    224. Strecker U.Bernatchez L, Wilkens H. Genetic divergence between cave and surface populations of Astyanax in Mexico (Characidae, Teleostei).Molecular Ecology. 2003,12(3):699-710.
    225. Strahler A.N. imensional analysis applied to fluvially eroded landforms. Geological Society of America Bulletin,1958,69(3):279-300
    226.Studier E H,Lavoie K H,Mason L.Jumping parameters in cave crickets,Hadenoecus subterraneus.Proc.NSS Ann.Meet.1987 (in NSS Bull.1987,50(1):29)
    227.Studier E H,Wares X,Lavoie K H,et al.Bioenergetics of Hadenoecus subterraneus.Proc.NSS Ann.Meet.1985(in NSS Bull.1985,47(1):60)
    228. Sustr V D,Elhottova V,Kristufek et al. Ecophysiology of the cave isopod Mesoniscus graniger (Frivaldszky,1865) (Crustacea:Isopoda). European Journal of Soil Biology,2005,41(1):69-75.
    229.Tamura K, Dudley J, Nei M, Kumar S. MEGA4:Molecu-lar Evolutionary Genetics Analysis (MEGA) software ver-sion 4.0. Mol Biol Evol.2007,24(8):1596-1599.
    230.Tang Q, Liu H, Mayden R, Xiong B. Comparison of evolutionary rates in the mitochondrial DNA cytochrome b gene and control region and their implications for phylogeny of the Cobitoidea (Teleostei Cypriniformes).Mol Phylogenet Evol.2006 May;39(2):347-57.
    231.Tautz D.Hypervariabflity of simple sequences as a general source for polymorphic DNA markers.Nucleic Acids Research.1989,17(16):6463-6471.
    232. Teyke T. Morphological differences in neuromasts of the blind cavefish Astyanax hubbsi and the sighted river fish Astyanax mexicanus. Brain Behav. Evol.1990.35 (1), 23-30.
    233.Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG The CLUSTAL X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research.1997,25(5),4876-882.
    234. Trajano E.Ecology of subterranean fishes:an overview. Environmental Biology of Fishes.2001,62(1):133—160
    235. Trajano E,Bichuette M.E,Kapoor BG.Biology of subterranean fishes.2010, Science Publishers
    236.Irie T.Nesticid spider(Araneae,Nesticidae) from Kyushu, Japan. J.Speleol.Soc.Japan 1987,12:14-23
    237. Van Dover, C.L. The ecology of deep-sea hydrothermal vents.Princeton University Press, Princeton, NJ.2000
    238.Viele D P, Studier E H.Use of a localized food source by Peromyscus leucopus,determined with an hexagonal grid system.NSS Bull.1990,52(1):52-53
    239.Vinogradova O.O.V, Kovalenko S P, Wasser E,et al.1998. Species diversity gradient to darkness stress in blue-green algae/cyanobacteria:a microscale test in a prehistoric cave, Mount Carmel, Israel.Israel Journal of Plant Sciences 46:229-38.
    240.Vos P, Hogers R, Bleeker M, et al. Aflp-a New Technique for DNA-Fingerprinting. Nucleic Acids Research.1995,23(21):4407-4414.
    241.Vrijenhoek RC.Genetic diversity and fitness in small Populations. In:Loeschcke, V. and Tomiuk, J. (eds).Conservation Geneties. Birkhauser Verlag, Basel,1994
    242.Vulesevic B,Mcneill B,Perry S. F. Chemoreceptor plasticity and respiratory acclimation in the zebrafish Danio rerio. J. Exp. Biol.2006,209(3),1261-1273.
    243.Waltham T,Mulu, Sarawak. In J. Gunn, ed. Encyclopedia of caves and karst science, pp.2004:531-533. Fitzroy Dearborn, New York.
    244.Wang Y J, Wu S Q, Lin W H,et al. Relationships among planktons DNA sequence diversity, water quality and fish diseases in Siniperca chuatsi ponds. Ying Yong Sheng Tai Xue Bao.2007(1):163-8.
    245.Watanabe Y.Staphylinid beetles (Coleoptera) found in caves and mines of Japan.J.Speleol.Soc.Japan 1996,20:8-18
    246.Waugh R. Using RAPD markers for crop improvement. Trends in biotechnology. 1992,10(6):186-192.
    247. Weight S..Evolution and the Genetics of Population Variability Within and Among Natural Population.1978, University of Chicago Press
    248.Whitman W.B, Coleman D.C,Wiebe W.J. Prokaryotes:the unseen majority. Proceedings of the National Academy of Sciences (USA),1998,95:6578-83.
    249.Wilkens H,Junge P,Langecker T G.Speciation of troglobites:studies in the San Antonio cave (Oaxaca,Mexico) Int.J. Speleol.1991,20(1-4):1-13
    250.Williams J G K, Kubelik A R, Livak K J, Rafalski J A, Tingey S V. DNA Polymorphisms Amplified by Arbitrary Primers Are Useful as Genetic-Markers. Nucleic Acids Research.1990,22:6531-6535
    251. Winberg G G. Rate of Metabolism and food requirements of fishes. Canada:Fisheries Research Board of Canada, Translation Series,1960
    252. Xiao, H, and Chen, S. and Liu, Z. and Zhang, R. and Li, W. and Zan, R. and Zhang> Y. Molecular phylogeny of Sinocyclocheilus (Cypriniformes:Cyprinidae) inferred from mitochondrial DNA sequences.Molecular phylogenetics and evolution.2005,36(1):67—77.
    253.Xiao WH, Zhang YP, Liu HZ. Molecular Systematics of Xenocyprinae (Teleostei: Cyprinidae):Taxonomy, Biogeography, and Coevolution of a Special Group Restricted in East Asia[J]. Molecular Phylogenetics and Evolution.2001,18:163-173.
    254.Xie Q, Tian X X, Qin Y, Bu W J. Phylogenetic comparison of local length plasticity of the small subunit of nuclear rDNAs among all Hexapoda orders and the impact of hyper-length-variation on alignment]. Molecular Phylogenetics and Evolution.2009 (2):310-316.
    255.Yamamoto Y, Espinasa L,Stock D. W.et al. Development and evolution of craniofacial patterning is mediated by eye-dependent and -independent processes in the cavefish Astyanax. Evol. Dev.2003,212(5),435-446.
    256. Yamamoto Y,Stock D.W,Jeffery W.R.Hedgehog signalling controls eye degeneration in blind cavefish.Nature.2004.431(7010):844-847.
    257.Yokoyama S. Molecular evolution of vertebrate visual pigments. Prog. Retin.Eye Res.2000,19:385-419.
    258.Yokoyama S.Molecular evolution of color vision in vertebrates. Gene 2002,300: 69-78.
    259. Zane L, Bargelloni L, Patamello T.Strategies for microsatellite isolation:a review. Molecular ecology.2002,11(1):1-16.
    260.Zehra A, Arshad N, Mirza M. Analysis of Triplophysa yasinensis complex(Pisces: Nemaeheilidae). Punjab Univ J Zool.1997,12(1):25—29.
    261.Zhou W, Cui G. Fishes of the genus Triplophysa(Cyprini—formes:Balitoridae)in the Yuanjiang(upper Red River)basin of Yunnan, China, with description of a new species. Ichthyol Explor Freshwat.1997,8(2):177 183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700