用户名: 密码: 验证码:
费托合成催化剂/蜡混合物的高梯度磁分离过程:模型及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
费托蜡与铁基催化剂的有效分离是实现浆态床反应器在费托合成过程中经济、高效、可靠运行的一个重要挑战。高梯度磁分离作为一类可选择的分离技术因为其低廉的资金投入、平缓的操作压差、较高的选择性、高效的分离效率以及它对催化剂的可回收性等优点,近年来得到了广泛的关注。
     本文分析了高梯度磁分离的过程机理,针对分离器的内部构造形式进行了理论研究,在此基础上建立了磁分离过程的数学模型,对磁场强度分布及磁场力分布进行了模拟计算。研究结果表明磁场力作为分离过程的主导因素取决于分离器内的磁场分布情况,磁场力与磁场强度及磁场梯度均成正比关系。然而,分离器内的磁场分布与其内部的导磁构件排列方式及外加均匀磁场大小有着密不可分的联系。
     本文以流体力学软件Ansys Fluent13.0为操作平台,利用有限元分析手段,以柱状金属丝为基本构造单元对分离器内导磁构件中金属格栅的线间距、格栅间距、格栅排列角度及外加磁场强度等影响因素进行了模拟研究。结果发现过高的线间距及不恰当的排列方式会在磁分离器内形成渗流通道,渗流通道容易导致分离过程中获得较低的分离效率及不稳定操作。同时,外加磁场对整体分离过程起着决定性的作用,当金属格栅无法达到饱和磁化强度时,外加磁场降低会使内部磁场强度迅速降低,从而导致磁场力的迅速减弱。计算结果揭示了格栅常规90°排列方式中存在渗流通道这一缺陷,通过优化改进获得最为合理的分离条件为:外加磁场强度398089A/m,2mm线间距,2mm格栅间距以及45°的格栅排列角度。
     本文以费托合成中蜡及铁基催化剂分离这一典型工业过程为背景,依据上述理论分析结果,设计出一整套沉降加高梯度磁分离的工艺流程,磁分离器采用电磁线圈产生的纵向均匀磁场作为外加磁场,使用三种金属丝间隔的格栅叠加作为内构件进行分离实验。实验考察了格栅金属丝间隔、格栅轴向间距、格栅排列角度、外加磁场强度对分离效果的影响,实验结果验证了模拟的可靠性。利用模型分析与实验验证相结合的手段,在优化的排列方式条件下(线间距2mm;格栅间距2mm;排列角度45°;外加磁场强度398089A/m)通过磁分离后的蜡中铁含量减少至30ppm,分离效率超过99.95%,达到了工业生产的要求。
Separating the iron-based catalyst/wax mixture from Fischer-Tropsch synthesis(FTS) products is one of the most important challenges in the development of FTSslurry bubble column reactor. High gradient magnetic separation (HGMS), with theadvantages of low cost, negligible pressure drop, high selectivity, excellent separationefficiency and ability to recycle the magnetic particles, is a promising technique forthe catalyst/wax separation.
     The mechanism of the high gradient magnetic separation (HGMS) process wasinvestigated in this dissertation. A three-dimensional mathematical model wasestablished to describe the magnetic field and magnetic force distribution withmulti-wires for HGMS of catalyst particles from FTS wax. The calculation resultsindicated that the magnetic force, as the dominant influence factor of the separationprocess, is determined by the distribution of the magnetic field. The magnetic force isproportional to the magnetic field strength and the magnetic field gradient. However,the distribution of magnetic field in the separator was significantly associated with thematrix arrangement patterns and the background uniform external magnetic fieldstrength.
     Based on the hydrodynamic software Ansys Fluent13.0, this dissertation studiedthe influence factors in the separation involving the wire interval, the matrix axialdistance, the arrangement angle as well as the back ground uniform magnetic fieldstrength in the column-wire-based unit by means of finite element analysis. It wasfound that both the excessive wire interval and the improper matrix arrangementpattern can lead to the formation of percolation channel in the separator. Thepercolation channel is a negative factor causing lower separative efficiency andinstability of the separation operations. Moreover, the magnetic force acting on aparticle is also proportional to the external magnetic field strength, which is a veryimportant influence factor when the magnetization of the matrix was not saturated.The simulation results shows that there are percolation channel with the arrangementangle of90°, and the optimal condition is the matrix with the wire interval of2mm,the axial distance of2mm, the arrangement angle of45°and the external magneticfield strength of398089A/m.
     A high gradient magnetic separation process was designed for the catalyst/waxmixture separation coming from a typical industrial process of F-T synthesis. Thehigh gradient magnetic separator adopted vertical uniform magnetic field generatedby electromagnetic, and the matrices with three kinds of wire intervals were used asinner parts. In order to validate the simulation results, experimental investigationswere also carried out to disclose the effects of four main factors involving the wireinterval, the axial distance between matrices, the arrangement angle between matricesand the external magnetic field strength on the separation efficiency in HGMS.
     Through the experimental optimization (the wire interval of2mm; the axialdistance of2mm; the arrangement angle of45°and the external magnetic fieldstrength of398089A/m), the magnetic iron content of the catalyst/wax mixture canbe reduced to less than30ppm, with the separation efficiency higher than99.95%which was in well accordance with the prediction of the established multi-wiremodels.
引文
1.贺永德,现代煤化工技术手册,北京,化学工业出版社,2004.
    2.舒歌平,煤炭液化技术,北京,煤炭工业出版社,2003.
    3. C.M. Eidt, J.M. Hochman, G.C. Lahn, R.F. Bauman, B.M. Eisenberg,[13]5Current Developments in Natural Gas Conversion Technology,1994.
    4. R.L. Espinoza, A.P. Steynberg, B. Jager, A.C. Vosloo, Low temperatureFischer–Tropsch synthesis from a Sasol perspective, Applied Catalysis A:General.186(1999)13-26.
    5. H. K lbel, P. Ackermann, F. Engelhardt, Nue Entwicklungen zurKohlenwasserstoff-Synthese, Erd l und Kohle.9(1956)225-303.
    6. J.H. Gao, B.S. Wu, L.P. Zhou, Y. Yang, X. Hao, J. Xu, Y.Y. Xu, L.R. Cao,Y.W. Li, Effective control of alpha-olefin selectivity during Fischer-Tropschsynthesis over polyethylene-glycol enwrapped porous catalyst, CatalysisCommunications.12(2011)1466-1470.
    7. B. Shi, B.H. Davis, Fischer–Tropsch synthesis: The paraffin to olefin ratio as afunction of carbon number, Catalysis Today.106(2005)129-131.
    8. G.P. Van Der Laan, A.A.C.M. Beenackers, Kinetics and Selectivity of theFischer–Tropsch Synthesis: A Literature Review, Catalysis Reviews.41(1999)255-318.
    9. H.-j. Wan, B.-s. Wu, T.-z. Li, Z.-c. Tao, X. An, H.-w. Xiang, Y.-w. Li, Effectsof SiO2and Al2O3on performances of iron-basedcatalysts for slurryFischer–Tropsch synthesis, Journal of Fuel Chemistry and Technology.35(2007)589-594.
    10. D. Leckel, M. Liwanga-Ehumbu, Diesel-selective hydrocracking of aniron-based Fischer-Tropsch wax fraction (C15-C45) using a MoO3-modifiednoble metal catalyst, Energy&fuels.20(2006)2330-2336.
    11. X. Liu, X. Li, K. Fujimoto, Effective control of carbon number distributionduring Fischer–Tropsch synthesis over supported cobalt catalyst, CatalysisCommunications.8(2007)1329-1335.
    12. N. Tsubaki, K. Fujimoto, Product control in Fischer–Tropsch synthesis, Fuelprocessing technology.62(2000)173-186.
    13. M.E. Dry, J.R. Anderson, M. Boudart, Catalysis-science and technology,Anderson, JR, Boudart, M., Ed.1(1981)159.
    14. M.E. Dry, The Fischer–Tropsch process:1950–2000, Catalysis today.71(2002)227-241.
    15. P.P. Shah, G.C. Sturtevant, J.H. Gregor, M.J. Humbach, F.G. Padrta, K.Z.Steigleder, Fischer-Tropsch Wax Characterization and Upgrading: Final report,1988, UOP, pp.
    16. P.Z. Zhou, R.D. Srivastava, Status Review of Fischer-Tropsch Slurry ReactorCatalystWax Separation Techniques,1991, Burn and Roe ServicesCorporation, pp.
    17.赵玉龙,浆态床FT合成反应器的固液分离现状和进展,煤炭转化.19(1996)20-26.
    18. B. Jager, A.P. Steynberg, J.R. Inga, R.C. Kelfkens, M.A. Smith, F.E.J.Malherbe, Process for producing liquid and, optionally gaseous products fromgaseous reactants, EP Patent0,609,079,1998.
    19.朱继承,耿加怀,一种用于三相浆态床反应器液固分离的自动过滤/反冲系统, CN1589957,2005.
    20.梁鹏,程乐明,赵玉龙,孙东凯,张荣,毕继诚,浆态床FT合成反应器中内部过滤操作研究,化学工程.32(2004)38-41.
    21.徐国文,顾其威,气液固三相浆态搅拌反应器中管式内过滤器的过滤特性研究,化学反应工程与工艺.9(1993)56-61.
    22.石玉林,门卓武,卜亿峰,浆液外循环过滤分离费托合成浆态床反应器研究开发,神华科技.27(2009)283-288.
    23. R.L. Espinoza, S.R. Mohedas, D.S. Jack, O.A. Odueyungbo, J.D. Ortego Jr,Solid/liquid separation system for multiphase converters, US6929754, GooglePatents,2005.
    24. S. Mohedas, R. Espinoza, D. Jack, O. Odueyungbo, J. Ortego, Optimizedsolid/liquid separation system for multiphase converters, WO Patent2,003,089,103,2003.
    25. R. Farley, D.J. Ray, The Design and Operation of a Pilot-Scale Plant forHydrocarbon Synthesis in the Slurry Phase, Journal of the Institute ofPetroleum.50(1964)27-46.
    26.赵玉龙,宋同贵,浆态床FT合成/固定床ZSM—5改质的合成液体燃料工艺的研究和开发,燃料化学学报.22(1994)1-8.
    27. H. K lbel, M. Ralek, The Fischer-Tropsch synthesis in the liquid phase,Catalysis Reviews Science and Engineering.21(1980)225-274.
    28. J. Kuo, Slurry Fischer-Tropsch/Mobil Two-Stage Process of ConvertingSyngas to High Octane Gasoline, DOE Contract No., DE-AC22-80PC30022,Final Report, June.(1983).
    29.李军,陈永清,旋液分离器的应用及设计方法,沈阳化工.(1992)23-27.
    30. M.S. Bohn, J.E. Siebarth, Method of removing catalyst particles from wax,US6712982, Google Patents,2004.
    31.张艳红,白志山,周萍,汪华林,气液固三相浆态床反应器研究进展,化工进展.(2008).
    32. H.R. Khakdaman, K. Sadaghiani, Separation of Catalyst Particles and Waxfrom Effluent of a Fischer–Tropsch Slurry Reactor Using Supercritical Hexane,Chemical Engineering Research and Design.85(2007)263-268.
    33. J.M. Biales, Y. Di Wan, P.K. Kilpatrick, G.W. Roberts, Separation ofFischer-Tropsch wax from catalyst using near-critical fluid extraction:Analysis of process feasibility, Energy&fuels.13(1999)667-677.
    34. C.M. White, K.L. Jensen, P.C. Rohar, J.P. Tamilia, L.J. Shaw, R.F. Hickey,Separation of Fischer-Tropsch catalyst/wax mixtures using dense-gas andliquid extraction, Energy&fuels.10(1996)1067-1073.
    35. Y.A. Liu, Industrial applications of magnetic separation,1979, Institute ofElectrical and Electronic Engineers, Inc., New York, NY, pp.
    36. E. Maxwell, Magnetic separation—The prospects for superconductivity,Cryogenics.15(1975)179-184.
    37. R.R. Oder, The Magnetic Processing of Kaolin Clays, Pulp Paper Can.75(1974) T366-T369.
    38. R. Oder, High gradient magnetic separation theory and applications,Magnetics, IEEE Transactions on.12(1976)428-435.
    39. B.L. Hirschbein, D.W. Brown, G.M. Whitesides, Magnetic separations inchemistry and biochemistry, Chemtech.12(1982)172-179.
    40. J. Kuo, Two-stage process for conversion of synthesis gas to high qualitytransportation fuels. Final report,1985, Mobil Research and DevelopmentCorp., Paulsboro, NJ (USA), pp.
    41. Y.F. Chu, A.W. Chester, Separation of catalyst from slurry bubble columnwax and catalyst bicycle, ZA8401832(A), Mobile oil corp,1985.
    42. S.C. Saxena, R.S. Miao, M. Shalabi, M.J. McNallan, Magnetic‐fieldaugmented sedimentation of micron‐sized iron particles in a hydrocarbon,AIChE journal.40(1994)1594-1598.
    43. R. Krishna, S. Sie, Strategies for multiphase reactor selection, ChemicalEngineering Science.49(1994)4029-4065.
    44. T. Abbasov, K. Ceylan, Estimation of optimum fluid velocity in high gradientmagnetic filtration, Separation Science and Technology.33(1998)975-989.
    45. B.L. Larsen, P. Rasmussen, A. Fredenslund, A modified UNIFACgroup-contribution model for prediction of phase equilibria and heats ofmixing, Industrial&engineering chemistry research.26(1987)2274-2286.
    46.柴诚敬,贾绍义,磁化技术在化工分离领域中的应用,化学工业与工程.16(1999)245-247.
    47. H. Kolm, The large-scale manipulation of small particles, Magnetics, IEEETransactions on.11(1975)1567-1569.
    48. J. Iannicelli, J. Pechin, Magnetic separation of kaolin clay using an advanced9T separator, Applied Superconductivity, IEEE Transactions on.10(2000)917-922.
    49. N.J. Saikia, D.J. Bharali, P. Sengupta, D. Bordoloi, R.L. Goswamee, P.C.Saikia, P.C. Borthakur, Characterization, beneficiation and utilization of akaolinite clay from Assam, India, Applied Clay Science.24(2003)93-103.
    50. D. Kelland, High gradient magnetic separation applied to mineralbeneficiation, Magnetics, IEEE Transactions on.9(1973)307-310.
    51. T. Uslu, ü. Atalay, A.I. Arol, Effect of microwave heating on magneticseparation of pyrite, Colloids and Surfaces A: Physicochemical andEngineering Aspects.225(2003)161-167.
    52. B.L. Hirschbein, G.M. Whitesides, Affinity separation of enzymes frommixtures containing suspended-solids-comparisons of magnetic andnon-magnetic techniques, Applied Biochemistry and Biotechnology.7(1982)157-176.
    53. Y. Zhao, B. Xi, Y. Li, M. Wang, Z. Zhu, X. Xia, L. Zhang, L. Wang, Z. Luan,Removal of phosphate from wastewater by using open gradientsuperconducting magnetic separation as pretreatment for high gradientsuperconducting magnetic separation, Separation and Purification Technology.(2011).
    54. G. Mariani, M. Fabbri, F. Negrini, P.L. Ribani, High-Gradient MagneticSeparation of pollutant from wastewaters using permanent magnets,Separation and Purification Technology.72(2010)147-155.
    55. C. De Latour, Magnetic separation in water pollution control, Magnetics,IEEE Transactions on.9(1973)314-316.
    56. C. De Latour, H. Kolm, Magnetic separation in water pollution control-II,Magnetics, IEEE Transactions on.11(1975)1570-1572.
    57. R. Gerber, R.R. Birss, High gradient magnetic separation, Research StudiesPress Div. of John Wiley&Sons, Ltd.,1983.(1983)209.
    58. R. Gregory, R. Maloney, M. Stockley, Water treatment using magnetite: astudy of a Sirofloc pilot plant, Water and Environment Journal.2(1988)532-544.
    59. C.T. Yavuz, A. Prakash, J.T. Mayo, V.L. Colvin, Magnetic separations: Fromsteel plants to biotechnology, Chemical Engineering Science.64(2009)2510-2521.
    60. K. Senkawa, Y. Nakai, F. Mishima, Y. Akiyama, S. Nishijima, Measurementof the adhesion force between particles for high gradient magnetic separationof pneumatic conveyed powder products, Physica C: Superconductivity.471(2011)1525-1529.
    61. S. Herdem, Influence of the magnetic susceptibility of the particles on themagnetic filter performance, International Journal of AppliedElectromagnetics and Mechanics.22(2005)189-197.
    62. S. Herdem, M. Koksal, T. Abbasov, Simulation of the magnetic filtrationprocess of technological liquids and gases by a nonlinear electrical circuit,Journal of Physics D-Applied Physics.34(2001)238-242.
    63. T. Oka, K. Tanaka, T. Kimura, D. Mimura, S. Fukui, J. Ogawa, T. Sato, M.Ooizumi, K. Yokoyama, M. Yamaguchi, Magnetic separation technique forenvironmental water purification by strong magnetic field generator loadingHTS bulk magnets, Physica C-Superconductivity and Its Applications.470(2010)1799-1803.
    64. K. Yokoyama, T. Oka, K. Noto, Development of a Small-SizeSuperconducting Bulk Magnet System Using a13K Refrigerator, IeeeTransactions on Applied Superconductivity.20(2010)973-976.
    65. T. Oka, H. Kanayama, K. Tanaka, S. Fukui, J. Ogawa, T. Sato, M. Ooizumi, T.Terasawa, Y. Itoh, R. Yabuno, Waste water purification by magneticseparation technique using HTS bulk magnet system, PhysicaC-Superconductivity and Its Applications.469(2009)1849-1852.
    66. J. Cao, X.W. Liu, R. Fu, Z. Tan, Magnetic P zeolites: Synthesis,characterization and the behavior in potassium extraction from seawater,Separation and Purification Technology.63(2008)92-100.
    67. F. Sakaguchi, Y. Akiyama, Y. Izumi, S. Nishijima, Fundamental study onmagnetic separation of aquatic organisms for preservation of marineecosystem, Physica C: Superconductivity.469(2009)1835-1839.
    68. G. Iacob, N. Rezlescu, Experimental observations on the saturation mass inthe capture process of an ordered transverse high gradient magnetic separationmatrix, Powder technology.97(1998)233-236.
    69. F. Mishima, S. Takeda, A superconducting magnetic separation system offerromagnetic fne particles from a viscous fuid, Physica C.463–465(2007)1302~1305.
    70. S. Hayashi, F. Mishima, Y. Akiyama, S. Nishijima, Development of highgradient magnetic separation system for removing the metallic wear debris tobe present in highly viscous fluid, Physica C: Superconductivity.470(2010)1822-1826.
    71. S. Hayashi, F. Mishima, Y. Akiyama, S. Nishijima, Development of HighGradient Magnetic Separation System for a Highly Viscous Fluid, IeeeTransactions on Applied Superconductivity.20(2010)945-948.
    72. Y. Nakai, F. Mishima, Y.S. Akiyama, Development of high gradient magneticseparation system under dry condition, Physica C.470(2010)1812-1817.
    73. Y. Nakai, F. Mishima, Y. Akiyama, S. Nishijima, Development of MagneticSeparation System for Powder Separation, Ieee Transactions on AppliedSuperconductivity.20(2010)941-944.
    74. K. Menzel, J. Lindner, H. Nirschl, Removal of magnetite particles andlubricant contamination from viscous oil by High-Gradient MagneticSeparation technique, Separation and Purification Technology.92(2012)122-128.
    75. S.B. Norina, S.H. Park, K.S. Soh, Diamagnetic microparticle movement inhigh gradient magnetic separation analyses, Journal of the Korean PhysicalSociety.47(2005)297-305.
    76. J. Svoboda, A realistic description of the process of high-gradient magneticseparation, Minerals engineering.14(2001)1493-1503.
    77. J. Svoboda, T. Fujita, Recent developments in magnetic methods of materialseparation, Minerals Engineering.16(2003)785-792.
    78. M.R. Smolkin, R.D. Smolkin, Calculation and analysis of the magnetic forceacting on a particle in the magnetic field of separator. Analysis of theequations used in the magnetic methods of separation, Magnetics, IEEETransactions on.42(2006)3682-3693.
    79.颜廷燕,磁场强化—高梯度磁分离处理废水的研究,天津大学,2008.
    80. Y.A. Liu, M.J. Oak, Studies in magnetochemical engineering. Part II:Theoretical development of a practical model for high‐gradient magneticseparation, AIChE journal.29(1983)771-779.
    81. H. Chen, A.D. Ebner, A.J. Rosengart, M.D. Kaminski, J.A. Ritter, Analysis ofmagnetic drug carrier particle capture by a magnetizable intravascular stent:1.Parametric study with single wire correlation, Journal of magnetism andmagnetic materials.284(2004)181-194.
    82. G.D. Moeser, K.A. Roach, W.H. Green, T. Alan Hatton, P.E. Laibinis, High‐gradient magnetic separation of coated magnetic nanoparticles, AIChE journal.50(2004)2835-2848.
    83. M. Reza Habibi, M. Ghassemi, M. Hossien Hamedi, Analysis of high gradientmagnetic field effects on distribution of nanoparticles injected into pulsatileblood stream, Journal of magnetism and magnetic materials.(2011).
    84. F. Chen, K.A. Smith, T.A. Hatton, A dynamic buildup growth model formagnetic particle accumulation on single wires in high-gradient magneticseparation, AIChE Journal.58(2012)2865-2874.
    85. T.-Y. Ying, S. Yiacoumi, C. Tsouris, High-gradient magnetically seededltration, Chemical Engineering Science.55(2000)1101-1113.
    86. K. Hournkumnuard, C. Chantrapornchai, Parallel simulation of concentrationdynamics of nano-particles in High Gradient Magnetic Separation, SimulationModelling Practice and Theory.19(2011)847-871.
    87. J. Nesset, J. Finch, The static (buildup) model of particle accumulation onsingle wires in high gradient magnetic separation: Experimental confirmation,Magnetics, IEEE Transactions on.17(1981)1506-1509.
    88. F. Friedlaender, M. Takayasu, J. Rettig, C. Kentzer, Particle flow andcollection process in single wire HGMS studies, Magnetics, IEEETransactions on.14(1978)1158-1164.
    89. F.J. Friedlaender, M. Takayasu, a study of the mechantisms of particle buildup on single ferromagnetic wire and spheres, IEEE TRANSACTIONS ONMAGNETICS.18(1982)817-821.
    90. A.D. Ebner, J.A. Ritter, H.J. Ploehn, Feasibility and limitations of nanolevelhigh gradient magnetic separation, Separation and Purification Technology.11(1997)199-210.
    91. T. Zarutskaya, M. Shapiro, Capture of nanoparticles by magnetic filters,Journal of Aerosol Science.31(2000)907-921.
    92. R. Mehasni, M. Feliachi, M.E.H. Latreche, Effect of the magneticdipole–dipole interaction on the capture efficiency in open gradient magneticseparation, Magnetics, IEEE Transactions on.43(2007)3488-3493.
    93. I. de Vicente, A. Merino-Martos, F. Guerrero, V. Amores, J. de Vicente,Chemical interferences when using high gradient magnetic separation forphosphate removal: Consequences for lake restoration, Journal of hazardousmaterials.192(2011)995-1001.
    94. G. Mutschke, K. Tschulik, T. Weier, M. Uhlemann, A. Bund, J. Fr hlich, Onthe action of magnetic gradient forces in micro-structured copper deposition,Electrochimica Acta.55(2010)9060-9066.
    95. D. Bockenfeld, H. Chen, M.D. Kaminski, A.J. Rosengart, D. Rempfer, Aparametric study of a portable magnetic separator for separation ofnanospheres from circulatory system, Separation Science and Technology.45(2010)355-363.
    96. H. Chen, M.D. Kaminski, A.J. Rosengart,2D modeling and preliminary invitro investigation of a prototype high gradient magnetic separator forbiomedical applications, Med Eng Phys.30(2008)1-8.
    97. H. Chen, D. Bockenfeld, D. Rempfer, M.D. Kaminski, X. Liu, A.J. Rosengart,Preliminary3-D analysis of a high gradient magnetic separator for biomedicalapplications, Journal of magnetism and magnetic materials.320(2008)279-284.
    98. N.M. Sido, A. Mailfert, G. Gillet, A. Colteu, Study of high intensity magneticseparation process in grooved plate matrix, The European Physical JournalApplied Physics.24(2003)201-207.
    99. S. Mohanty, B. Das, B.K. Mishra, A preliminary investigation into magneticseparation process using CFD, Minerals Engineering.24(2011)1651-1657.
    100. H. Okada, K. Mitsuhashi, T. Ohara, E.R. Whitby, H. Wada, ComputationalFluid Dynamics Simulation of High Gradient Magnetic Separation, SeparationScience and Technology.40(2005)1567-1584.
    101. W.H. Simons, R.P. Treat, Particle trajectories in a lattice of parallelmagnetized fibers, Journal of Applied Physics.51(1980)578-588.
    102. S.K. Baik, D.W. Ha, R.K. Ko, J.M. Kwon, Magnetic field and gradientanalysis around matrix for HGMS, Physica C: Superconductivity.470(2010)1831-1836.
    103. C.M. Earhart, E.M. Nguyen, R.J. Wilson, Y.A. Wang, S.X. Wang, Designs fora Microfabricated Magnetic Sifter, Magnetics, IEEE Transactions on.45(2009)4884-4887.
    104. R. Nakao, Y. Matuo, F. Mishima, T. Taguchi, S. Maenosono, S. Nishijima,Development of magnetic separation system of magnetoliposomes, Physica C:Superconductivity.469(2009)1840-1844.
    105. J.H. Watson, Improvements of a low-field, high-intensity matrix separator,Magnetics, IEEE Transactions on.14(1978)392-394.
    106.王发辉,基于FLUENT的干法磁分离机理的数值模拟,河南理工大学,
    2010.
    107. J. Pinto-Espinoza, Dynamic behavior of ferromagnetic particles in aliquid-solid magnetically assisted fluidized bed (MAFB): theory, experiment,and CFD-DPM simulation, Oregon State University,2002.
    108. H. Zhenghua, L. Xiang, L. Huilin, L. Guodong, H. Yurong, W. Shuai, X.Pengfei, Numerical simulation of particle motion in a gradient magneticallyassisted fluidized bed, Powder technology.203(2010)555-564.
    109. J.M. Valverde, A. Castellanos, Fluidization of nanoparticles: A simpleequation for estimating the size of agglomerates, Chemical EngineeringJournal.140(2008)296-304.
    110. J.M. Valverde, A. Castellanos, Fluidization of nanoparticles: A modifiedRichardson‐Zaki Law, AIChE journal.52(2005)838-842.
    111. J.M. Valverde, A. Castellanos, Fluidization, bubbling and jamming ofnanoparticle agglomerates, Chemical Engineering Science.62(2007)6947-6956.
    112. J.M. Valverde, A. Castellanos, A modified Richardson–Zaki equation forfluidization of Geldart B magnetic particles, Powder technology.181(2008)347-350.
    113.卢立祥,上流磁稳定床流动与传质特性的研究,天津大学,2004.
    114.蓝惠霞,高梯度磁分离除尘实验与机理的研究,广东工业大学,2001.
    115.孔珑,两相流体力学,高等教育出版社,2004.
    116. P.A. Berthelsen, T. Ytrehus, Stratified smooth two-phase flow using theimmersed interface method, Computers&fluids.36(2007)1273-1289.
    117. S.A. Morsi, A.J. Alexander, An investigation of particle trajectories intwo-phase flow systems, J. Fluid Mech.55(1972)193-208.
    118. F. Inc, Fluent User’s Guide, American, Fluent Inc,2003.
    119. K. Jothimurugesan, J.G. Goodwin, S.K. Gangwal, J.J. Spivey, Development ofFe Fischer–Tropsch catalysts for slurry bubble column reactors, Catalysistoday.58(2000)335-344.
    120. R. Krishna, J.W.A. De Swart, J. Ellenberger, G.B. Martina, C. Maretto, Gasholdup in slurry bubble columns: effect of column diameter and slurryconcentrations, AIChE journal.43(2004)311-316.
    121. A. Behkish, Z. Men, J.R. Inga, B.I. Morsi, Mass transfer characteristics in alarge-scale slurry bubble column reactor with organic liquid mixtures,Chemical Engineering Science.57(2002)3307-3324.
    122. S.Q. Li, M.F. Wang, Z.A. Zhu, Q. Wang, X. Zhang, H.Q. Song, D.Q. Cang,Application of superconducting HGMS technology on turbid wastewatertreatment from converter, Separation and Purification Technology.(2011).
    123. Y.F. Shen, J. Tang, Z.H. Nie, Y.D. Wang, Y. Ren, L. Zuo, Preparation andapplication of magnetic Fe3O4nanoparticles for wastewater purification,Separation and Purification Technology.68(2009)312-319.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700