用户名: 密码: 验证码:
桂中凹陷周缘铅锌锡多金属矿床的界面成矿与找矿预测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地质界面是指两种或两种以上不同地质体(含地质流体)之间的接触交界部分,是两者之间的陡变过渡带。界面两侧的地质体(含地质流体)具有不同的岩性类型、不同的矿物组成、不同的化学成分、不同的结构构造,以及不同的地球物理和地球化学特征。地质界面的成矿作用实际是构造-成矿作用的主要类型和重要方式,界面成矿不仅仅涉及到单纯的成矿空间,它还涉及到物理的、化学的及生物化学的地质作用,其核心问题是构造界面和成矿流体的形成、演变、运动以及二者之间的耦合关系。
     桂中凹陷北邻桂北隆起,南至凭祥-大黎深大断裂;东北以龙胜-永福-东乡深大断裂为界与桂东北凹陷相连,东南与大瑶山隆起接界;西以南丹-河池-昆仑关深大断裂为界与右江海槽毗邻。桂中凹陷在区域上属于扬子及华夏两大古陆之间的活动带——南华裂谷带的一部分,为裂谷海槽型沉积盆地,是一个晚古生代大型沉积凹陷区,其周缘发育多种类型、多个级次的地质界面。加里东运动后,南华裂谷带闭合、消亡,扬子陆块和华夏陆块拼合成古华南大陆壳。处在扬子和华夏两大陆块之间拼接、缝合部位的桂中-桂东北地区和桂西地区,是扬子和华夏两大古陆多次发生开合作用的主要地区,为大地构造的薄弱地带,区域性的大地构造运动仍具有相当强烈的活动性,在D-T2大陆形成发展时期,桂中-桂东北地区仍旧长期下沉,形成具陆缘盆地性质的大型桂中凹陷盆地和桂东北凹陷盆地。
     桂中凹陷周缘铅锌锡多金属矿产资源丰富,已发现超大型、大中型矿床10余处,小型矿床或矿点数百处,如南丹大厂超大型锡多金属矿床,北山、盘龙大型铅锌矿床,大明山大型钨矿床,龙头山、福六岭、六九顶中型金矿床,两江中型铜矿床,泗顶中型铅锌矿床等,它们在空间上主要产于:①沉积盆地与隆起区接壤地带;②地层角度不整合面及其上、下地层中;③中酸性侵入岩体周围;④多组断裂构造的交汇地带,其形成与分布明显受到凹陷周缘地质界面的控制,体现了地质界面控岩、控矿和成矿的特点。
     桂中凹陷周缘主要地质界面类型按规模大致可分为三个级次:扬子古陆边缘构造、深大断裂与泥盆纪-寒武纪地层不整合面及大型岩体接触带、中-小型构造系统分别为桂中凹陷周缘第一、二、三级成矿-控矿地质界面;按形成的地质作用又可归类为沉积作用形成的地质界面(包括地层不整合面、层序边界面及高孔度生物灰岩、白云岩等)、岩浆作用形成的地质界面(包括岩体接触带、火山机构等)和构造作用形成的地质界面(包括古陆边缘、深大断裂带、次级断裂(节理)裂隙系统、褶皱虚脱部位、层间滑脱(破碎)带等),并分别论述了各级次地质界面的成矿-控矿意义。
     从地质界面成矿-控矿作用出发,将桂中凹陷周缘铅锌锡多金属矿床大致划分为三种主要类型:与沉积型地质界面有关的铅锌多金属矿床、与岩浆型地质界面有关的金铜多金属矿床、与复合型地质界面有关的锡多金属矿床,并详细论述了其成矿地质条件、矿床地质-地球化学特征及成矿作用。
     与沉积型地质界面有关的铅锌多金属矿床是指产于桂中盆地边缘沉积不整合界面附近沉积岩中的铅锌多金属矿床,其成因多与盆地热卤水有关,是由各种非岩浆成因的盆地流体发生改造所形成的矿床,属密西西比河谷型(MVT)铅锌矿床;与岩浆型地质界面有关的金铜多金属矿床是指产于桂中盆地边缘与隆起区过渡带中靠隆起区一侧的中酸性岩浆岩接触带及其附近的金铜或铜钨多金属矿床,其成矿作用主要与酸性和中酸性中-小型岩浆岩体有关,是由岩浆来源的气水热液交代与充填作用导致成矿物质富集所形成的矿床,属岩浆热液型或火山-次火山热液型矿床;与复合型地质界面有关的锡多金属矿床是指产于桂中盆地边缘深大断裂带上隐伏或半隐伏的中酸性岩浆岩接触带及其附近的锡多金属矿床,其成矿作用主要与泥盆纪同生沉积作用和燕山期中酸性岩浆改造富集作用有关,属岩浆热液-盆地热卤水复合型锡多金属矿床。
     基于地质界面成矿-控矿理论,分别建立了与沉积型地质界面有关的铅锌多金属矿成矿模式与找矿模型、与岩浆型地质界面有关的金铜多金属矿成矿模式与找矿模型和与复合型地质界面有关的锡多金属矿成矿模式与找矿模型,在近年国土资源调查评价成果基础上,运用相似类比法初步圈定了武宣盘龙-司律铅锌矿、宾阳六章钨铜铝矿、河池北香锡多金属矿、南丹罗富铅锌多金属矿和贵港镇龙山银铅锌多金属矿等5个具有大型-超大型资源潜力的找矿远景区。
Geological surfaces, the contacting parts between two or more geological bodies (including geological fluids), are the transition zones that change suddenly. The geological bodies (including geological fluids) on both sides of the surface present difference in lithology, minerals, chemical composition, structure, texture, and other geophysical and geochemical characteristics. The metallogenesis in the geological surface is in fact the main type and the important pattern of the structure controlling ore-forming. The metallogeneses at the surface involve not only simply the space of the metallogeneses, but also the physical, chemical and biochemical processes. The key problems of metallogeneses in geological surfaces are the formation, the evolution, and the movement of the structure surface and ore-forming fluid, and also including the coupled relation between each other.
     The middle Guangxi depression is located neighbouring to Northern Guangxi Uplift in the north, Pingxiang-Dali deep fault in the south, Dayaoshan Uplift in the southeast. It is separated by Longsheng-Yongfu-Dongxiang deep fault in the northeast from Northeastern Guangxi Depression, and by Nandan-Hechi-Kunlun deep fault from Youjiang tough in the west. The middle Guangxi depression, one part of the Nanhua rift in the mobile belt between Yangtze and Cathaysian old land as a rift-trough type basin is a great sedimentary sag of late Paleozoic, around which many kinds of geological surfaces in different orders had developed. After Caledonian Movement, Nanhua rift closed and withered away, and Cathasian block and Yangtze block joined together to form the ancient Southern China Continent. Central Guangxi-Northeastern Guangxi and Western Guangxi, the main places in which the opening-closing movement took place several times between Yangtze and Cathaysian blocks, are the weak zones where regional tectonic movements were rather strong. During the period of D-T2, and the course of the formation and extension of South China continent, Central Guangxi-Northeastern Guangxi kept on sinking, which made the formation of the large scale middle Guangxi depression and northeastern Guangxi depression having the characters of continent marginal basins.
     The periphery of the middle Guangxi depression is abundant in lead-zinc-tin-polymetallic resources. More than10super large scale or big-and-middle-sized deposits, and several hundreds of small deposits had been found, such as Nandan-Dachang super large scal tin-polymetallicdeposit, Beishan and Bailong large scale Zinc-Lead deposits, Damingshan larg scale tungsten deposit, Longtoushan, Fuliuling and Liujiuding middle scale gold deposits Liangjiang middle scale copper deposit, Siding middle scale Zinc-Lead deposits, and etc. A. these deposits occurred in space, such as (1) the borders between sedimentary basin and th uplift;(2) the surfaces of angle unconformities and the strata in the above and the below;(3) th circumstance of intermediate-acid intrusive bodies;(4) the intersection belts of several group o faults. The formation of all these spaces was evidently controlled by the geological surface which present in the surrounding of the Depression, representing the characteristics that th geological surface determined the formation of diagenesis and mineralization.
     The geological surfaces which occurred in the surrounding of the middle Guangx depression can be classified into three orders:Yangtze ancient continent marginal structure; dee(?) large faults, the unconformities and the large contact zone of rock bodies betweei Devonian-Cambrian strata; middle-small scale structure systems, which were the first, th(?) second and the third order mineralization controlling surfaces, respectively. According to th(?) geological processes of the formation, geological surfaces can be divided into:the surface: formed by sedimentation (including the unconformities, boundary surfaces of strata sequenc(?) and plurilocellate biolithite limes and dolostone); the surfaces formed by magmatism (including contact zones of rock masses and volcanic apparatus); the surfaces formed by tectonizatior (including ancient continent margins, deep faults, fissure system of secondary faults/diaclasses fold collapse part, slippages/shuttered zone between layers, and etc). In the present dissertation the mineralization controlling of geological surfaces was discussed in the orders respectively.
     Based on the mineralization and ore-controlling of the geological surfaces, the lead-zinc-tin(?) polymetallic deposits around the middle Guangxi depression were grouped into three types lead-zinc-polymetallic deposits controlled by the geological surface of the sedimentation type gold-copper-polymetallic deposits controlled by the geological surface of the magmatic type tin-polymetallic deposits controlled by the geological surface of the complex type. The minerogenetic condition, geological and geochemical characteristics, and the metallogenesis o(?) all the deposits were discussed in the present dissertation.
     The lead-zinc-polymetallic deposits relating to the geological surface of sedimentation type are the deposits which formeded in the sedimentary rock near the sedimentary unconformities ir the margin of the Central Guangxi basin. These deposits were related to the hot brine in the basir and developed by the alteration of many kinds of non-magmatic origin fluids of the basin, belonging to MVT lead-zinc deposits. The gold-copper-polymetallic deposits relating to the geological surface of magmatic type formed in the contact zones and the surrounding area of the medium-acidic magmatite occurred near the uplift side in the transition zone between the margin of the Central Guangxi basin and the uplift. These were related to the acidic and medium-acidic middle-small size magmatite bodies, and formed by the metasomatism and the filling of magma-origin hydrotherm, belonging to the magmatic hydrothermal or volcanic-subvolanic hydrothermal type deposits. The tin-ploymetallic deposits, concerning the geological surface of the complex type, occurred in the contact zones and the surrounding area of the concealed or half concealed medium-acidic magmatite in the deep faults of the Central Guangxi basin margin. These deposits were mainly developed by the synsedimentation in Devonian and alteration and enrichment of medium-acidic magmatite in Yanshanian, falling into the type of tin-ploymetallic deposits with the recombination metallogenesis of the magmatic hydrothermal and hot brine in the basin.
     Based on the theory of the mineralization and ore-controlling of the geological surfaces, the metallogenic and the prospecting models were established for the lead-zinc-polymetallic deposits relating to sedimentary geological surface, the gold-copper-polymetallic deposits concerning magmatic geological surface and the tin-polymetallic deposits connecting with the complex geological surface, respectively. On the basis of the results of the investigation and evaluation of land and resources in recent years, five prospecting areas with large or super-large scale resource potential were preliminary delineated by the method of similar analogy. They are Panlong-Silv lead-zinc deposit in Wuxuan county, Liuzhang tungsten-copper-molybdenum deposit in Binyang county, Beixiang tin-ploymetallic deposit in Hechi city, Luofu lead-zinc-polymetallic deposits in Nandan county, and Longshan silver-lead-polymetallic deposits in the town of Guigang.
引文
[01]翟裕生等.区域成矿学.北京:地质出版社,1999.23;
    [02]翟裕生等.古陆边缘成矿系统.北京:地质出版社,2002.371-384;
    [03]翟裕生等.大型构造与超大型矿床.矿床地质,1994(S1):115-117;
    [04]翟裕生等.大型构造与超大型矿床.北京:地质出版社,1997.9;
    [05]翟裕生,彭润民,邓军等.区域成矿学与找矿新思路.现代地质,2001,15(2):151-156;
    [06]翟裕生.成矿构造研究的回顾与展望.地质论评,2002,48(2):140-146;
    [07]陈毓川等.大厂锡矿地质.北京:地质出版社,1993.69-340;
    [08]陈毓川,毛景文.桂北地区矿床成矿系列和成矿历史演化轨迹.南宁:广西科学技术出版社,1995.311-352;
    [09]裴荣富,李进文,梅燕雄.大陆边缘成矿.大地构造与成矿学,2005,29(1):24-34;
    [10]孙启祯.边缘成矿概论.北京:地质出版社,2001.16-41;
    [11]孙启祯.边缘成矿与成矿边缘效应.地学前缘,1994,1(3-4):176-183;
    [12]孙启祯.论边缘成矿——关于金属矿床的时空分布及其成因联系.地质与勘探,1986(1):7-14;
    [12]倪师军,张成江,滕彦国.成矿流体地球化学界面:I概念的由来及发展.地质地球化学,2001,29(3):26-31:19-21;
    [13]张成江,滕彦国,倪师军.成矿流体地球化学界面:Ⅱ组成及标志.地质地球化学,2001,29(3):26-31:22-25;
    [14]滕彦国,倪师军,张成江等.成矿流体地球化学界面:Ⅲ应用实例研究.地质地球化学,2001,29(3):26-31;
    [15]关广岳.界面成矿地球化学——兼论矿床空间分布规律.全国第四届矿物岩石地球化学学术讨论会论文摘要汇编,北京:地震出版社,1991
    [16]滕彦国,倪师军,张成江.川西北巴西金矿田流体成矿的地球化学界面及地学核技术识别.地质与勘探,2000,36(1):60-62
    [17]张成江.铀成矿流体地球化学界面.四川地质学报,2005,25(2):86-91;
    [18]倪师军等.302铀矿床热液的混合和沸腾垂直分带模式.铀矿地质,1994(2):71-78;
    [19]滕彦国,倪师军,张成江.成矿流体活动的地温信息及地球物理示踪.地质地球化学,1999,27(3):17-22;
    [20]倪师军,曹志敏,张成江等.成矿流体活动信息的三个示踪标志研究.地球学报,1998,19(2):166-169;
    [21]倪师军,滕彦国,张成江等.成矿流体活动的地球化学示踪研究综述.地球科学进展,1999,14(4):346-352;
    [22]邓军,吕古贤,杨立强等.构造应力场转换与界面成矿.地球学报,1998,19(3):244-250;
    [23]丛培章,李守生,王慧等.界面成矿初探——以招远金矿集中区典型金矿床为例.黄金,2002,23(12):1-6;
    [24]郭涛,吕古贤,刘杜娟等.阜山金矿床构造物理化学界面与成矿分析.地球学报,2002,23(2):1—6;
    [25]徐志康,赵重远,吴汉宁等.沉积盆地地质界面的分形标定.科学通报,1995,40(18):1693-1694;
    [26]滕彦国,倪师军,张成江.阿西金矿床流体成矿的地球化学界面探讨.矿物岩石,2000,20(2):23-26;
    [27]陶一川.沉积盆地流体运移研究的某些进展.地质科技情报,1987,6(3):77-84;
    [28]倪建宇,姚旭莹,林以安.沉积物一水界面化学参数原位现场测定技术.海洋地质与第四纪地质,2002,22(4):111-115;
    [29]段世铎,谭逸玲.界面化学.北京:高等教育出版社,1990;
    [30]李葵英.界面与胶体的物理化学.哈尔滨:工业大学出版社,1998;
    [31]Keller T J, Shelton K L, Gregy J M. Fluid-rock interactions and fluid migration in the Reelfoot Rift System. midcontinent USA [A], J P Hendry, etal., Geofluids Ⅱ' 97,1997
    [32]Hochella M F, Jr. The changing face of mineral-fluid interface geochemistry, Kharaka & Maest (eds), Water-rock interaction. Rotterdam:Balkema,1992
    [33]Craw D. Fluidevolution. fluidimmiscibility and gold deposition during Cretaceous-Recent tectonics and uplift of the Otago and AlpineSchist. New Zealand, Chem. Geol.,1992,98
    [34]Haynes D W, Cross K C, Bills R T et al.. Olympic Dam ore genesis:A fluid-mixing model. Econ. Geol.1995,90
    [35]Gough D I. Electromagnetic exploration for fluids in the Earth'scrust, Earth-Science Reviews,1992,32
    [36]Moller P Kersten G, Electrochemical accumulation of visible gold on pyrite and aresenopyrite surface, Mineral Deposita,1994,29
    [37]Giggenbach W F. Geothermal solute equilibria derivation of Na-K-Mg-Ca geoindicators. Geochim, Cosmochim, Acta,1988,52
    [38]Barnes H L, Gould W W. Hydrothermal replacement of carbonate by sulfides, Kharaka and Maest (eds), Water-Rock Interaction. Rotterdam:Balkema,1992
    [39]M F Hochella, Jr. The changing face of mineral-fluid interface geochemistry, Kharaka & Maest (eds.), Water-rock interaction. Rotterdam:Balkema,1992
    [40]王先彬等.地球内部流体研究的若干关键问题.地学前缘,1996,3(3-4):105-118;
    [41]赵鹏大,王京贵,饶明辉等.中国地质异常.地球科学,1995,20(2):118-125;
    [42]赵鹏大,池顺都,陈永清.查明地质异常:成矿预测的基础.高校地质学报,1996,2(4):361-373;
    [43]吴淦国.矿田构造与成矿预测.地质力学学报,1998,4(2):1-4;
    [44]张德会.关于成矿流体地球化学研究的几个问题.地质地球化学,1997(3):49-57;
    [45]张德会.流体的混合和沸腾在热液成矿中的意义.地球科学进展,1997,12(6): 546-552;
    [46]王登红等.广西南丹大厂超大型锡多金属矿床的成矿时代.矿床地质,2004,78(1):132-138;
    [47]蔡明海等.广西大厂矿田花岗岩地球化学特征及其构造环境.地质科技情报,2004,23(2):57-62;
    [48]姚书振,周宗桂,宫勇军等.初论成矿系统的时空结构及其构造控制.地球通报,2011,30(4):469-477;
    [49]杨开庆.构造动力作用中地球化学作用.大地构造与成矿学,1984,8(4):327-336;
    [50]王玉明.韧性剪切过程中金沉淀富集的新机制.地质论评,1998,44(6):643-648;
    [51]邓洪涛.东杜斯泰金铜矿成矿构造地球化学障及成矿规律.新疆地质,2001,19(1):1;
    [52]翟裕生.论成矿系统.地学前缘(中国地质大学,北京),1999,6(1):13-27;
    [53]黄富荣.试论“临界成矿地质条件”.化工矿产地质,2000,22(1):5-16;
    [54]李志明、刘家军等.层序地层分析在非油气领域的应用进展及前景评述.地质与勘探,2004,40(1):81—85;
    [55]金明霞、王洁民等.残浆沸腾与锡钨成矿作用.地球科学,1999,20(3):265-271;
    [56]Sangster D F. World class MVT and SEDES lead-zinc deposits [A], Geol. Survey of Canada M in. Colloquium,1[C]. Ottawa:Ottawa Congress Center.1994
    [57]White D E. Diverse origins of hydrothermal ore fluids[J]. Econ. Geol,1974,69: 954-973.
    [58]Falconer K J. Fradal Geometry:Mathematical Foundations and Applications. New York:John Wiley & Sons,1990.
    [59]Colley H. The mineral deposits and metallogeacsis of the Fizi Platiorm, Econ. Geol.,1980,75,6:807-829.
    [60]Leach D L. Genesis of the Ozark Mississipi Valley-Type metallogenic province, Missouri, Arkansas, Kansas and Oklahoma, USA [A]. FontboteL, Boni M eds. Sediment-hosted Pb-Zn ores[M]. Berlin:Springer Verlag,1994,104-138.
    [61]Sangster D E, Nowlan G S, McCracken A D. Thermal comparison of Mississipi Valley-type lead-zinc deposits and their host rocks using fluid inclusion and conodont color alteration index data[J]. Econ. Geol.,1994,89:493-514.
    [62]Hubert L.Barnes. Geochemistry of hydrothermal ore deposits, Third edition,1997, New York. John Wiley & Sons. Inc.
    [63]Sverjensky, D. A., The diverse origins of Mississippi Vally-type Zn-Pb-Ba-F deposits, Chron. Rech. Min.,1989,495:5-13.
    [64]Sicree A. A., and Barnes H. L., Upper Mississippi Valley district ore fluid model, the role of organic complexes,1996,11:105-131.
    [65]解习农、王增明.盆地流体动力学及其研究进展.沉积学报,2003,21(1):19-23;
    [66]刘建明等.盆地流体及其成矿作用.矿物岩石地球化学通报,2000,19(2):85-94;
    [67]杨庆杰等.盆地流体的基本类型及其驱动机制.世界地质,2000,19(1):15-19;
    [68]郜兆典.大厂锡多金属矿床成矿模式及找矿远景.广西地质,2002,15(3):25-36;
    [69]黄民智,陈伟十,李蔚铮等.广西龙头山次火山-隐爆角砾岩型金矿床.地球学报,1999,20(1):39—46;
    [70]韦子任,张耀华.贵港市龙山金矿田找矿方向.南方国土资源,2003,(8):31-33;
    [71]朱桂田.广西龙头山金矿床地质特征及成因研究.矿产与地质,2002,16(5):266-272;
    [72]胡明安,徐伯骏,曹新志等.地质界面对桂中凹陷区铅锌矿床的控制意义.地球科学——中国地质大学报,2005,30(3):353-358;
    [73]张科,胡明安,曹新志等.广西大瑶山及其西侧铅锌成矿区地质特征及找矿方向.地质找矿论丛,2005,20(1):21-26;
    [74]胡明安.低温成矿系列中生物有机质的矿床学意义.地球科学——中国地质大学报,2000,25(4):375-379;
    [75]胡明安,章传玲.四川石棉田湾金矿床韧性剪切构造带地球化学障的成矿意义.地球科技情报,2000,19(2):33-36;
    [76]胡明安.地质热事件-有机质-金属成矿作用的联系.地球科技情报,1997,16(2):67-72;
    [77]胡明安.有机地球化学在外生成矿作用研究中的应用.地球科技情报,1984(2):118-124;
    [78]胡明安.有机质的热液成熟作用在云南金项铅锌矿床形成过程中的意义.地球科学——中国地质大学报,1989,14(5):503-512;
    [79]李朝阳,刘玉平,管太阳等.不整合面中的成矿机制与找矿研究.地球前缘(中国地质大学,北京),2004,11(2):353-359;
    [80]翟裕生.不整合面对内生成矿作用的意义.地质论评,1965,23(5):359-364;
    [81]顾雪祥,董树义,王银宏等.不整合面控制内生金属成矿的新实例:山东沂南金铜铁矿床.现代地质,2008,22(2):152-161;
    [82]崔彬,李忠.成矿空间初探.地质与勘探,2000,36(6):6-8;
    [83]张善明,吕新彪,邓国祥等.地质界面控矿原理及其运用要点.地质科技情报,2009,28(6):51-56;
    [84]张善明,吕新彪,唐小春等.地质界面控矿原理及其运用要点.地质与勘探,2010,46(2):314-322;
    [85]王剑,宁浦功.桂北桂中泥盆纪沉积盆地大地构造演化与铅锌成矿作用.广西地质,1998,11(1):1-6;
    [86]翟建平,梁锦.几种主要构造的控矿原理综述.中山大学研究生学刊(自然科学、医学版),2010,31(4):90-97;
    [87]刘宝珺,王剑.论海平面变化与层控矿床成因.地球科学——中国地质大学报,1997,22(3):285-292;
    [88]张成江.铀成矿流体地球化学界面.四川地质学报,2005,25(2):86-91;
    [89]卢家烂,庄汉平,刘文均.有机质在层控铅锌矿床中作用的实验研究.沉积学报,1997,15(2):226-231;
    [90]郜兆典.广西北山式铅锌、黄铁矿床成矿模式及找矿远景.广西地质,2003(11):25-27;
    [91]唐诗佳,彭恩生,李石锦.广西泗顶-古丹铅锌矿床的构造控矿作用及其找矿方向.桂 林工学院学报,2001,21(1):68-72;
    [92]蔡明海,赵广春,郑阳等.桂西北丹池成矿带控矿构造样式.地质与勘探,2012,48(1):68-75:
    [93]徐明,蔡明海,彭振安等.大厂矿田成矿分带特征及其控制机理研究.矿产与地质,2011,25(1):29-33;
    [94]何海洲.广西大厂超大型锡矿的形成条件与成矿模式.地质找矿论丛,2008,23(3):187-190:
    [95]王登红,陈毓川,陈文等.广西南丹大厂超大型锡多金属矿床的成矿时代.地质学报,2004,78(1):13239;
    [96]蔡明海,毛景文,梁婷等.大厂锡多金属矿田铜坑_长坡矿床流体包裹体研究.矿床地质,2005,24(3):228-241;
    [97]范森葵,伍永田,王明艳等.广西大厂矿田矿床分布规律与找矿方向.矿产与地质,2008,22(6):52024;
    [98]韦子任,张耀华.贵港市龙山金矿田找矿方向.广西地质,2003(8):31-33;
    [99]蔡明海,梁婷,吴德成等.广西丹池成矿带构造特征及其控矿作用.地质与勘探,2004,40(6):5-10;
    [100]李水如,王登红,梁婷等.广西大明山钨矿区成矿时代及其找矿前景分析.地质学报,2008,82(7):87379;
    [101]黄民智,陈伟十,李蔚铮.广西龙头山次火山-隐爆角砾岩型金矿床.地质学报,1999,20(1):39-46;
    [102]杨锋,冯佐海。康志强.广西中部大明山钨矿白云母40Ar/39Ar定年及其地质意义.地质通报,2011,30(9):1429-1433;
    [103]石晓明,杜金全,韦可利.广西两江铜矿床地质特征及找矿潜力分析.地质通报,2010,24(3):213-216;
    [104]谢抡司,孙邦东.广西贵港市龙头山火山一次火山岩型金矿床地质特征.广西地质,1993,6(4):27-42;
    [105]冯佐海,王春增,王葆华.花岗岩侵位机制与成矿作用.桂林工学院学报,2009,29(2):183-194;
    [106]李蔚铮,许仿实,李先粤.广西龙头山一镇龙山地区金(银)铜铅锌矿成矿规律和成矿预测.华南地质与矿产,1998(4):34-46;
    [107]曾南石,张春鹏,徐文炘等.广西龙头山斑岩金矿成矿岩体的岩石学、岩石地球化学及热液蚀变作用特征.桂林理工大学学报,2011,31(1):1-10;
    [108]陈富文,李华芹,梅玉萍等.广西龙头山斑岩型金矿成岩成矿锆石SHRIMP U-Pb年代学研究.地质学报,2008,82(7):921-926;
    [109]蔺志永,王登红,李水如.广西王社铜钨矿床的Re-Os同位素年龄及其地质意义.地质学报,2008,82(11):1565-1571;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700