用户名: 密码: 验证码:
高铁三水铝石型铝土矿综合利用新工艺的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国冶金工业的快速发展,铝土矿石和铁矿石的消耗量大幅度上升,国内铝土矿和铁矿的供需缺口越来越大,对外依存度日益提高,对国内高铁铝土矿的开发具有重要的现实意义。高铁三水铝石型铝土矿(以下简称为高铁铝土矿)是公认的难选难冶矿石,在我国储量很大。本论文以广西某高铁三水铝石型铝土矿为对象,开展了铁、铝、硅、钒、镓等综合利用新工艺的基础研究。
     采用光学显微镜、XRD、 SEM及电子探针等微观测试方法对高铁三水铝石型铝土矿工艺矿物学进行了详细研究,发现铁主要存在于针(赤)铁矿中,而铝主要存在于三水铝石中;针(赤)铁矿中含有铝元素,Al2O3含量的质量比从17%到39%不等,而三水铝石中也都含有铁元素,Fe2O3含量的质量比从15%~25%不等,这些嵌布粒度小于5μm、嵌入在铁矿内的Al2O3和嵌入在三水铝石内的Fe2O3,导致选矿方法无法将它们分离出来。
     采用热力学计算和绘图等方法研究了矿石中的铝、铁、硅等组份在不同气氛下焙烧时的物理化学行为。研究发现,在低于1500K的温度范围,在氧化性气氛下加热高铁铝土矿不能改变铝、铁、硅的赋存关系;Na2CO3或Na2SO4存在的条件下还原焙烧时,Al2O3和SiO2优先与钠盐反应生成铝硅酸钠,其次是硅酸钠,再次是铝酸钠;Na2SO4容易被还原为Na2SO3, Na2SO3性质不稳定易发生分解而生成Na2S和Na2SO4; Na2SO3与Al2O3和SiO2反应的规律与Na2SO4相同;Na2S不能直接与Al2O3.SiO2发生反应,但在FeO的参与作用下可与Al2O3. SiO2反应,其规律与Na2SO4的相同;钠盐存在时,在适宜的温度及还原气氛下,铁氧化物可还原成金属铁,而铝和硅转换成铝硅酸钠、硅酸钠或铝酸钠。
     在上述理论研究的基础上,开发了还原焙烧-磁选-浸出综合利用高铁三水铝石型铝土矿的新工艺。通过还原焙烧-磁选研究,获得了优化的焙烧和磁选工艺参数。在Na2SO4质量比15%、硼砂质量比2%、Na2CO3质量比25%、还原焙烧温度1050℃、还原焙烧时间60min、细磨至-0.074mm95.5%~96.0%,磁场强度975Gs的条件下,获得了TFe含量93.73%、Al2O3含量1.21%的磁性物和TFe含量6.73%、Al2O3含量40.56%的非磁性物(富铝渣)产品,铁回收率93.07%。
     机理研究表明,在钠盐还原焙烧中,硼砂具有助熔作用,碳酸钠以固相扩散反应为主,硫酸钠以液相反应为主,添加剂的添加促进了铁晶粒的长大和铝/铁的分离。化学分析及XRD物相分析表明,焙烧矿主要由金属铁、铝硅酸钠组成,其余还有少量未还原完全的铁氧富氏体及还原焙烧过程中生成的硫化亚铁;磁性物主要成分为金属铁;非磁性物主要成分为铝硅酸钠,其余还有少量硫化亚铁、硅酸亚铁和未分离完全的金属铁。
     进而研究了从富铝渣(非磁性物)中回收和分离铝、硅和钠的方法和工艺技术。研究发现,硫酸浸出可将富铝渣中的铝、硅、钠同时转入溶液。获得了浸出的最佳工艺条件:H2SO4浓度30%、浸出温度30℃、浸出时间30min、液固比10:1、搅拌速度200r/min。在此条件下,富铝渣中A12O3、 SiO2和Na2O浸出率分别达到89.37%、89.12%和96.46%。
     为从浸出液中分离铝、硅和钠,采用浓硫酸酸化首先分离出硅,再利用硫酸铝和硫酸钠溶解度的差别,采用蒸发结晶方法实现铝、钠的分离。获得了硫酸酸化分离SiO2的最佳条件是H2SO4浓度70%、浸出温度90℃、浸出时间120min、液固比10:1、搅拌速度500r/min。在此条件下,Si02分离率达到98.32%。
     查明了在还原焙烧-磁选-浸出过程中高铁三水铝石型铝土矿中镓和钒的走向。研究发现,镓几乎全部进入磁性物质中,可以在金属铁中得到回收;80%以上的钒进入非磁性物中,非磁性物经酸浸后,钒主要到浸出渣中,可以在浸出渣中加以回收。
     在工艺技术研究的基础上,推荐了还原焙烧—磁选—浸出法综合利用高铁三水铝石型铝土矿的新工艺流程,与已公开发表“先铁后铝”工艺相比,该流程具有工艺简单、投资成本低、废弃物排放少、综合回收利用率高的优点。
     本论文的研究为高铁三水铝石型铝土矿的综合利用提供了新的途径。
With the rapid development of metallurgical industry in China, the consumption of the ore resources raises greatly. While the shortage of domestic bauxite and iron ores is becoming more and more severe, the amount of imported bauxite ores is increasing year by year; therefore, it is of a great significance to utilize domestic high iron bauxite ores. High iron gibbsite-type bauxite is a kind of refractory ores, and it has a large reserve in China and the rest of Southeast Asia countries. In this thesis, a basic research of a new process for the comprehensive utilization of iron, aluminum, silicon, vanadium, gallium etc. was carried out by using Guangxi high-iron gibbsite bauxite as raw materials.
     Measurement methods, including optical microscope, X-ray diffraction (XRD), Scanning electronic microscope (SEM) and electronic probe, etc. were used to study process mineralogy of the ore. Results obtained show that, iron element mainly occurs in goethide, and aluminum element mainly occurs in gibbsite, goethite contains aluminium and silicon elements, the content of A12O3within the goethide varies from17%to39%; and gibbsite also contains iron and silicon elements, the contents of Fe2O3within the gibbsite varies from15%to25%; the crystalline size of the aluminiferrouse minerals embedded in goethide and the ferrouse minerals embedded in gibbsite are less than5μm.Therefore, it is difficult to separate Fe, Al, Si from the ore by physical methods.
     The thermodynamics of CaO-Fe2O3-Al2O3-SiO2system indicates that it is impossible to separate aluminum, iron, silicon ingredients in oxidizing atmosphere. Reduction thermodynamics studies show that the sodium salts are capable of reacting with Al2O3and SiO2and forming sodium aluminosilicate, sodium silicate, sodium aluminate in turn; Na2SO4is easily reduced to Na2SO3, while unstable Na2SO3is easy to decompose into Na2S; the reaction of Na2SO3has the same regulation as Na2CO3and Na2SO4when reacting with Al2O3and SiO2; Na2S does not react directly with A12O3and SiO2, but it is capable of reacting with them in the presence of FeO.
     Based on the fundamental investigations, the new process of reduction roasting-magnetic separation-acid leaching for comprehensive utilization of high iron gibbsite-type bauxite ores was proposed and studied. The effect of the process parameters on the separation of iron, aluminum and silica was studied by reduction roasting and magnetic separation, the results show that aluminum and iron is capable of be separated under the condition of15%mass ratio Na2SO4,2%mass ratio borax,25%mass ratio Na2CO3, reduction roasting temperature of1050℃, reduction roasting time of60min, grinding pulp concentrate of50%, particle size of-0.074mm varies form95.5~96.0%and magnetic field intensity of975Gs; a magnetic product with TFe93.73%and Al2O31.21%, and a non-magnetic product with Al2O340.56%and TFe6.73%are obtained under above conditions; the magnetic separation recovery of iron reaches93.07%.
     Mechanism research shows that sodium salts promote the growth of metallic iron grain and enhance the separation of Al and Fe. Chemical analysis and XRD analysis show that the reduced pellet is mainly composed of metallic iron and sodium aluminosilicate, and main composition of the magnetic material is metallic iron, while main composition of nonmagnetic material (high-aluminium slag) is sodium aluminosilicate.
     The technologies recovering Al, Si and Na from nonmagnetic material were studied further. Sulfuric acid leaching is found to be one of effective methods. The optimum technological conditions of leaching high-aluminum slag in laboratory are obtained as H2SO4concentration30%, leaching temperature30℃, leaching time30min, liquid-solid ratio10:1, stirring speed200r/min. Under these conditions, the recovery of89.37%for Al2O3,89.12%for SiO2and96.46%for Na2O were achieved. The conditions of SiO2separation from the leaching solution is found to be H2SO4dosage70%, temperature90℃, time120min, liquid-solid ratio10:1, stirring speed500r/min, the recovery of SiO2is98.32%at the conditions.
     It has been found that gallium in high-iron bauxite goes into metallic iron, while more than80%of the vanadium goes into the nonmagnetic material and can be recycled from the leaching residue.
     On the basis of above investigations, a new process of comprehensive utilization of iron, aluminum, silicon, gallium and vanadium was first put forward. The process has many advantages such as short flowsheet, low investment cost, low waste disposal and high recovery efficiency over the process of First-Iron-then-Aluminium already published.The results provide a new way for the comprehensive utilization of high iron bauxite ores.
引文
[1]谭强.未来我国矿产资源供需形势严峻[J].功能材料信息.2007,4(2):48.
    [2]中国有色金属研究学会.世界氧化铝产量1998-2010季度统计表[EB/OL].http://www.cnal.com.2011.
    [3]U.S. Department of the interior, U.S. Geological Survey. Mineral commodity summaries 2010[R]. United States Government Printing Office, Washington: 2011.2011.1.21.
    [4]中国产业竞争情报网.我国矿产资源只有30年可采年限[EB/OL].http://www.chinacir.com.cn,2008.4.21
    [5]张伦和.合理开发利用资源实现可持续发展[J].中国有色金属.2009,(5):25-29.
    [6]湖南省有色金属技术经济信息网.2010年氧化铝及原铝产量增加同比上涨22.4%,19.9%[EB/OL]. http://www.hnys.gov.cn.2011.1.25.
    [7]李天庚,李自如,张且凡.世界铝工业发展与我国的对策[Z].中国长城铝业公司、中南工业大学、南方证券与期货研究中心.1998.
    [8]中华人民共和国国家统计局.中华人民共和国2009年国民经济和社会发展统计公报[EB/OL]. http://www.stats.gov.cn,2010.2.25.
    [9]环球外汇网.力拓预测中国将在十年内消耗掉全球大半主要金属[EB/OL].http://www.cnforex.com,2008.1.28.
    [10]庾莉萍.全球金融危机下的中外铝业[J].轻金属.2009,4:3-7.
    [11]孙志伟,鹿爱莉.我国铝土矿资源开发利用现状、问题与对策[J].中国矿业.2008,17(5):13-15.
    [12]李薇.我国铝土矿资源形势分析及保障[J].铝镁通讯.2008,2:1-3.
    [13]罗建川.基于铝土矿资源全球化的我国铝工业发展战略研究:[博士学位论文].长沙:中南大学.2006,1.
    [14]刘福兴.中铝股份铝土矿资源保障战略研究:[硕士学位论文].长沙:中南大学.2005,11.
    [15]吴荣庆.我国矿产资源总体形势及主要短缺矿产的发展趋势[J].中国金属通报.2006,42:5-10.
    [16]吴荣庆.我国矿产资源总体形势及主要短缺矿产的发展趋势[J].中国金属通报.2006,43:13-18.
    [17]穆新和.我国铝土矿资源合理开发利用的探讨[J].矿产与地质.2002,16(5):313-315.
    [18]殷俐娟.我国铝土矿资源利用现状及未来管理政策[J].中国矿业.2004,13(1):11-15.
    [19]顾松青.我国的铝土矿资源和高效低耗的氧化铝生产技术[J].中国有色金属学报.2004,14(5):91-97.
    [20]张家增.中国铝工业发展历程与发展趋势[A].中国有色金属学会第五届学术年会论文集[C].2003,8:40-42.
    [21]崔萍萍,黄肇敏,周素莲.我国铝土矿资源综述[J].轻金属.2008,2:6-8.
    [22]杨重愚.氧化铝生产工艺学[M].北京:冶金工业出版社.1993.
    [23]毕诗文,于海燕.氧化铝生产工艺[M].北京:化学工业出版社.2006,2.
    [24]刘中凡.世界铝土矿资源综述[J].轻金属.2001,5:7-12.
    [25]李天庾,李自如,张且凡.世界铝工业发展与我国的对策[Z].中国长城铝业公司、中南工业大学、南方证券与期货研究中心.1998.
    [26]W. Fulda, H. Ginsberg.氧化铝和铝[M].北京:冶金工业出版社.1960.
    [27]BA马泽里.氧化铝生产[M],北京:冶金工业出版社.1959.
    [28]Pedersen H. Norwegian Patent 43415[P].1924.
    [29]L. E. Barr. Alumina production from andalusite by the Pedersen process[M]. University of Lund, Sweden,1977.
    [30]D. J. Connor. Aluminium Extraction from Non—Bauxite Material[M]. Aluminium-Verlag GmbH.1988:230-250.
    [31]J. Grymek. Some physicochemical properties of 12CaO multiplied by(times)7Al2O3 phase in relation to Al2O3 production from self-disintegrating sinters[C]. Light Metals.1987:91-97.
    [32]J. Grymek. Complex production of aluminium oxide and iron from laterite raw materials applying the calcium aluminates polymorphism[C]. Light Metals. 1985:87-99.
    [33]J. Grymek. Way of weathered basalt enrichment for alumina and titanium-ferric concentrate recovery[C]. Light Metals.1989:61-67.
    [34]N. I. Eremin:Proe. Of the Intenat[C]. Symposium of ICSOBA, Budapest.1971, 329~335.
    [35]陈世益,周芳.广西高铁低品位三水铝土矿的开发利用研究[J].矿物岩石地球化学通报.1997,16(9):26-27.
    [36]李普涛,张起钻.广西靖西县三合铝土矿铝矿物特征及成因机制分析[J].矿产与地质.2009,23(1):76-79.
    [37]赵恒勤,赵新奋,胡四喜,马化龙.我国三水铝石铝土矿的矿物学特征研究[J].矿产保护与利用.2008,6(12):40-44.
    [38]广西有色地质勘查局二七三队.广西贵港市三水铝土矿蒙公矿区详查报告 [R].1993,10.
    [39]中南工业大学.贵县三水铝矿开发利用试验研究[R].1989,1.
    [40]东北工学院,沈阳铝镁设计研究院.贵港高铁铝土矿综合利用研究报告[R].1991.
    [41]李殷泰,毕诗文,段振瀛,杨毅宏,张敬东.关于广西贵港三水铝石型铝土矿综合利用工艺方案的探讨[J].轻金属.1992,(9):6-14.
    [42]唐向琪,陈谦德.贵港式三水铝石矿综合利用方案比较[J].轻金属.1995,2:1-6.
    [43]佟志芳.广西贵港高铁铝土矿综合利用的研究[博士学位论文].沈阳:东北大学.2005,1.
    [44]梅贤恭,袁明亮,陈荩.某三水型铝铁复合矿综合开发利用新工艺研究[J].矿产综合利用.1994,5:13-15.
    [45]高建阳,朱军,祝凤美,杨丛林.富铁三水铝土矿中铁矿物的反应特性[J].矿业工程.2008,6(4):39-41.
    [46]陈志友,李旺兴,陈湘清,马俊伟.三水铝石型铝土矿的浮选脱硅试验研究[J].轻金属.2008,7:7-10.
    [47]朱忠平,黄柱成,姜涛,李光辉,庄剑鸣.高铁三水铝石型铝土矿烧结特性[J].中国有色金属学报.2007,17(8):1360-1366.
    [48]广西投资集团有限公司.广西高铁三水铝土矿综合利用工业化试验研究报告[R].2007,10.
    [49]罗琳,刘永康.一水硬铝石—高岭石型铝土矿焙烧脱硅热力学机理研究[J].有色金属.1999,51(1):25-30.
    [50]叶大伦,胡建华.实用无机物热力学数据手册[M].北京:冶金工业出版社.2002,2
    [51]陈新民,陈启元.冶金热力学导论[M].北京:冶金工业出版社.1986,2.
    [52]Ernest M. Levin, Carl R. Robbins. Phase diagrams for ceramists[M]. America:The American ceramic society.1969:120~700.
    [53]曾庆衡.物理化学[M].长沙:中南工业大学出版社.1991,10.
    [54]叶大伦.冶金热力学[M].长沙:中南工业大学出版社.1987,8.
    [55]刘永康.一水硬铝石型铝土矿化学选矿脱硅中焙烧过程的研究[D].长沙:中南工业大学.1997.
    [56]H. S.Rayi, N.Kundu. Thermal analysis studies on the initial stages of iron oxide reduction[J]. Thermochimi. Acta.1986,101:107~118.
    [57]A.W.Coats, J.P.Redferm. Kinetic parameters from thermogravimetric data[J]. Nature.1964,201:68.
    [58]S.Paul, S.Mukherjee. Nonisothermal and isothermal reduction kinetics of iron ore agglomerates[J]. Ironmaking and steelmaking.1992,19(3):190-193.
    [59]邱冠周,姜涛,徐经沧,蔡汝卓.冷固结球团直接还原[M].长沙:中南大学出版社.2001,9.
    [60]黄希祜.钢铁冶金原理[M].北京:冶金工业出版社.2004,1.
    [61]王筱留.钢铁冶金学[M].北京:冶金工业出版社.2005,3.
    [62]郭培民,赵沛,张殿伟.低温下碳还原氧化铁的催化机理研究[J].钢铁钒钛,2006,27(4):1-6.
    [63]王淀佐,邱冠周,胡岳华.资源加工学.北京:科学出版社,2005.
    [64]Amitava Basumalllick, Influence of CaO and Na2CO3 as Addictive on the Reduction of Hematite-lignite Mixed Pellets[J]. ISU International,1995,35(9): 1050-1053.
    [65]周太华.高铝褐铁矿铝铁分离研究[硕士学位论文].长沙:中南大学.2008.
    [66]刘牡丹.高铝铁矿石还原法铝铁分离基础及新工艺研究[博士学位论文].长沙:中南大学.2010,5。
    [67]朱忠平,姜涛,李光辉,黄柱成.高铁三水铝石型铝土矿烧结过程中氧化铝反应热力学[J].中国有色金属学报.2009,19(12):2243-2251.
    [68]Xingmin Guo, Shengbi Zhang, Nianxin Fu, Xiaofeng Zhao. Effects of Catalyst and Additive Contanining Li, Na, or Ca on Reduction of Iron Oxide/Carbon Composite Pellets[J]. Journal of University of Science and Technology Beijing, 2001,8(3):185-188.
    [69]Koichiro Fukudaa, Takahiro Besshoa, Ken-ichi Matsunagaa, Hideto Yoshida. Chemical zoning of calcium aluminoferrite formed during melt crystallization in CaO-SiO2-Al2O3-Fe2O3 seudoquaternary system[J]. Cement and Concrete Research.2004,34:1535~1540.
    [70]Koichiro Fukuda, Ayari Takeda, Hideto Yoshida. Remelting reaction of a-Ca2SiO4 solid solution confirmed in Ca2SiO4-Ca12Al14O33 pseudobinary system[J], Cement and Concrete Research.2001,31(4):1185-1189.
    [71]D. C.Presnall. Phase Diagrams of Earth-Forming Minerals[J]. Minerals physics and crystallography.1995,2:248~268.
    [72]G. H.Gudfinnsson, D. C.Presnall. Melting behavior of model lherzolite in the system CaO-MgO-Al2O3-SiO2-FeO at 0.7 to 2.8 GPa[J], Journal of petrology. 2000,(41):1241-1269.
    [73]I.Barin, O.Knacke. Thermochemical properties of inorganic substances[M]. Berlin:Supplement,1997.
    [74]I.Barin, O.Knacke. Thermochemical properties of inorganic substances[M]. Berlin, Springer,1973.
    [75]孟芸.氧化铝生产热力学数据库的优化与完善[M].长沙:中南大学,2004.
    [76]任万能.氧化铝生产热力学数据库的优化与应用[D].长沙:中南大学,2005.
    [77]M. Akaogi, M. Haraguchi, M. Yaguchi, H. Kojitani.High-pressure phase relations and thermodynamic properties of CaAl4Si2O11 CAS phase[J]. Physics of the Earth and Planetary Interiors.2009,(173):1-6.
    [78]周秋生,齐天贵,彭志宏,刘桂华,李小斌.熟料烧结过程中氧化铁反应行为的热力学分析[J].中国有色金属学报.2007,17(6):973-978.
    [79]李小斌,李永芳,刘祥民,刘桂华,彭志宏,翟玉春.复杂硅酸盐矿物Gibbs自由能和焓的一种近似计算法[J].硅酸盐学报.2001,29(3):232-237.
    [80]Fang Zheng, Zhang Quanru, Zhang Pinmin, Chen Xinmin. Oxygen potentials and oxygen-potential diagrams for buffer gas system at normal pressure [J]. Chinese journal of metals society technology.1992,8:35-43.
    [81]Evgueni Jak, Sergei Digterov, Peter C. Hayes, Arthur D. Pelton. Thermodynamic modeling of the system Al2O3-SiO2-CaO-FeO-Fe2O3 to predict the flux requirements for coal ash slags[J]. Fuel.1998,77(1/2):77-84.
    [82]黄柱成,蔡凌波,张元波,杨永斌,姜涛Na2CO3和CaF2强化赤泥铁氧化物还原研究.中南大学学报.2010,41(3):838-845.
    [83]梁伯高.黑色冶金物理化学[M].上海:上海科学教育出版社.1963.
    [84]B. P. Jalan, Y. K. Rao. Kinetics and mechanism of catalyzed Boudouard reaction. Carbon.1972,10(3):341.
    [85]B.P. Jalan, Y.K. Rao. A study of the rates of catalyzed Boudouard reaction. Carbon.1978,16(3):175-184.
    [86]张元波.含锡锌复杂铁精矿球团弱还原焙烧的物化基础及新工艺研究[博士学位论文].长沙:中南大学.2006,9.
    [87]杨学民,王大光,宜德茂,唐武成,刘天中.CO还原固态铁氧化物的动力学研究[J].上海金属.1994,16(6):9-15.
    [88]傅崇说.有色冶金原理[M].北京:冶金工业出版社,1993.
    [89]H. Kaneko, Y. Ochiai, K. Shimizu, Y. Hosokawa, N. Gokon and Y. Tamaura. Thermodynamic study based on the phase diagram of the Na2O-MnO-Fe2O3 system for H2 production in three-step water splitting with /MnFe2O4/Fe2O3 [J]. Solar Energy.2002,72(4):377-383.
    [90]Hui-Fen Chen, Sheng-Rong Song, Huan-Ji Luo, Li-Jun Li, Jian-Neng Fang,Yaw-Lin Chen, I-Chieh Lin, Ya-Jiun Liu, Chia-Mei Liu, Li-Wei Kuo. Dissolution of Na2OCaOnSiO2 glasses in Na2CO3 solution for long-term and short-term experiments [J]. Journal of Non-Crystalline Solids.2005,351: 1417~1425.
    [91]朱德庆,姜涛,郭宇峰.钒钛磁铁精矿铁钒钛综合利用新流程[J].矿产综合利用,1999,(2):16-20.
    [92]郭宇峰.钒钛磁铁矿固态还原强化及综合利用研究:[博士学位论文].长沙:中南大学,2007.
    [93]刘建华,张家芸,周土平.氧化物杂质对铁氧化物还原动力学的影响[J].钢铁研究学报.2000,12(4):55-59.
    [94]范晓慧,郭宇峰,邱冠周.钛精矿制取富钛料新工艺[J].矿产综合利用,2002,(4):3-7.
    [95]李秀兵,刘琛,方亮.硼砂在制备WCp增强铁基复合材料中的去氧化膜作用机理[J].铸造技术.2006,27(4):328-329,336.
    [96]李秀兵,刘琛,邢建东.硼砂在制备WCp增强铁基复合材料中的粘结作用[J].铸造.2006,55(4):366-340.
    [97]Shuangqun Zhao, Xishan Xie, Gaylord D. Smith. The oxidation behavior of the new nickel-based superalloy Inconel 740 with and without Na2SO4 deposit[J]. Surface & Coatings Technology.2004,185:178~183.
    [98]G.M. Liua, F. Yu, J.H. Tian, J.H. Ma. Influence of pre-oxidation on the hot corrosion of M38G superalloy in the mixture of Na2SCO4-NaCl melts[J]. Materials Science and Engineering A.496 (2008) 40-44.
    [99]Wanchao Liu, Jiakuan Yang, Bo Xiao. Review on treatment and utilization of bauzite residues in China[J]. International Journal of Mineral Processing,2009, 93:220-231.
    [100]刘桂华,张亚莉,彭志宏,周秋生,刘祥民,李小斌.钠硅渣中的氧化铝回收工艺[J].中国有色金属学报,2004,14(3):499-503.
    [101]刘桂华,范旷生,李小斌.氧化铝生产中的钠硅渣[J].轻金属.2006,2:13-17.
    [102]Chao Li, Henghu Sun, Jing Bai, Longtu Li. Innovative methodology for comprehensive utilization of iron ore tailings:Part 1.The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting[J]. Journal of hazardous materials.2010,174(1-3):71-77.
    [103]Chao Li, Henghu Sun, Jing Bai, Longtu Li. Innovative methodology for comprehensive utilization of iron ore tailings:Part 2:The residues after iron recovery from iron ore tailings to prepare cementitious material [J]. Journal of Hazardous Materials.2010,174(1-3):78-83.
    [104]B.Mishra, A.Staley. Recovery of value added products from red mud. Minerals and metallurgical Processing society for mining[J]. Metallurgy and Exploration,2002,19(2):87~89.
    [105]蒋汉瀛.湿法冶金过程物理化学[M].北京:冶金工业出版社,1984.
    [106]孙娜.高铁三水铝石型铝土矿中铁铝硅分离的研究[硕士学位论文].长沙:中南大学.2010,5.
    [107]S.Mahiuddin, S.Bandopadhyay, J. N.Baruah.A study onthe beneficiation of Indian iron ore fines and slime using chemical additives[J]. International Journal of Mineral Processing.1989, (11):285~302.
    [108]L.Piga, F.Pochetti, L.Stoppa. Recovering Metals from Red Mud Generate during Alumina Production[J]. Journal of the Minerals Metals and Materials Society.1993,45(11):54-59.
    [109]B.Mishra, A.Staley, D.Kirkpatrick. Recovery of value added products from red mud[J]. Minerals & Metallurgical Processing.2002,19(2):87~89.
    [110]梅光军,余军,余永富.活性硅酸胶体的化学性质及在矿物浮选分离中的作用[J].国外金离矿选矿.2000,1:9-13.
    [111]周宏孙培祯.多元硅酸盐熔体的热力学性质计算[J].上海硅酸盐.1994,1:15-21
    [112]浙江大学.硅酸盐物理化学[M].北京:中国建筑工业出版社.1980.
    [113]蔡会武,吴建宁,郭红梅,顾兴林.高铁硫酸铝除铁研究[J].西安科技大学学报.2006,26(1):78-81.
    [114]沈纬,王英,傅洵.硫酸铝生产过程中的萃取法除铁[J].应用化学.2002,19(5):464-467.
    [115]王学诗,吕鲜翠.联合法提镓工艺研究[J].轻金属,2002(9):29-30.
    [116]赵志英,白永民,文振江,王宏,贺誉清.从混联法生产中提取嫁的研究[J].有色金属(冶炼部分).2002,6:38-41.
    [117]赵毅,赵英,陈颖敏.从粉煤灰中分离镓的试验研究[J].华北电力技术.1998(1):35-37.
    [118]张亚莉,刘祥民,彭志宏,周秋生,李小斌,刘业翔.钠硅渣湿法处理工艺—碱回收工艺研究[J].矿冶工程.2003,6(12):56-59.
    [119]Hwa Young Lee,何良惠.从锌渣中回收镓的方法[J].四川有色金属.1994,(4):14-16.
    [120]李光辉,董海刚,黄柱成,姜涛,邱冠周.从湿法炼锌渣中回收镓和锗的研究(下)—锈蚀法从铁粉提取镓与锗[J].金属矿山.2004,(8):69-73.
    [121]刘志宏,张登凯,李玉虎,李启厚,艾侃.海绵铁中提取镓的研究[J].有色金属(冶炼部分).2005,3:33-37.
    [122]张亚平.锌渣还原铁粉中回收镓锗的工艺及机理[硕士学位论文].长沙:中南大学.2003,6.
    [123]吴平男,潘贻芳.铁水提镓方法的热力学分析[J].钢铁钒钛.1988,(4)59-65.
    [124]潘贻芳,吴平男.用氯化法从铁水中提镓[J].钢铁钒钛.1993,14(4):24-26.
    [125]宾智勇.钒矿石无盐焙烧提取五氧化二钒试验[J].钢铁钒钛.2006,27(1)22.
    [126]谭爱华.某石煤钒矿空白焙烧—碱浸提钒工艺研究[J].湖南有色金属.2008,24(1):24-26.
    [127]戴文灿,朱柒金,陈庆邦.石煤提钒综合利用新工艺的研究[J].有色金属.2000(3):15-17.
    [128]张中豪,王彦恒.硅质钒矿氧化钙法焙烧新工艺[J].化学世界.2000(6)290-292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700