用户名: 密码: 验证码:
基于蒙脱土矿物的几种生态环境材料的制备、性能及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对目前膨润土资源开发利用存在的技术落后、资源利用率低、环境污染严重、产业链短、产品性能落后、工艺能耗高等问题,以生态设计思想为指导,按照不同的膨润土原矿特点,研究开发资源利用率高、能源消耗少、对环境友好、产品性能优良的膨润土深加工清洁生产工艺。通过上述工艺得到使用性能优良、环境协调性好、附加值高的新型蒙脱土生态环境材料,并评价所制得的材料性能以及其在费托合成催化过程的应用。本文的研究内容主要包括三部分:(1)不含方英石膨润土深加工工艺研究;(2)富含方英石膨润土深加工工艺研究;(3)有机蒙脱土在费托合成中的应用研究。
     主要工作如下:
     (1)针对于不含方英石的膨润土综合利用难题,采用提纯和改型同步进行的湿法钠化工艺制备高纯蒙脱土,通过对湿法改型工艺中的反应条件对产品质量的影响以及它们之间的关系的研究,确定出最佳的单元操作条件,最终得到蒙脱石含量高达95.6%的高纯钠基蒙脱土。进而,针对其湿法提纯工艺中“脱水难”的问题,在考虑膨润土的物理化学性质的基础上,依据结构以及性质的不同,选择了五种天然有机高分子絮凝剂羧甲基淀粉钠、羧化壳聚糖、瓜尔胶、羟丙基瓜尔胶、阳离子瓜尔胶,利用分光光度法考察了不同絮凝剂对高纯钠基膨润土矿浆的絮凝性质,并依据其絮凝性质的差别探讨了五种絮凝剂絮凝膨润土的絮凝机理。以膨润土湿法提纯后得到的钠基膨润土浆液为原料,以氧化钙和氯化钙为胶化剂制备了钠基膨润土无机凝胶。比较了胶化剂类型、用量、时间、转速等条件对凝胶性能的影响,并依据其凝胶性能的差别探讨了钠基膨润土无机凝胶的胶化机理。以钙基膨润土原矿为起点,制备出吸水快、吸水量大、白度高、强度高的膨润土猫砂。
     (2)针对富含方英石膨润土的提纯难题,研究使用碱法提纯方案有效地实现了富含方英石膨润土矿产资源的经济、高效、可持续利用。所制备的高纯蒙脱土其蒙脱石含量高达97%。为了尽可能提高资源的利用率及实现废弃物的资源化利用,研究以上述富含方英石膨润土碱法提取液为原料使用沉淀法制备白炭黑及纳米二氧化硅。考察不同沉淀剂的沉淀效果,研究反应温度、pH值、浓度、反应时间对白炭黑产品性能及产率的影响。研究不同表面活性剂对所得纳米二氧化硅的粒径的影响,确定了富含方英石膨润土碱法提取液的最佳沉淀方法及条件。该工艺不仅实现了富含方英石膨润土碱法提取废液的回收利用,而且实现了资源循环利用,提高了生产效益,又没有对环境造成污染,体现了绿色工艺的思想。
     (3)使用有机修饰剂改性后的蒙脱土作为新型载体用于费托合成研究,得益于优良的热稳定性、独特的气体阻隔性和温度开关的性质。有机修饰剂作为催化剂活性组分的有机保护层可以简单有效地实现催化剂反应状态的原位隔离和保护,从而被成功应用于对钴基费托合成反应过程的详细研究。就像将古代生物原始状态保存完好的的琥珀一样,聚合物链在原位固化隔离和保护了实际催化剂的结构,以确保离位分析的催化剂状态充分代表了真实催化剂的工作状态。使得费托合成研究中仍然存在争议的一些关键问题得以解决,如还原过程中的钴纳米粒子的相变和团聚、费托反应中活性相态的变化、费托催化剂结构与性能的关系等得以阐明。通过设计不同的有机改性剂,我们可以通过传统的离位表征技术表征各种催化反应的催化剂在真实反应条件下的纳米结构,为将来其它催化体系的研究开辟了一条新途径。
Focusing on the present problems that exist in bentonite resource development and utilization such as low-level technology, low resource utilization ratio, serious environmental pollution, short industry chain, poor product performance and high energy consumption; guided by the concept of ecological design, on the basis of the different characteristics of bentonite raw mineral; this thesis develop clean technology of bentonite deep processing with the advantages features including high utilization ratio of resources, less energy-consuming, environmental friendliness and excellent product property. The new montmorillonite ecomaterials obtained through the above technique were featured by excellent property, well environmental benignity and high additional value. Furthermore, the applications of ecomaterials performances in Fischer-Tropsch synthesis process were evaluated as well. This thesis mainly includes three parts:(1) deep processing technology of christobalite-free bentonite;(2) deep processing technology of cristobalite-rich bentonite;(3) application of orgnic modified montmorillonite in Fischer-Tropsch synthesis.
     The main work is as follow.
     (1) For christobalite-free bentonite, high purity montmorillonite was prepared by wet sodium modification process, which the purification and modification were carried out simultaneously. The optimal unit operation conditions were determined by researching the influence of wet modification process conditions on product quality and the relationship between them. Consequently, the final montmorillonite content of the resulting high purity sodium bentonite is as high as95.6%. Furthermore, the efficient dewatering of colloidal stable bentonite suspensions presents an intractable challenge for the wet purification process. On the basis of the consideration of the bentonite physical and chemical properties, five natural polymer flocculants, inchuding carboxymethylstach sodium, carboxyl chitosan, guar gum, hydroxypropyl guar gum and cationic hydroxypropyl guar gum, were choosed depending on the structure and property difference. The sodium bentonite slurry flocculation conditions of the five flocculants were studied by spectrophotometry. The bentonite flocculation mechanism of the five flocculants was explored based on their different flocculation properties. The sodium bentonite inorganic gel was prepared by bentonite wet purification slurry as raw material, and calcium oxide or calcium chloride as gel agent. The influences of gel agent type, gel agent dosage, dispersion time, dispersion speed and other reaction conditions on gel performance were compared. The mechanism of sodium bentonite inorganic gel was explored based on the difference gel performance. Finally, the bentonite Litter with advantages features including fast water uptake, more water uptake volume, high whiteness and high strength was prepared by the calcium bentonite..
     (2) For cristobalite-rich bentonite mineral resources, alkaline purification scheme was utilized economicly, efficiently and sustainably. Consequently, the montmorillonite content of the resulting high purity sodium bentonite through the alkaline purification process is as high as97%. In order to improve the utilization ratio of resources as far as possible and realize the recycl usage of the wastes, silica and nano SiO2were prepared by precipitated the extract wastes of cristobalite-rich bentonite alkaline purification. The effects of different precipitating agents were investigated. The influence of reaction temperature, pH, concentration and reaction time on the properties and yield of silica were compared. The effects of different surfactant on the resulting nano SiO2particle size were investigated as well. Then the optimal precipitation method and condition were determined. The alkaline purification process is not only to achieve the cristobalite-rich bentonite alkaline extraction liquid wastes recycl usage, but also to improve production efficiency, and do not pollute the environment. It reflects the thought of green technology.
     (3) Organic modified montmorillonite was used as a new carrier for Fischer-Tropsch synthesis. Due to the excellent thermal stability, special gas barrier and temperature switch behavior, the organic modifier as the protective coating of catalyst active components were used to in-situ isolate and protect the actual catalyst structure, consequently, to study the reaction involved in the cobalt-based Fischer-Tropsch synthesis in detail. Just like the original state of ancient organisms preserved well by amber, the polymer chains were in situ solidified to isolate and protect the actual catalyst structure, which ensured the ex situ analyzed catalyst state to fully represent the working state of the catalysts. Accordingly, some critical important issues which could not be studied clearly in past days, such as the phase transformation and sintering agglomeration of cobalt nanoparticles in reduction procedure, the identification and phase transformation of the active species during reaction, and the structure-property relationship of catalysts for the FTS, have been thoroughly revealed. By designing different organic modifiers, we can characterize nanostructure evolution of catalysts of various catalytic reactions under operation reaction conditions via ex situ characterization techniques. Therefore, a new way was opened for the future research of other catalytic systems.
引文
[1]Richard A. Vaia. Polymer nanocomposites open a new dimension for plastics and composites [J]. The AMPTIAC Newsletter,2002,6:17-24.
    [2]冯奇.材料、环境与社会的可持续发展[C].2005中国可持续发展论坛—中国可持续发展研究会2005年学术年会论文集(下册),北京,2005.
    [3]李爱菊,陈红雨.环境友好材料的研究进展[J].材料研究与应用,2010,4(4):372-378.
    [4]左铁镛.中国材料产业的资源效率与生态环境材料[C].中国科协2001年学术年会分会场特邀报告汇编,北京,2001.
    [5]韩玉芳,杨久俊,刘国志.环境友好型材料的研究[J].再生资源与循环经济,2009,2(5):26-28.
    [6]疏达.材料生态制备技术[J].世界群学,2008,7:25-27.
    [7]聂祚仁.循环型社会的生态环境材料[J].中国材料进展,2009,28(5):38-44.
    [8]山本良一(王天民译).环境材料[M].化学工业出版社,1997.
    [9]王程,施惠生,李艳.生态环境材料与可持续发展[J].中国非金属矿工业导刊,2009,79:22-24.
    [10]郭国林.环境材料的分析与研究[J].机械设计与制造,2006,12:169-170.
    [11]聂祚仁,王志宏.生态环境材料学[M].机械工业出版社,2004.
    [12]冯奇,马放,冯玉杰.环境材料概论[M].化学工业出版社,2007.
    [13]Koichi Yagi, Kohmei Halada. Materials development for a sustainable society [J]. Materials and Design,2001,22:143-146.
    [14]Kohmei Halada, Ryoichi Yamamoto. The current status of research and development on ecomaterials around the world [J]. MRS Bulletin,2001,26:871-879.
    [15]孙胜龙.环境材料[M].化学工业出版社,2002.
    [16]左铁镛,聂祚仁.环境材料基础[M].科学出版社,2003.
    [17]洪紫萍,王贵公.生态材料导论[M].化学工业出版社,2001.
    [18]Kohmei Halada. Progress of ecomaterials toward a sustainable society [J]. Current Opinion in Solid State and Materials Science,2003,7:209-216.
    [19]郝维昌,王天民.资源、环境与材料的可持续发展[J].材料导报,2006,20(1):1-3.
    [20]梁金生,王丽娟,孟军平,等.生态环境功能材料学科的兴起与发展动向[J].中国非金属矿工业导刊,2008,71(增刊):66-68.
    [21]王天民,郝维昌,王莹,等.生态环境材料—材料及其产业可持续发展的方向[J].中国材料进展,2011,30(8):8-16.
    [22]张治平,王益民,董秀珍,等.生态环境材料学的研究进展[J].生态经济,2008,8:154-155.
    [23]Zuoren Nie, Tieyong Zuo. Ecomaterials research and development activities in China [J]. Current Opinion in Solid State and Materials Science,2003,7:217-223.
    [24]Tieyong Zuo, Tianmin Wang, Zuoren Nie. Ecomaterials research in China [J]. Materials and Design,2001,22:107-110.
    [25]汪利平,于秀玲.清洁生产和末端治理的发展[J].中国人口·资源与环境,2010,20(3):428-431.
    [26]周筝.国内外清洁生产进展现状综述[J].能源与环境,2007,4:20-22.
    [27]赵家荣.清洁生产回顾与展望[J].节能与环保,2003,2:4-9.
    [28]任宪友,蔡述明.清洁生产运行机制探讨[J].中国人口·资源与环境,2003,13(3):101-105.
    [29]段宁.清洁生产、生态工业和循环经济[J].环境科学研究,2001,14(6):1-4,8.
    [30]贾春雨.清洁生产、循环经济与可持续发展[J].北方环境,2010,22(4):9-13.
    [31]沈玉梅.清洁生产发展及应用前景[J].环境科学禁止拿,1998,6(2):73-79.
    [32]王静,宾鸿赞.清洁生产——现代制造业的主导方向[J].机械,2001,28(4):7-8,59.
    [33]何劲.关于企业清洁生产研究的文献综述[J].科技进步与对策,2006,6:178-180.
    [34]孙晓峰,李键,李晓鹏.中国清洁生产现状及发展趋势探析[J].环境科学与管理,2010,35(11):185-188.
    [35]马妍,白艳英,于秀玲,等.中国清洁生产发展历程回顾分析[J].环境与可持续发展,2010,1:40-43.
    [36]张泽勇.从可持续发展战略角度认识清洁生产技术[J].环境保护科学,2004,6:41-42,45.
    [37]张璐鑫,于宏兵,蔡梅,等.中国清洁生产[J].生态经济,2012,8:46-48,66.
    [38]余永富.二十一世纪我国非金属矿物材料的发展前景与展望[N].中国建材报,2007-03-27.
    [39]郑水林.非金属矿物材料的加工与应用[J].中国非金属矿工业导刊,2002,4:3-7.
    [40]鲁安怀.环境矿物材料研究方向探讨[J].岩石矿物学杂志,1997,16(3):184-187.
    [41]梁凯.非金属矿物材料在环境保护中的应用[J].地质与资源,2011,20(6):458--461.
    [42]李思悦.非金属矿物材料在环境保护中的应用[J].粉煤灰资本综合利用,2004,(6):46-48.
    [43]戴瑞,郑水林,贾建丽,等.非金属矿物环境材料的研究进展[J].中国非金属矿工业导刊,2009,6:3-9,14.
    [44]刘海珍,任俊杰,付晓.几种非金属矿物的环境特性及在水处理中的应用[J].科技情报开发与经济,2009,19(12):150-152.
    [45]陈方明,陆琦.非金属矿物材料在废水处理中的应用[J].矿产保护与利用,2004,1:18-21.
    [46]冯安生,刘新海,郭珍旭.我国非金属矿业形势及加工技术进展(二) [J].矿产保护与利用,2006,1:48-54.
    [47]工业和信息化部.关于印发《建材工业“十二五”发展规划》的通知[EB/OL]. http://www.miit.gov.cn/n11293472/n11293832/n11293907/n11368223/14335483.ht ml,2011-11-8.
    [48]科学技术部,国家发展与改革委员会,国土资源部,国家能源局.关于发布《固体矿产资源技术政策要点》的通知[EB/OL]. http://www.most.gov.cn/mostinfo/xinxifenlei/fgzc/gfxwj/gfxwj2009/200912/t20091 221_74770.htm,2009-4-1.
    [49]姜桂兰,张培萍.膨润土加工与应用[M].化学工业出版社材料科学与出版中心,2005.
    [50]鞠建英,申东铉.膨润土在工程中的开发与应用[M].中国建材工业出版社,2003.
    [51]Faiza Annabi-Bergaya,Benny K. G.Theng,Gerhard Lagaly.Handbook of clay science.Developments in clay science, Vol.1 [M]. Elsevier,2006.
    [52]Haydn H. Murray.Applied clay mineralogy:occurrences, processing and application of kaolins, bentonites, palygorskite-sepiolite, and common clays:developments in Clay Science, Vol.2 [M]. Elsevier,2006.
    [53]Basim Abu-Jdayil. Rheology of sodium and calcium bentonite-water dispersions:effect of electrolytes and aging time [J].International Journal of Mineral Processing,2011,98: 208-213.
    [54]George Alther.Some practical observations on the use of bentonite [J]. Environmental& Engineering Geoscience,2004,10:347-359.
    [55]Faiza Annabi-Bergaya. Layered clay minerals. Basic research and innovative composite applications [J]. Microporous and Mesoporous Materials,2008,107:141-148.
    [56]晓铭.膨润土产品的深加工及改性技术[J].精细化工原料及中间体,2010,4:26-29.
    [57]张玉柱,刘鹏君,曹朝真,等.膨润土综合利用[J].河北理工学院学报,2006,3:13-17.
    [58]袁慰顺,林鸿福.影响聚合物/膨润土纳米复合材料产业化的关键问题[J].中国非金属矿导刊,2002,5:3-7.
    [59]Yiu-Wing Mai, Zhong-Zhen Yu. Polymer nanocomposites, Woodhead Publishing,2006.
    [60]Dale, W. Schaefer, Ryan, S. Justice. How nano are nanocomposites? [J]. Macromolecules, 2007,40:8501-8517.
    [61]George, I. Anthoulis. Evagelia, Kontou. Micromechanical behaviour of panrticulate polymer nanocomposites [J]. Polymer,2008,49:1934-1942.
    [62]Hua Liu, L. Catherine Brinson. Reinforcing efficiency of nanoparticles:A simple comparison for polymer nanocomposites [J]. Composites Science and Technology,2008,68:1502-1512.
    [63]方颖颖,郑高利.蒙脱石作为药物载体的研究进展[J].中国临床药理与治疗学,2011,8:956-961.
    [64]余丽秀,孙亚光,赵留喜.高附加值膨润土深加工及应用研究[J].中国矿业,2010,10:97-100.
    [65]邢海金.离子液体修饰蒙脱土负载的钴基催化剂的合成及费托反应性能评价[D].内蒙古大学,2012.
    [66]Kloprogge J. Theo. Synthesis of smectites and porous pillared clay catalysts:A review [J]. Journal of Porous Materials,1998,5 (1):5-41.
    [67]M. J. Hernando, C. Pesquera, C.Blanco, et al. Synthesis, Characterization, and Catalytic Properties of Pillared Montmorillonite with Aluminum/Cerium Polyoxycations [J]. Chemistry of Materials,2001,13 (6):2154-2159.
    [68]董慧.高热稳定性柱撑蒙脱土负载的钴系催化剂的合成及费托反应性能评价[D].内蒙古 大学,2007.
    [69]陈红,丁运生,查敏,等.蒙脱土负载[C14min]+有机阳离子催化合成柠檬酸三丁酯[J].工业催化,2007,15:43-46.
    [70]Shiding Miao, Zhimin Liu, Buxing Han, et al. Ru nanoparticles immobilized on montmorillonite by ionic liquids:a highly efficient heterogeneous catalyst for the hydrogenation of benzene [J]. Angewandte Chemie International Edition,2006,45 (2): 266-269.
    [71]S. Abend,G. Lagaly. Sol gel transitions of sodium montmorillonite dispersions [J]. Applied Clay Science,2000,16:201-227.
    [72]李静静,吕宪俊.膨润土制备无机凝胶的研究概况[J].有色矿冶,2005,21:19-21.
    [73]童筠.矿物无机凝胶制备及其应用[J].中国非金属矿导刊,2006,5:21-23.
    [74]曾路,严春杰,谌刚,等.半湿法制备膨润土无机凝胶[J].非金属矿,2007,4:41-42,45.
    [75]邱俊,景丽丽,亓欣,等.高性能蒙脱石无机矿物凝胶的制备[J].IM&P化工矿物与加工,2007,6:16-19.
    [76]杨芳芳,吕宪俊,邱俊.矿物无机凝胶的应用研究概况[J].矿冶,2008,17(1):45-49.
    [77]韩成林.宠物垫土研制[J].非金属矿,2002,6:7,28.
    [78]韩秀山.膨润土的发展与应用[J].广东橡胶,2004,8:18-19,21.
    [79]莫伟,马少健,农魏魏,等.膨润土资源开发利用现状及应用研究进展[J].中国非金属矿导刊,2007,4:14-17.
    [80]苏海全,张兵兵,苏越.一种膨润土猫砂的生产方法[P].ZL201010166940.X,2012.02.08.
    [81]邱俊,吕宪俊.膨润土及改性产品在环境工程中的应用[J].中国非金属矿导刊,2003,6:45-49,60.
    [82]邱俊,吕宪俊,宋吉勇.有机改性蒙脱石的研究进展[J].中国粉体技术,2006,3:40-44.
    [83]杨性坤,杨莹琴,周涛,等.膨润土的改性研究新进展[J].信阳师范学院学报(自然科学版),2004,17(4):491-494.
    [84]李雪梅,王延利.蒙脱石提纯研究进展[J].岩矿测试,2006,25:252-258.
    [85]张术根,谢志勇,申少华,等.膨润土高层次开发利用研究新进展[J].中国非金属矿工业导刊,2002,1:17-20.
    [86]林培滋,曾理,何代平,等.碱与岩石矿物组分(蒙脱石、石英)的相互作用及动力学 研究[J].石油与无然气化工,2002,31:144-146.
    [87]苏海全,张兵兵,王宴秋.一种用钙基膨润土生产钠基膨润土的方法[P].ZL200710004960.5,2010.02.17.
    [88]闫景辉,李景梅,王巍,等.膨润土化学提纯研究[J].非金属矿,2002,3:8-9.
    [89]管俊芳,陆琦,陈林丽,等.膨润土深加工的研究进展[J].化工矿产地质,2002,1:23-27.
    [90]吴东印,卫敏,杨康平,等.膨润土湿法提纯研究[J].非金属矿,2000,3:23-24.
    [91]王新江,雷建斌.我国膨润土资源概况及开发利用现状[J].中国非金属矿工业导刊,2010,3:13-15.
    [92]张洁,廖立兵.中国建平地区膨润土中的方石英赋存状态[J].硅酸盐学报,2010,38(7):1274-1280.
    [93]郑海辉,吕光烈.提纯蒙脱石的方法及提纯蒙脱石及其组合物[P].ZL200780000799,2010.06.16.
    [94]Marc Pansu, Jacques Gautheyrou. Handbook of soil analysis [M]. Springer,2006.
    [95]Daniela Sauer. Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments [J]. Biogeochemistry,2006,80:89-108.
    [96]S. Hillier, D. G. Lumsdon. Distinguishing opaline silica from cristobalite in bentonites:a practical procedure and perspective based on NaOH dissolution [J]. Clay Minerals,2008,43: 477-486.
    [97]M. Onal. Swelling and cation exchange capacity relationship for the samples obtained from a bentonite by acid activations and heat treatments [J]. Applied Clay Science,2007,37:74-80.
    [98]M. Onal, S. Kahraman, Y. Sankaya. Differentiation of a-cristobalite from opals in bentonites from Turkey [J]. Applied Clay Science,2007,35:25-30.
    [99]H. Yilmaz, H. Kacmaz. Distinguishing opaline silica polymorphs from a-cristobalite in Gedikler bentonite (Usak, Turkey) [J]. Applied Clay Science,2012,62-63:80-86.
    [100]王弘,黄丽,郭金溢,等.膨润土的湿法钠化改型方法研究[J].黄金科学技术,2012,20(1):89-93.
    [101]张国宏,冯辉霞,邵亮,等.钠基膨润土及制备工艺研究进展[J].化工生产与技术,2007,14(5):42-46.
    [102]李川泽.非金属矿采矿选矿工程设计与矿物深加工新工艺新技术应用实务全书 [M].当代中国音像出版社,2008.
    [103]王慧敏,杨绪壮,张兵兵,等.燃料乙醇的环境优越性及CO2催化加氢制乙醇研究进展[J].内蒙古大学学报(自然科学版),2012,3:225-231.
    [104]杨志琴,贾峰,刘荣.费托合成催化剂的研究进展[J].南京师范大学学报(工程技术版),2011,11(2):62-67.
    [105]F. Fischer, H. Tropsch. Uber die Herstellung synthetischer "olgemische (Synthol) durch Aufbau aus Kohlenoxyd und Wasserstoff [J]. Brennst.-Chem.,1923,4:276-285.
    [106]苏海全,张晓红,丁宁,等.费托合成催化剂的研究进展[J].内蒙古大学学报(自然科学版),2009,4:499-513.
    [107]白凤华.费托合成反应的催化剂制备和性能研究及其对生态环境的影响[D].内蒙古大学,2008.
    [108]孙予罕,陈建刚,王俊刚,等.费托合成钴基催化剂的研究进展[J].催化学报,2010,31(8):919-927.
    [109]王野,康金灿,张庆红.费托合成催化剂的研究进展[J].石油化工,2009,38(12):1255-1263.
    [110]Yi Zhang, Yong Liu, Guohui Yang, et al. The solvent effects during preparation of Fischer-Tropsch synthesis catalysts:Improvement of reducibility, dispersion of supported cobalt and stability of catalyst [J]. Catalysis Today,2009,142:85-89.
    [111]D. J. Moodley, J. van de Loosdrecht, A. M. Saib, et al. Carbon deposition as a deactivation mechanism of cobalt-based Fischer-Tropsch synthesis catalysts under realistic conditions [J]. Applied Catalysis A:General,2009,354:102-110.
    [112]Jong Wook Bae, Seung-Moon Kim, Seon-Ju Park, et al. Deactivation by filamentous carbon formation on Co/Aluminum phosphate during Fischer-Tropsch synthesis [J]. Industrial & Engineering Chemistry Research,2009,48:3228-3233.
    [113]A. Tavakoli, M. Sohrabi, A. Kargari. Application of Anderson-Schulz-Flory (ASF) equation in the product distribution of slurry phase FT synthesis with nanosized iron catalysts [J]. Chemical Engineering Journal,2008,136:358-363.
    [114]David A. Bell, Brian F. Towler, maohong Fan. Coal gasification and its applications. Chapter 13 substitute natural gas and Fischer-Tropsch synthesis [M]. William Andrew, Elsevier,2010.
    [115]B. Jager, R. Spinoza. Advances in Low-Temperature Fischer-Tropsch Synthesis [J]. Catalysis Today,1995,23:17-28.
    [116]丁宁.ZrO2-Al2O3, SBA-16载体对费托合成催化性能的影响[D].内蒙古大学,2010.
    [117]O. O. James, A. M. Mesubi, T. C. Ako, et al. Increasing carbon utilization in Fischer-Tropsch synthesis using H2-deficient or CO2-rich syngas feeds [J]. Fuel Processing Technology,2010,91:136-144.
    [118]C. Perego, R. Bortolo, R. Zennaro. Gas to liquids technologies for natural gas reserves valorization:The Eni experience [J]. Catalysis Today,2009,142:9-16.
    [119]M. A. Vannice. Catalytic synthesis of hydrocarbons from H2-C0 mixtures over group metals. Catalytic behavior of silica-supported metals [J]. Journal of Catalysis,1977,50: 228-236.
    [120]B. H. Davis. Fischer-Tropsch Synthesis:Reaction mechanisms for iron catalysts [J]. Catalysis Today,2009,141:25-33.
    [121]Borg(?), Hamme N, Eri S. Fischer-Tropsch synthesis over un-promoted and Re-promoted γ-Al2O3 supported cobalt catalysts with different pore sizes [J]. Catalysis Today,2009,142: 70-77.
    [122]杜永.稀土作助剂的钴系催化剂合成及费托反应性能评价[D].内蒙古大学,2008.
    [123]马云.纳米二氧化钛的合成、表征及其作为钴系催化剂载体的费托性能评价[D].内蒙古大学,2009.
    [124]丁宁,曾尚红,苏海全,等.Co基费托合成催化剂载体的研究进展[J].化工进展.2009,28(增刊):14-19.
    [125]Andrei Y. Khodakov, Wei Chu, Pascal Fongarland. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels [J]. Chemical Reviews,2007,107:1692-1744.
    [126]Enger, BJ(?)rn Christian, Fossan, Ase-Lill, Borg,(?)yvind, et al. Modified alumina as catalyst support for cobalt in the Fischer-Tropsch synthesis [J]. Journal of Catalysis,2011,284:9-22.
    [127]M. Khobragade, S.Majhi, K. K. Pant. Effect of K and CeO2 promoters on the activity of Co/SiO2 catalyst for liquid fuel production from syngas [J]. Applied Energy,2012,94: 385-394.
    [128]Hualan Li, Shuguo Wang, Fengxiang Ling, et al. Studies on MCM-48 supported cobalt catalyst for Fischer-Tropsch synthesis [J]. Journal of Molecular Catalysis A:Chemical,2006, 244:33-40.
    [129]Bianca Viana de Sousa, Meiry Glaucia Freire Rodrigues, Leonardo Andres Cano, et al. Study of the effect of cobalt content in obtaining olefins and paraffins using the Fischer-Tropsch reaction [J]. Catalysis Today,2011,172:152-157.
    [130]Shifang Mu, Debao Li, Bo Hou, et al. Influence of ZrO2 loading on SB A-15 supported cobalt catalysts for Fischer-Tropsch synthesis [J]. Energy Fuels,2010,24:3715-3718.
    [131]L. F. F. P. G. Braganca, M. Ojeda, J. L. G. Fierro, et al. Bimetallic Co-Fe nanocrystals deposited on SBA-15 and HMS mesoporous silicas as catalysts for Fischer-Tropsch synthesis [J]. Applied Catalysis A:General,2012,423-424:146-153.
    [132]Donghong Yin, Wenhuai Li, Wenshu Yang, et al. Mesoporous HMS molecularsieves supported cobalt catalysts for Fischer-Tropsch synthesis [J]. Microporous and Mesoporous Materials,2001,47:15-24.
    [133]Xiaohong Zhang, Haiquan Su, Xuzhuang Yang. Catalytic performance of a three-dimensionally ordered macroporous Co/ZrO2 catalyst in Fischer-Tropsch synthesis [J]. Journal of Molecular Catalysis A:Chemical,2012,360:16-25.
    [134]M. V. Krylova, A. B. Kulikov, M. I. Knyazeva, et al. Cobalt-containing catalysts made from layered double hydroxides for synthesis of hydrocarbons from carbon monoxide and hydrogen [J]. Chemistry and Technology of Fuels and Oils,2008,44:339-343.
    [135]Chawalit Ngamcharussrivichai, Xiaohao Liu, Xiaohong Li, et al. An active and selective production of gasoline-range hydrocarbons over bifunctional Co-based catalysts [J]. Fuel, 2007,86:50-59.
    [136]Chawalit Ngamcharussrivichai, Apichat Imyim, Xiaohong Li, et al. Active and selective bifunctional catalyst for gasoline production through a slurry-phase Fischer-Tropsch synthesis [J]. Industrial & Engineering Chemistry Research,2007,46:6883-6890.
    [137]Guang-Wei Wang, Qing-Qing Hao, Zhao-Tie Liu, et al. Fischer-Tropsch synthesis over Co/montmorillonite—insights into the role of interlayer exchangeable cations [J]. Applied Catalysis A:General,2011,405:45-54.
    [138]Qing-Qing Hao, Guang-Wei Wang, Yong-Hua Zhao, et al. Fischer-Tropsch synthesis over cobalt/montmorillonite promoted with different interlayer cations [J]. Fuel, doi:10.1016/j.fuel.2012.06.033.
    [139]Edward G. Rightor, Ming-Shin Tzou, Thomas J. Pinnavaia. Ironoxide pillared clay with large gallery height:synthesis and properties as a Fischer-Tropsch catalyst [J]. Journal of Catalysis,1991,130:29-40.
    [140]K. Sapag, S. Rojas, M. Lopez Granados, et a.CO hydrogenation with Co catalyst supported on porous media [J]. Journal of Molecular Catalysis A:Chemical,2001,167: 81-89.
    [141]M. J. Hernando, C. Pesquera, C.Blanco, et al. Synthesis, characterization, and catalytic properties of pillared montmorillonite with aluminum/cerium polyoxycations [J]. Chemistry of Materials,2001,13:2154-2159.
    [142]Yanyong Liu, Toshiaki Hanaoka, Kazuhisa Murata, et al. Hydrocracking of Fischer-Tropsch wax to diesel-range hydrocarbons over bifunctional catalysts containing Pt and polyoxocation-pillared montmorillonite [J]. Chemistry Letters,2007,36:1470-1471.
    [143]Hui Dong, Shanghong Zeng, Haiquan Su, et al. Preparation and catalytic performance of Co/CeAl-pillared montmorillonite catalyst for F-T synthesis [J]. Journal of the Chinese Rare Earth Society,2009,27:14-18.
    [144]Haiquan Su, Shanghong Zeng, Hui Dong, et al. Pillared montmorillonite supported cobalt catalysts for the Fischer-Tropsch reaction [J]. Applied Clay Science,2010,46:325-329.
    [145]Qing-Qing Hao, Guang-Wei Wang, Zhao-Tie Liu, et al. Co/Pillared clay bifunctional catalyst for controlling the product distribution of Fischer-Tropsch synthesis [J]. Industrial & Engineering Chemistry Research,2010,49:9004-9011.
    [146]陈宜俍,张广瑞,凡俊琳,等.新兴层状粘土结构F-T合成催化剂的研制[J].工业催化,2008,16(7):12-15.
    [147]Qinghong Zhang, Jincan Kang, Ye Wang. Development of novel catalysts for Fischer-Tropsch synthesis:tuning the product selectivity [J]. ChemCatChem,2010,2: 1030-1058.
    [148]WenpingMa, Gary Jacobs, Robert A. Keogh, et al. Fischer-Tropsch synthesis:Effect of Pd, Pt, Re, and Ru noble metal promoters on the activity and selectivity of a 25%Co/Al2C>3 catalyst [J]. Applied Catalysis A:General,2012,437-438:1-9.
    [149]Ying Liu, Bo-Tao Teng, Xiao-Hui Guo, et al. Effect of reaction conditions on the catalytic performance of Fe-Mn catalyst for Fischer-Tropsch synthesis [J]. Journal of Molecular Catalysis A:Chemical,2007,272:182-190.
    [150]Chun-Fang Huo, Bao-Shan Wu, Peng Gao, et al. The mechanism of potassium promoter: Enhancing the stability of active surfaces [J]. Angewandte Chemie International Edition,2011, 50:7403-7406.
    [151]王野,成康,张庆红.一氧化碳加氢制碳氢化合物反应选择性的调控[J].中国科学:化学,2012,42(4):363-375.
    [152]Shanghong Zeng, Yong Du, Haiquan Su, et al. Promotion effect of single or mixed rare earths on cobalt-based catalysts for Fischer-Tropsch synthesis [J]. Catalysis Communications, 2011,13:6-9.
    [153]Tiefeng Wang, Jinfu Wang, Yong Jin. Slurry reactors for gas-to-liquid processes:a review [J]. Industrial & Engineering Chemistry Research,2007,46:5824-5847.
    [154]Mark E. Dry. Practical and theoretical aspects of the catalytic Fischer-Tropsch process [J]. Applied Catalysis A:General,1996,138:319-344.
    [155]Burtron H. Davis. Overview of reactors for liquid phase Fischer-Tropsch synthesis [J]. Catalysis Today,2002,71:249-157.
    [156]Arsam Behkish, Zhuowu Men, Juan R. Inga, et al. Mass transfer characteristics in a large-scale slurry bubble column reactor with organic liquid mixtures [J]. Chemical Engineering Science,2002,57:3307-3324.
    [157]Zhen Yan, Zhoujun Wang, Dragomir B. Bukur, et al. Fischer-Tropsch synthesis on a model Co/SiO2 catalyst [J]. Journal of Catalysis,2009,268:196-200.
    [158]Dan I. Enache, Bernadette Rebours, Magalie Roy-Auberger, et al. In situ XRD study of the influence of thermal treatment on the characteristics and the catalytic properties of cobalt-based Fischer-Tropsch catalysts [J]. Journal of Catalysis,2002,205:346-353.
    [159]Heline Karaca, Jingping Hong, Pascal Fon garland, et al. In situ XRD investigation of the evolution of alumina-supported cobalt catalysts under realistic conditions of Fischer-Tropsch synthesis [J]. Chemical Communications,2010,46:788-790.
    [160]Guiping Jiao, Yunjie Ding, Hejun Zhu, et al. Effect of La2O3 doping on syntheses of C1-C18 mixed linear a-alcohols from syngas over the Co/AC catalysts [J]. Applied Catalysis A: General,2009,364:137-142.
    [161]G. Leendert Bezemer, Johannes H. Bitter, Herman P. C. E. Kuipers, et al. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts [J]. Journal of the American Chemical Society,2006,128:3956-3964.
    [162]Gonzalo Prieto, Agustin Martinez, Patricia Concepcion, et al. Cobalt particle size effects in Fischer-Tropsch synthesis:Structural and in situ spectroscopic characterization on reverse micelle-synthesized Co/ITQ-2 model catalysts [J]. Journal of Catalysis,2009,266:129-144.
    [163](?)yvind Borg, Pascal, D. C. Dietzel, Aud, I. Spjelkavik, et al. Fischer-Tropsch synthesis: Cobalt particle size and support effects on intrinsic activity and product distribution [J]. Journal ofCatalysis,2008,259:161-164.
    [164]Zhou-jun Wang, Zhen Yan, Chang-jun Liu, et al. Surface science studies on cobalt Fischer-Tropsch catalysts [J]. ChemCatChem,2011,3:551-559.
    [165]Josep, G. Canadell, Corinne, L. Quere, Michael, R. Raupach, et al. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks [J]. Proceedings of the National Academy of Sciences of the United States of America,2007,104:18866-18870.
    [166]杨文书,吕建宁,叶鑫,等.煤化工二氧化碳减排与化学利用研究进展[J].化工进展,2011,28:1728-1733.
    [167]Chu Steven. Carbon capture and sequestration [J]. Science,2009,325:1599-1599.
    [168]IPCC special report on carbon dioxide capture and storage, prepared by working group Ⅲ of the intergovernmental panel on climate change [R]. Cambridge University Press,2005.
    [169]靖宇,韦力,王运东.吸附法捕集二氧化碳吸附剂的研究进展[J].化工进展,2011,30(增刊):133-138.
    [170]国家发展与改革委员会.中国应对气候变化政策与行动—2010年度报告[R].北京,2010.
    [171]张兵兵,王慧敏,曾尚红,等.二氧化碳矿物封存技术现状及展望[J].化工进展.2012,31(09):2075-2083.
    [172]Hongqun Yang, Zhenghe Xu, Maohong Fa, et al. Progress in carbon dioxide separation and capture:A review [J]. Journal of Environmental Sciences-China,2008,20:14-27.
    [173]李宏军,黄盛初.中国CCS的发展前景及最新行动[J].中国煤炭,2010,36:13-17.
    [174]包炜军,李会泉,张懿,等.温室气体CO2矿物碳酸化固定研究进展[J].化工学报,2007,58:1-9.
    [175]朱跃钊,廖传华,王重庆,等.二氧化碳的减排与资源化利用[M].北京:化学工业出版社,2010.
    [176]George, D. Guthrie, J. William, Carey, Deborah, Bergfeld, et al. Geochemical aspects of the carbonation of magnesium silicates in an aqueous medium [R]. NETL Conference on Carbon Sequestration,2001.
    [177]Erin, R. Bobicki, Qingxia Liu, Zhenghe Xu, et al. Carbon capture and storage using alkaline industrial wastes [J]. Progress in Energy and Combustion Science,2012,38:302-320.
    [178]P. Renforth, C.-L. Washbourne, J. Taylder, et al. Silicate production and availability for mineral carbonation [J]. Environmental Science & Technology,2011,45:2035-2041.
    [179]杨林军,张霞,孙露娟,等.二氧化碳矿物碳酸化固定的技术进展[J].现代化工,2007,27:13-16.
    [180]Klaus, S. Lackner, Darryl, P. Butt, Christopher, H. Wendt. Progress on binding CO2 in mineral substrates [J]. Energy Conversion and Management,1997,38:S259-S264.
    [181]刘红霞,廖传华,朱跃钊.二氧化碳矿物封存的研究进展[J].中国陶瓷,2010,46:9-14.
    [182]M. M. Maroto-Valer, D. J. Fauth, M. E. Kuchta, et al. Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration [J]. Fuel Processing Technology,2005,86:1627-1645.
    [183]O'Connor, K.William, David C. Dahlin, et al. Carbon dioxide sequestration by direct mineral carbonation with carbonic acid [C]. Proceedings of the 25th International Technical Conference On Coal Utilization & Fuel Systems, Oregon,2000.
    [184]Stephen J. Gerdemann, William K. O'Connor, David C. Dahlin, et al. Ex situ aqueous mineral carbonation [J]. Environmental Science & Technology,2007,41:2587-2593.
    [185]Oleg S. Pokrovsky, Jacques Schott. Processes at the magnesium-bearing carbonates/solution interface. II. Kinetics and mechanism of magnesite dissolution [J]. Geochimica e tCosmochimica Acta,1999,63:881-897.
    [186]M. Mercedes Maroto-Valer, Matthew E. Kuchta, Yinzhi Zhang, et al. Comparison of physical and chemical activation of serpentine for enhanced CO2 sequestration [J]. Prepr. Pap.-Am.Chem.Soc.,Div.Fuel Chem.,2004,49:373-375.
    [187]George Alexander, M. Mercedes Maroto-Valer, Parvana Gafarova-Aksoy. Evaluation of reaction variables in the dissolution of serpentine for mineral carbonation [J]. Fuel,2007,86: 273-281.
    [188]Samuel C. Krevor, Klaus S. Lackner. Enhancing process kinetics for mineral carbon sequestration [J], Energy Procedia,2009,1:4867-4871.
    [189]Liang Zhao, Liqin Sang, Jun Chen, et al. Aqueous carbonation of natural brucite:relevance to CO2 sequestration [J]. Environmental Science & Technology,2010,44:406-411.
    [190]M. Uibu, O. Velts, R. Kuusik. Developments in CO2 mineral carbonation of oil shale ash [J]. Journal of Hazardous Materials,2010,174:209-214.
    [191]Lei Wang, Yiying Jin, Yongfeng Nie. Investigation of accelerated and natural carbonation of MSWI fly ash with a high content of Ca [J]. Journal of Hazardous Materials,2010,174: 334-343.
    [192]Sanni Eloneva, Sebastian Teir, Justin Salminen, et al. Fixation of CO2 by carbonating calcium derived from blast furnace slag [J]. Energy,2008,33:1461-1467.
    [193]F. Goff, K. S. Lackner. Carbon dioxide sequestering using ultramafic rocks [J]. Environmental Geosciences,1998,5:89-101.
    [194]Sebastian Teir, Hannu Revitzer, Sanni Eloneva, et al. Dissolution of natural serpentine in mineral and organic acids [J]. International Journal of Mineral Processing,2007,83:36-46.
    [195]Ah-Hyung Alissa Park, Raja Jadhav, Liang-Shih Fan. CO2 mineral sequestration: chemically enhanced aqueous carbonation of serpentine [J]. The Canadian Journal of Chemical Engineering,2003,81:885-890.
    [196]Jerzy Baldyga, Marek Henczka, Katarzyna Sokolnicka. Utilization of carbon dioxide by chemically accelerated mineral carbonation [J]. Materials Letters,2010,64:702-704.
    [197]Sebastian Teir, Rein Kuusik, Carl-Johan Fogelholm, et al. Production of magnesium carbonates from serpentine for long-term storage of CO2 [J]. International Journal of Mineral Processing,2007,85:1-15.
    [198]Ah-Hyung Alissa Park, Liang-Shih Fan. CO2 mineral sequestration:physically activated dissolution of serpentine and pH swing process [J]. Chemical Engineering Science,2004,59: 5241-5247.
    [199]M. Kakizawa, A. Yamasaki, Y. Yanagisawa. A new CO2 disposal process via artifical weathering of calcium silicate accelerated by acetic acid [J]. Energy,2001,26:341-354.
    [200]Satoshi Kodama, Taiki Nishimoto, Naoki Yamamoto, et al. Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution [J]. Energy,2008, 33:776-784.
    [201]Xiaolong Wang, M. Mercedes Maroto-Valer. Dissolution of serpentine using recyclable ammonium salts for CO2 mineral carbonation [J]. Fuel,2011,90:1229-1237.
    [202]Klaus Bosecker. Bioleaching:metal solubilization by microorganisms [J]. FEMS Microbiology Reviews,1997,20:591-604.
    [203]Ian M. Power, Gregory M. Dipple, Gordon Southam. Bioleaching of ultramafic tailings by Acidithiobacillus spp. for CO2 sequestration [J]. Environmental Science & Technology,2010, 44:456-462.
    [204]中国2050年低碳发展之路:能源需求暨碳排放情景分析[M].科学出版社,2009.
    [205]魏伟,孙予罕,闻霞,等.二氧化碳资源化利用的机遇与挑战[J].化工进展,2011,30:216-224.
    [206]孙薇薇.“拘禁”二氧化碳:CCUSS可望成优选技术[N].中国石化报,2011-9-13.
    [1]苏海全,张兵兵,王宴秋.一种用钙基膨润土生产钠基膨润土的方法[P].ZL200710004960.5,2010.02.17.
    [2]苏海全,张兵兵.一种由钙基膨润土制备膨润土无机凝胶的方法.申请号:CN201010166937.8,公开号:CN 101823722A.
    [3]苏海全,张兵兵,苏越.一种膨润土猫砂的生产方法[P].ZL201010166940.X,2012.02.08.
    [4]李雪梅,王延利.蒙脱石提纯研究进展[J].岩矿测试,2006,25:252-258.
    [5]林培滋,曾理,何代平,等.碱与岩石矿物组分(蒙脱石、石英)的相互作用及动力学研究[J].石油与天然气化工,2002,31:144-146.
    [6]郑海辉,吕光烈.提纯蒙脱石的方法及提纯蒙脱石及其组合物[P].ZL200780000799,2010.06.16.
    [7]刘晓东,朱慧仙,吕宪俊.蒙脱石含量测定方法改进研究[J].菲金属矿,2007,30:15-18.
    [8]张玉柱,边妙莲,刘鹏君,等.膨润土理化性能对球团性能影响的研究[J].烧结球团,2006,31:21-14.
    [9]张玉柱,刘鹏君,曹朝真,等.膨润土综合利用[J].河北理工学院学报,2006,3:13-17.
    [10]郑水林.非金属矿物材料的加工与应用[J].中国非金属矿工业导刊,2002,4:3-7.
    [11]管俊芳,陆琦,陈林丽,等.膨润土深加工的研究进展[J].化工矿产地厉,2002,1:23-27.
    [12]吴东印,卫敏,杨康平,等.膨润土湿法提纯研究[J].非金属矿,2000,3:23-24.
    [13]王新江,雷建斌.我国膨润土资源概况及开发利用现状[J].中国非金属矿工业导刊,2010,3:13-15.
    [14]姜桂兰,张培萍.膨润土加工与应用[M].北京:化学工业出版社材料科学与工程出版中心,2005.
    [15]杨性坤,杨莹琴,周涛,等.膨润土的改性研究新进展[J].信阳师范学院学报(自然群学版),2004,17:491-494.
    [16]闫景辉,张军.膨润土化学提纯研究[J].非金属矿,2002,25:8-9.
    [17]董芳.絮凝机理及絮凝剂发展概况[J].中国科教创新导刊,2008,27:43-44.
    [18]J. Roussy, M. Van Vooren, B. Dempsey, et al. Influence of chitosan characteristics on the coagulation and the flocculation of bentonite suspensions [J]. Water Research,2005,39: 3247-3258.
    [19]N. Levy, N. Garti, S. Magdassi. Flocculation of bentonite suspensions with cationic guar [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1995,97:91-99.
    [20]吉毅,李宗石,乔卫红.瓜尔胶的化学改性[J].日用化学工业,2005,35:111-114.
    [21]A. X. Fan, N. J. Turro, P. Somasundaran. A study of dual polymer flocculation [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2000,162:141-148.
    [22]C. Ovenden, H. N. Xiao. Flocculation behaviour and mechanisms of cationic inorganic microparticle-polymer systems [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2000,197:225-234.
    [23]F. Renault, B. Sancey, P. M. Badot, et al. Chitosan for coagulation/flocculation processes-An eco-friendly approach [J]. European Polymer Journal,2009,45:1337-1348.
    [24]A. K. Verma, R. R. Dash, P. Bhunia. A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters [J]. Journal of Environmental Management,2012,93:154-168.
    [25]S. Pal, G.Sen, S. Ghosh, et al. High performance polymeric flocculants based on modified polysaccharides—Microwave assisted synthesis [J]. Carbohydrate Polymers,2012,87: 336-342.
    [26]L. Ghimici, M. Nichifor. Novel biodegradable flocculanting agents based on cationic amphiphilic polysaccharides [J]. Bioresource Technology,2010,101:8549-8554.
    [27]H. J. Prado, M. C. Matulewicz, P. R. Bonelli, et al. Potential use of a novel modified seaweed polysaccharide as flocculating agent [J]. Desalination,2011,281:100-104.
    [28]V. Singh, P. Kumar, R. Sanghi. Use of microwave irradiation in the grafting modification of the polysaccharides-A review [J]. Progress in Polymer Science,2012,37:340-364.
    [29]S. M. Aly, J. Letey. Polymer and water quality effects on flocculation of montmorillonite [J]. Soil Science Society of America Journal,1988,52:1453-1458.
    [30]M. Ben-Hur, M. Malik, J. Letey, et al. Adsorption of polymers on clays as affected by clay charge and structure, polymer properties, and water quality [J]. Soil Science,1992,153:349-356.
    [31]邱俊,景丽丽,亓欣,等.高性能蒙脱石无机矿物凝胶的制备[J].IM&P化工矿物与加工,2007,6:16-19.
    [32]杨芳芳,吕宪俊,邱俊.矿物无机凝胶的应用研究概况[J].矿冶,2008,17(1):45-49.
    [33]雷绍民,许天翼,占长林,等.蒙皂石矿物及无机凝胶制备与机理研究[J].武汉理工大学学报,2008,30:67-71
    [34]Marek S. Z'bik, Wayde N. Martens, Ray L. Frost, et al. Transmission X-ray microscopy (TXM) reveals the nanostructure of a smectite gel [J]. Langmuir,2008,24:8954-8958.
    [35]孙忠,杨秀双.新一代环保型宠物垫圈颗粒——木制猫砂研制[J].非金属矿,2003,26:20-22.
    [1]闫景辉,李景梅,王巍,等.膨润土化学提纯研究[J].非金属矿,2002,3:8-9.
    [2]姜桂兰,张培萍.膨润土加工与应用[M].化学工业出版社材料科学与出版中心,2005.
    [3]李雪梅,王延利.蒙脱石提纯研究进展[J].岩矿测试,2006,25:252-258.
    [4]吴东印,卫敏,杨康平,等.膨润土湿法提纯研究[J].非金属矿,2000,3:23-24.
    [5]张洁,廖立兵.中国建平地区膨润土中的方石英赋存状态[J].硅酸盐学报,2010,38(7):1274-1280.
    [6]郑海辉,吕光烈.提纯蒙脱石的方法及提纯蒙脱石及其组合物[P].ZL200780000799,2010.06.16.
    [7]彭娟娟,周泽深.二氧化硅致癌作用研究进展[J].中国工业医学杂志,2002,15(3):158-160.
    [8]Paul J. A. Borm, LangTran, Ken Donaldson. The carcinogenic action of crystalline silica:a review of the evidence supporting secondary inflammation-driven genotoxicity as a principal mechanism [J]. Critical Reviews in Toxicology,2011,41:756-770.
    [9]S. Hillier, D. G. Lumsdon. Distinguishing opaline silica from cristobalite in bentonites:a practical procedure and perspective based on NaOH dissolution [J]. Clay Minerals,2008,43: 477-486.
    [10]Timothy N. Perkins, Arti Shukla, Paul M. Peeters, et al. Differences in gene expression and cytokine production by crystalline vs. amorphous silica in human lung epithelial cells [J]. Particle and Fibre Toxicology,2012,9:6.
    [11]林培滋,曾理,何代平,丁云杰.碱与岩石矿物组分(蒙脱石、石英)的相互作用及动力学研究[J].石油与天然气化工,2002,31:144-146.
    [12]Marc Pansu, Jacques Gautheyrou. Handbook of soil analysis [M]. Springer,2006.
    [13]Daniela Sauer. Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments [J]. Biogeochemistry,2006,80:89-108.
    [14]W. P. Gates, A. Bouazza. Bentonite transformations in strongly alkaline solutions [J]. Geotextiles and Geomembranes,2010,28:219-225.
    [15]G. A. Ikhtiyarova, A. S. Ozcan,6. Gok, A. Ozcan. Characterization of natural-and organobentonite by XRD, SEM, FT-IR and thermal analysis techniques and its adsorption behaviour in aqueous solutions [J]. Clay Minerals,2012,47:31-44.
    [16]Willard L. Lindsay. Chemical equilibrium in soils [M]. John Wiley & Son, New York,1979.
    [17]W. Abdallah, U. Yilmazer. Novel thermally stable organo-montmorillonites from phosphonium and imidazolium surfactants [J]. Thermochimica Acta,2011,525:129-140.
    [18]A. Tabak, B. Afsin, S. F. Aygun, et al. Structural characteristics of organo-modified bentonites of different origin [J]. Journal of Thermal Analysis and Calorimetry,2007,87:375-381.
    [19]J. Madejova. FTIR techniques in clay mineral studies [J]. Vibrational Spectroscopy,2003, 31:1-10.
    [20]I. P. Swainson, M. T. Dove, D. C. Palmer. Infrared and Raman spectroscopy studies of the α-β phase transition in cristobalite [J]. Physics and Chemistry of Minerals,2003,30:353-365.
    [21]J. Madejova, P. Komadel. Baseline studies of the clay minerals society source clays:infrared methods [J]. Clays and Clay Minerals,2001,49:410-432.
    [22]A. Q. Wang, N. D'Souza, T. D. Golden. Ceramic montmorillonite nanocomposites by electrochemical synthesis [J]. Applied Clay Science,2008,42:310-317.
    [23]S. Kaufhold, M. Hein, R. Dohrmann. Quantification of the mineralogical composition of clays using FTIR spectroscopy. [J]. Vibrational Spectroscopy,2012,59:29-39.
    [24]L. Jankovic, J. Madejova, P. Komadel. Characterization of systematically selected organo-montmorillonites for polymer nanocomposites [J]. Applied Clay Science,2011,51: 438-444.
    [25]E. S. A. Rashid, M. F. A. Rasyid, H. M. Akil. Effect of ion exchange treatment on the properties of muscovite filled epoxy composite [J]. Applied Clay Science,2011,52:295-300.
    [26]A. Czimerova, J. Bujdak, R. Dohrmann. Traditional and novel methods for estimating the layer charge of smectites [J]. Applied Clay Science,2006,34:2-13.
    [27]S, Kaufhold. Comparison of methods for the determination of the layer charge density (LCD) of montmorillonites [J]. Applied Clay Science,2006,34:14-21.
    [28]王慧,舒琼,龙文露,等.白炭黑制备新工艺研究[J].武汉工程大学学报,2009,31(1):29-31.
    [29]张秀英.钙基膨润土制备白炭黑的研究[J].矿产保护与利用,2005,12(6):21-24.
    [30]吴雪文,张海波,韩团辉,等.传统沉淀法制白炭黑的研究进展[J].无机盐工业,2006,38(4):9-10,45.
    [31]彭迎慧,徐旺生.碳酸氢铵制白炭黑的工艺研究[J].无机盐工业,2008,40(6):30-31,43.
    [1]王慧敏,杨绪壮,张兵兵,苏海全.燃料乙醇的环境优越性及C02催化加氢制乙醇研究进展[J].内蒙古大学学报(自然科学版),2012,3:225-231.
    [2]杨志琴,贾峰,刘荣.费托合成催化剂的研究进展[J].南京师范大学学报(工程技术版),2011,11(2):62-67.
    [3]黄伟新.催化表面物理化学的模型体系研究[J].中国科学:化学,2012,42(1):1-11.
    [4]F. Tao, M. E. Grass, Y. Zhang, et al. Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles [J]. Science,2008,322:932-934.
    [5]F. Tao, M. Salmeron. In-situ studies of chemistry and structure of materials in reactive environments [J]. Science,2011,331:171-174.
    [6]A. T. Bell. The impact of nanoscience on heterogeneous catalysis [J]. Science,2003,299: 1688-1691.
    [7]E. de Smit, I. Swart, J. F. Creemer, et al. Nanoscale chemical imaging of a working catalyst by scanning transmission X-ray microscopy [J]. Nature,2008,456:222-226.
    [8]S. Janbroers, J. N. Louwen, H. W. Zandbergen, et al. Insights into the nature of iron-based Fischer-Tropsch catalysts from quasi in situ TEM-EELS and XRD [J]. Journal of Catalysis, 2009,268:235-242.
    [9]Y. Jin, A. K. Datye. Phase transformations in iron Fischer-Tropsch catalysts during temperature-pogrammed reduction [J]. Journal of Catalysis,2000,196:8-17.
    [10]J. L. Casci, C. M. Lok, M. D. Shannon. Fischer-Tropsch catalysis:The basis for an emerging industry with origins in the early 20th Century [J]. Catalysis Today,2009,145:38-44.
    [11]G. L. Bezemer, P. B. Radstake, U. Falke, et al. Investigation of promoter effects of manganese oxide on carbon nanofiber-supported cobalt catalysts for Fischer-Tropsch synthesis [J]. Journal of Catalysis,2006,237:152-161.
    [12]G. Leendert Bezemer, Johannes H. Bitter, Herman P. C. E. Kuipers, et al. Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts [J]. Journal of the American Chemical Society,2006,128:3956-3964.
    [13]Nitin Kumar, K. Jothimurugesan, George G Stanley, et al. In situ FT-IR study on the effect of cobalt precursors on CO adsorption behavior [J]. The Journal of Physical Chemistry C, 2011,115:990-998.
    [14]Heline Karaca, Jingping Hong, Pascal Fongarland, et al. In situ XRD investigation of the evolution of alumina-supported cobalt catalysts under realistic conditions of Fischer-Tropsch synthesis [J]. Chemical Communications,2010,46:788-790.
    [15]G. L. Bezemer, T. J. Remans, A. P. van Bavel, et al. Direct evidence of water-assisted sintering of cobalt on carbon nanofiber catalysts during simulated Fischer-Tropsch conditions revealed with in situ Mossbauer spectroscopy [J]. Journal of the American Chemical Society,2010,132: 8540-8541.
    [16]F. M. F. de Groot, E. de Smit, M. M. van Schooneveld, et al. In-situ scanning transmission X-ray microscopy of catalytic solids and related nanomaterials [J]. ChemPhysChem,2010, 11:951-962.
    [17]A. T. Bell. Microscopy:watching catalysts at work [J]. Nature,2008,456:185-186.
    [18]B.M. Weckhuysen. Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales [J]. Angewandte Chemie International Edition,2009,48:4910-4943.
    [19]J. M. Thomas, J. C. Hernandez-Garrido. Probing solid catalysts under operating conditions: electrons or X-rays? [J]. Angewandte Chemie International Edition,2009,48:3904-3907.
    [20]A. Dumrath, X.-F. Wu, H. Neumann, et al. Recyclable ligands for palladium-catalyzed C-O-coupling reactions, buchwald-hartwig aminations, and sonogashira reactions [J]. Angewandte Chemie International Edition,2010,49:8988-8992.
    [21]I. Piras, R. Jennerjahn, R. Jackstell, et al. A general and efficient Iridium-catalyzed hydroformylation of olefins [J]. Angewandte Chemie International Edition,2011,50:280-284.
    [207]A.R.Schmidt, V. Perrichot, M. Svojtka, et al. Cretaceous African life captured in amber [J]. Proceedings of the National Academy of Sciences of the United States of America,2010, 107:7329-7334.
    [22]王晓丽.聚酯(PC、PET、PBT)/蒙脱土纳米复合材料的合成、表征及性能研究[D].内 蒙古大学,2007.
    [23]张兵兵.蒙脱土的提纯、有机化研究及聚碳酸酯/蒙脱土纳米复合材料的制备[D].内蒙古大学,2008.
    [24]Jean-Sebastien Girardon, Anatoly S. Lermontov, Leon Gengembre, et al. Effect of cobalt precursor and pretreatment conditions on the structure and catalytic performance of cobalt silica-supported Fischer-Tropsch catalysts [J]. Journal of Catalysis,2005,230:339-352.
    [25]J. van de Loosdrecht, S. Barradas, E. A. Caricato, et al. Calcination of Co-based Fischer-Tropsch synthesis catalysts [J]. Topics in Catalysis,2003,26:121-127.
    [26]Dan I. Enache, Bernadette Rebours, Magalie Roy-Auberger, et al. In situ XRD study of the influence of thermal treatment on the characteristics and the catalytic properties of cobalt-based Fischer-Tropsch Catalysts [J]. Journal of Catalysis,2002,205:346-353.
    [27]W. S. Seo, J. H. Shim, S. J. Oh, et al. Phase-and size-controlled synthesis of hexagonal and cubic CoO nanocrystals [J]. Journal of the American Chemical Society,2005,127:6188-6189.
    [28]Magnus R(?)nning, Nikolaos E. Tsakoumis, Alexey Voronov, et al. Combined XRD and XANES studies of a Re-promoted Co/g-Al2C3 catalyst at Fischer-Tropsch synthesis conditions [J]. Catalysis Today,2010,155:289-295.
    [29]D. P. Dinega, M. G. Bawendi. A solution-phase chemical approach to a new crystal structure of cobalt [J]. Angewandte Chemie International Edition,1999,38:1788-1791.
    [30]Morgana Scariot, Dagoberto O. Silva, Jackson D. Scholten, et al. Cobalt nanocubes in ionic liquids:synthesis and properties [J]. Angewandte Chemie International Edition,2008,47: 9075-9078.
    [31]Victor Antonio de la Pena O'Shea, Iberio de P. R. Moreira, Alberto Roldan, etal. Electronic and magnetic structure of bulk cobalt:The α, β,and ε-phases from density functional theory calculations[J]. Journal of Chemical Physics,2010,133,024701.
    [32]X. Q. Zhao, S. Veintemillas-Verdaguer, O. Bomati-Miguel, et al. Thermal history dependence of the crystal structure of Co fine particles [J]. Physical Review B,2005,71:024106.
    [33]S. Sun, C. B. Murray. Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices [J]. Journal of Applied Physics,1999,85:4325-4330.
    [34]C. Osorio-Cantillo, O. Perales-Perez, M. JF. Guinel, et al. Polyvinyl pirrolidone-mediated phase transitions in metastable nanocrystalline cobalt [J]. Journal of Applied Physics,2011, 109:07B531.
    [35]E.Iglesia. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts [J]. Applied Catalysis A:General,1997,161:59-78.
    [36]Andrei Y. Khodakov, Wei Chu, Pascal Fongarland. Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels [J]. Chemical Reviews,2007,107:1692-1744.
    [37]Nikolaos E. Tsakoumisa, Magnus R(?)nninga,(?)yvindBorg, et al. Deactivation of cobalt based Fischer-Tropsch catalysts:A review [J]. Catalysis Today,2010,154:162-182.
    [38]A. Vazquez, M.Lopez, G. Kortaberria, et al. Modification of montmorillonite with cationic surfactants, thermal and chemical analysis including CEC determination [J]. Applied Clay Science,2008,41:24-36.
    [39]A. Tabak, B. Afsin, S. F. Aygun, et al. Structural characteristics of organo-modified bentonites of different origin [J]. Journal of Thermal Analysis and Calorimetry,2007,87:375-381.
    [40]J. C. Lascovich, R. Giorgi, S. Scaglione. Evaluation of the sp2/sp3 ratio in amorphous carbon structure by XPS and XAES [J]. Applied Surface Science,1991,47:17-21.
    [41]Y. Chen, L.C.Zhang, J. A. Arsecularatne, et al. Polishing of polycrystalline diamond by the technique of dynamic friction, part 3:mechanism exploration through debris analysis [J]. InternationalJournal of Machine Tools and Manufacture,2007,47:2282-2289.
    [42]S. Osswald, G. Yushin, V. Mochalin, et al. Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air [J]. Journal of the American Chemical Society,2006,128:11635-11642.
    [43]D. D. Kulkarni, K. Rykaczewski, S. Singamaneni, etal. Thermally induced transformations of amorphous carbon nanostructures fabricated by electron beam induced deposition [J]. ACS Applied Materials & Interfaces,2011,3:710-720.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700