用户名: 密码: 验证码:
催化剂制备方法对CO加氢生成低碳烃性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今世界上的燃料和化学品的生产很大程度取决于原油。由于原油的枯竭或者是原油价格的不断攀升,从甲烷和煤炭中制取合成气,再由合成气合成一系列的燃料和化学品,越来越具有商业前景。
     要获得高选择性的低碳烃,使碳链集中于C2-C4范围内,阻止生成的烯烃发生二次反应,并保证所开发的催化剂具有较高的催化活性。常用的方法是对传统的F-T合成催化剂进行物理和化学改性。本论文主要研究催化剂的制备方法对CO加氢生成C1-C4烃催化剂性能的影响,所选择的催化剂主要是Co-6Mn/SiO2催化剂,Fe/C催化剂,Co/?-Al2O3催化剂和Co-Fe/ZSM-5催化剂,运用高压微反装置测试催化剂活性,并运用XRD、BET、SEM和NH3-TPD等技术手段对催化剂进行表征。
     对于不同方法制备的Co-6Mn/SiO2催化剂而言,微波条件下制备的催化剂在反应过程中CO转化率受温度影响较小,该催化剂对低碳烃的选择性大于传统浸渍方法制备的催化剂,且在考察的温度范围内选择性随温度的升高而升高。通过催化剂的表征,可以知道微波条件下负载的催化剂晶型结构相对较为规整催化剂表面颗粒分布较为细小、均匀,而传统浸渍方法制得的催化剂颗粒度相对较大,且均匀度相对较差,并进一步造成微波方法制备的10Co-6Mn/SiO2催化剂比表面积略有较小,平均孔径降低。
     对于分别在高压釜内分解和微波辐射两种条件下制得的Fe/C催化剂,当反应温度高于360 oC时,无论是催化剂对CO的转化率,还是催化剂对低碳烃的选择性,利用微波方法制备的催化剂性能都要优于利用高压釜制备的催化剂。催化剂的表征结果表明,微波条件下制备催化剂Fe的存在相态主要以α-Fe2O3为主,且其晶形结构相对较为规整,催化剂颗粒度较小,比表面积较大。而高压釜内分解所得的Fe组分的主要相态以Fe3O4为主,颗粒度较大,比表面积较小。
     对于利用微波负载及常规浸渍方法所得到的Co/?-Al2O3催化剂,微波方法制备的催化剂无论是在CO转化率还是在对低碳烃选择性方面,都要优于利用传统浸渍方法制备的催化剂。在利用微波方法制备的Co/?-Al2O3催化剂中加入Mn组分后,加入的Mn组分促使Co3O4分散程度提高,粒径减小,催化剂的比表面积、孔体积及平均孔径都有所减小,致使在所有利用微波方法制备的催化剂中,加入Mn组分的催化剂活性均下降。对该催化剂的表征结果表明:利用微波方法制备的催化剂在制备过程中表面组分会发生破裂,但破裂后的晶形结构依然相对较为规整,且该方法制备的催化剂孔容和平均孔径相对要大,较大的孔径使得形成的产物在孔道内停留时间减少,且其在孔道内产物扩散速度增加,从而有利于低碳烃的生成。
     通过对不同方法制备的Co-Fe/ZSM-5催化剂活性的考察,表明利用微波方法浸渍负载所得催化剂的相对于利用传统浸渍方法所得的催化剂具有较高的催化活性、较好的对C1-C4烃的选择性以及催化剂寿命较长等优点。催化剂的表征表明:微波负载所得催化剂的表面酸中心数明显低于传统浸渍方法所得催化剂的表面酸中心数,表面酸中心数的减少能够使反应发生较少的二次反应,从而催化剂的催化活性高于传统浸渍方法所得催化剂的活性。同时,微波方法制备的催化剂在比表面积,孔体积以及平均孔径等参数方面均低于利用传统方法制备的催化剂。
Fischer–Tropsch synthesis (FTS) has attracted increasing interest as an important route for indirect coal liquefaction.
     This dissertation investigated the influence of different preparation methods of cobalt and/or iron based catalysts for C1-C4 hydrocarbons synthesis, and SiO2,γ-Al2O3, AC and ZSM-5 zeolite (Si/Al =38) (20-40 mesh) were chosen as the supports, respectively. The characterizations as XRD, BET, SEM, and NH3-TPD were utilized to reveal the textural and structural properties, and the surface compositions of the catalysts etc.
     As Co-6Mn/SiO2 catalysts,the catalytic performance of the catalysts obtained by microwave were better than by conventional impregnation method while the reaction temperature was higher than 300 oC. The results of XRD, BET and SEM indicated that the dispersion of Co-based catalysts was enhanced with the existence of Mn promoters. At the same time, microwave irradiation leaded to an decrease in catalysts crystallize mean size, and an increase in active components dispersion as well as the formation of active centers.
     For the Fe/C catalysts prepared by microwave irradiation gave high C1-C4 yield under the temperatures of 360, 400 oC. The results of XRD and SEM indicated that the larger crystallite size of Fe3O4 formed in the Fe/C catalysts prepared from the decomposed Fe(CO)5 in the autoclave, and for the Fe/C catalysts prepared by microwave irradiation, it was found that a new phaseα-Fe2O3 formed may be attributed to high temperature in the preparation of the catalysts, while the surface area was larger and the crystallite size was small, which induce the activity increase for the Fe/C catalysts prepared by microwave irradiation.
     For the Co/?-Al2O3 catalysts, the catalysts prepared by microwave irridiation in the overall catalytic performence were superior to conventional catalyst prepared by impregnation. The results of XRD, BET and SEM indicated that the catalysts prepared by microwave irradiation leaded to a decrease in catalysts crystallize mean size, an increase in pore volume and mean pore diameter, which favored to the formation of C1-C4 hydrocarbons.
     For Co-Fe/ZSM-5 catalysts for CO hydrogenation, the Co-Fe/ZSM-5 catalysts prepared by microwave irridiation in the overall catalytic performence were also superior to the catalysts prepared by conventional impregnation. The results of XRD showed that iron exsited as amorpnous phase in Co-Fe/ZSM-5 catalysts. The results of BET showed that the surface area, pore volume and mean pore diameter of the catalysts prepared by microwave irradiation were lower than conventional impregnation. On the other hand, the NH3-TPD results indicated that a lower acidic amount to match the better catalytic performance.
引文
[1]余皎.丙烯市场供需现状及发展趋势[J].当代石油石化, 2004, 12(9): 35-38.
    [2]任诚.非石油路线制取低碳烯烃的生产技术及产业前景[J].精细化工中间体, 2007, 37(5): 6-9.
    [3]周宏中.国内外丙烯市场现状及发展趋势[J].化工技术经济, 2004,22(9):28-31.
    [4]周春艳,刘欣佟.国内外乙烯生产技术进展与评述[J].化学工业, 2008,26(1):23-26.
    [5]范济民,杨怀旺,申峻,王志忠.合成气的工业应用与催化剂研究进展[J].煤化工, 2006,4:14-18.
    [6]钱伯章,朱建芳.国内外乙烯生产与发展趋势[J].石化技术, 2007,14(1):50-54.
    [7]刘四华.石油化工的新原料——合成气[J].贵州化工, 2006,31(1):25-27.
    [8]王红秋.我国乙烯工业的发展环境分析[J].国际石油经济, 2008,2:38-42.
    [9]农兰平.话说乙烯[J].化学教学, 1999,7:30-31.
    [10]杨春生.开辟乙烯原料的新来源[J].中外能源, 2007,12(3):63-68.
    [11]张福琴,陈国辉.我国乙烯工业发展值得思考的几个问题[J].国际石油经济, 2006,2:38-42.
    [12]林衍华.白尔铮环氧丙烷生产技术和市场分析[J].石油化工技术经济, 2006,2:29-33.
    [13]张建国,宋昭峥,丁宏霞,等.增产丙烯的技术进展与我国发展对策[J].现代化工, 2006,26(增刊):5-10.
    [14]钱伯章.环氧丙烷的生产技术进展[J].化学推进剂与高分子材料, 2006,4(2):14-18.
    [15]胡玉梅.我国丙烯行业发展趋势及市场分析[J].国际石油经济, 2005,13(3):20-26.
    [16]李仲来.甲醇制低碳烯烃(MTO)技术综述[J].氮肥技术, 2007,28(2):1-7.
    [17]徐蕾.甲醇制低碳烯烃产业发展概述及建议[J] .上海化工, 2006, 31 ( 10) : 41- 45.
    [18]王平尧.甲醇制烯烃技术进展及其对国内烯烃工业的影响刍议[J].化肥设计, 2008,46(2):13-17.
    [19]陈香生,刘昱,陈俊武.煤基甲醇制烯烃(MTO)工艺生产低碳烃的工程技术及投资分析[ J].煤化工, 2005(5).
    [20]张殿奎.大型煤气化合成甲醇制丙烯(MTP)是我国煤化工的发展趋势[J].化工技术经济, 2007,25(1):1-4.
    [21]甲醇制取低碳烯烃(DMTO)技术开发项目获突破[ J].浙江化工, 2007, 38 (3) : 42- 42.
    [22]合成气经由二甲醚制取低碳烯烃新工艺[ J].化工中间体, 2006, (6) : 71- 72.
    [23]应卫勇,曹发海,房鼎业.碳一化工主要产品生产技术[M] .北京:化学工业出版社, 2004. 31.
    [24]合成气直接制低碳烯烃的催化剂[ J].化工中间体, 2006, ( 1) : 54- 54.
    [25]陈香生,刘昱,陈俊武.煤基甲醇制烯烃(MTO)工艺生产低碳烯烃的工程技术及投资分析[J].煤化工, 2005, (5) : 6- 11.
    [26]郭国清,黄友梅. H2/CO中Fe3(CO)12/Y催化剂小金属离子特性研究[J].天然气化工, 2000, 25(6): 15-19.
    [27]徐龙伢.合成气直接制取低碳烯烃催化剂[J].石油与天然气化工, 2004,33(增刊):55.
    [28]杨明平,罗娟.甲醇制低碳烯烃反应体系的热力学计算与分析[J].煤化工, 2008,(3):44-48.
    [29] Reid R C, Prausnitz J M. Poling B E. The Properties of Gases and Liquids (4th Edition)[M]. New York: McGraw-Hill, 1987, 125-137.
    [30] Dry M E. The Fischer–Tropsch process: 1950–2000[J]. Catalysis Today, 2002, 71: 227–241.
    [31] Dry M E. Practical and theoretical aspects of the catalytic Fischer-Tropsch process [J]. Appl. Catal. A: Gen., 1996,138 (2):319-344.
    [32] Yates I, Satterfield C N. Intrinsic kinetics of the Fischer-Tropsch synthesis on a cobalt catalyst[J]. Energy and Fuels, 1991, 5 (1): 168-173.
    [33] Anfray J, Bremaud M, Fongarland P. Kinetic study and modeling of Fischer–Tropsch reaction over a Co/Al2O3 catalyst in a slurry reactor[J]. Chemical Engineering Science, 2007, 62: 5353– 5356.
    [34]张美菊,徐广通,候朝鹏.钴基费托合成催化剂活性及选择性影响因素分析[J].天然气化, 2008,33:66-71.
    [35]徐龙伢,王清遐,王开立,杨立,王德宝.合成气直接制取低碳烯烃单管扩大试验[J].天然气化, 1996, 21: 28-33.
    [36]王羽中.博士学位论文合成气直接制取低碳烯烃催化剂研究[D].中科院大连化学物理研究所, 2005.
    [37] Tsubaki N, Yoshii K, Fujimoto K. Anti-ASF Distribution of Fischer–Tropsch Hydrocarbons in Supercritical-Phase Reactions[J]. Journal of Catalysis, 2002, 207: 371–375.
    [38] Fan L, Yan S, Fujimoto K and Yoshii K. Selective synthesis of wax from syngas by supercritical phase Fischer-Tropsch reaction on ruthenium catalysts[J]. J. Chem. Eng. Jpn., 1997, 30: 923-927.
    [39]徐龙伢,陈目权,蔡光宇,王清退.合成气直接合成低碳烯烃概述[J].天然气化工, 1990(,2):46-51.
    [40] Hans Schuey. Cl Mol.Chem[M].1985, (1): 231.
    [41] Guezi L.et aI..第七届国际催化论文集
    [42] Yang Y, Xiang H W, Xu Y Y, Bai L, Li Y W. Effect of potassium promoter on precipitated iron-manganese catalyst for Fischer–Tropsch synthesis[J]. Applied Catalysis A: General, 2004, 266: 181–194
    [43] Rao V S, Stiegel G J, Cinquergrane G J, Srivastava R D. Iron-based catalysts for slurry-phase Fischer-Tropsch process: Techn ology review[J]. Fuel Process. Technol., 1992, 30(1): 83-107.
    [44] Jin Y, Datye A K. Phase Transformations in Iron Fischer–Tropsch Catalysts during Temperature - Programmed Reduction[J]. J. Catal., 2000, 196(1): 8-17.
    [45] Anderson R B. Catalysts for Fischer–Tropsch synthesis, in: P.H.Emmetty (Ed.)(M). Catalysis, vol. IV, Van Nostrand-Reinhold, New York,1956, p. 29.
    [46] K?lbel H. Kalium als strucktureller und Energetischer Promotor in Eisenkatalysatoren, in: Actes du Deuxieme Congress International de Catalyse, vol. II, Tchnip, Paris, 1960, p. 2075.
    [47] H K?lbel, H Giehring, Brennstoff-Chem. 1963, (44): 343.
    [48] Anderson R B. The Fischer–Tropsch Synthesis(M). Academic Press,Orlando, 1984.
    [49] Luo M S, Hussein Hamdeh, Burtron H Davis. Fischer-Tropsch Synthesis Catalyst activation of low alphairon catalyst[J]. Catalysis Today,2009,140: 127–134
    [50] Anderson R B, Sekigman B, Schulz J F, Elliot M A. Fischer-Tropsch synthesis. Some important variables of– the synthesis on iron catalysts[J]. Ind. Eng. Chem., 1952, 44 (2): 391-397.
    [51] Dry M E, Oosthuizen G J. The correlation between catalyst surface basicity and hydrocarbon selectivity in the Fischer-Tropsch synthesis[J]. J. Catal., 1968,11 (1): 18-24.
    [52] Dry M E, ShinglesT, Boshoff L, Oosthuizen G J. Heats of chemisorption on promoted iron surfaces and the role of alkali in Fischer-Tropsch synthesis[J]. J. Catal., 1969, 15(2): 190-199.
    [53] Amelse J A, Butt J B, Schwartz L H. Carburization of supported iron synthesis catalysts[J]. J. Phys. Chem., 1978,82 (5):558-563.
    [54] Benziger J, Madix R. The effects of carbon, oxygen, sulfur and potassium adlayers on CO and H2 adsorption on Fe(100) [J]. Surf. Sci., 1980, 94 (1):119-153.
    [55] Dry M E. The Fischer–Tropsch synthesis, in: J.R. Anderson, M. Boudart (Eds.)(M). Catalysis Science and Technology 1, Springer-Verlag, New York, 1981, p. 159.
    [56] Pennline H W, Zarochak M F, Stencel J M, Diehl J R. Activation and promotion studies in a mixed slurry reactor with an iron-manganese Fischer-Tropsch catalyst[J]. Ind Eng Chem Res, 1987, 26 (2): 595-601.
    [57] Bukur D B, Mukesh D S, Patel A. Promoter effects on precipitated iron catalysts for Fischer-Tropsch synthesis[J]. Ind. Eng. Chem. Res., 1990, 29: 194-204.
    [58] Milburn D B, Chary K V R, Davis B H. Promoted iron Fischer-Tropsch catalysts: characterization by thermal analysis[J]. Appl. Catal. A: Gen., 1996, 144 (1-2): 133-146.
    [59] Kündig W, Bommel H, Constabaris G, Lindquist R H. Some Properties of Supported Smallα-Fe2O3 Particles Determined with the M?ssbauer Effect[J]. Phys. Rev., 1966, 142 (2): 327-333.
    [60] Jiang M, Koizumi N, Yamada M. Characterization of potassium-promoted iron–manganese catalysts by insitu diffuse reflectance FTIR using NO, CO and CO+H2 as probes[J]. Appl. Catal. A: Gen., 2000, 204: 49- 58.
    [61] Dictor R A, Bell A T. Fischer-Tropsch synthesis over reduced and unreduced iron oxide catalysts[J]. J. Catal., 1986, 97 (1): 121-136.
    [62] Rankin J L, Bartholomew C H. Effects of potassium and calcination pretreatment on the adsorption and chemical/physical properties of Fe/SiO2[J]. J. Catal., 1986, 100 (2): 533-540.
    [63] Arakawa H, Bell A T. Effects of postassium promotion on the activity and selectivity of iron Fischer-Tropsch catalysts[J]. Ind. Eng. Chem. Process. Des. Dev., 1983, 22: 97-103.
    [64] Miller D G, Moskovits M. Study of the effects of potassium addition to supported iron catalysts in the Fischer-Tropsch reaction[J]. J. Phys. Chem., 1988, 92: 6081-6085.
    [65] Pichler H. Twenty-?ve years of synthesis of gasoline by catalytic conversion of carbon monoxide and hydrocarbon, in: W.G. Franken-berg, V.I. Komarewsky, E.K. Rideal (Eds.)(M). Advances in Catalysis, vol. 4, Academic Press, New York, 1952, p. 271.
    [66] Maiti G C, Malessa-Baerns R, M. Iron/manganese oxide catalysts for fischer-tropsch synthesis: Part I: structural and textural changes by calcination, reduction and synthesis[J]. Appl. Catal., 1983 5 (2): 151-170.
    [67] Malessa R, Baerns M. Iron/manganese oxide catalysts for Fischer-Tropsch synthesis. 4. Activity and selectivity[J]. Ind. Eng. Chem. Res., 1988, 27: 279-283.
    [68] K?lbel H, Tillmetz K D. US Patent[P] 4 177 203 (1979).
    [69] Das C K, Das N S, Choudhury D P, Ravichandran G, Chakrabarty D K. Hydrogenation of carbon monoxide on unsupported Fe-Mn-K catalysts for the synthesis of lower alkenes: promoter effect of manganese[J]. Appl. Catal. A: Gen., 1994, 111 (2): 119-132.
    [70] Barrault J, Forquy C, Perrichon V. Effects of manganese oxide and sulphate on olefin selectivity of iron supported catalysts in the Fischer-Tropsch reaction[J]. Appl. Catal., 1983, 5 (1): 119-125.
    [71] Schulz H, G?kcebay H. in: Proceedings of the Org. React. Conference, Charleston, SC, 1982, p.1.
    [72]杨霞珍,刘化章,唐浩东,蔡丽萍,吴再国. Fe-Co基费托合成催化剂助剂研究进展[J].化工进展, 2006, 25(8):867-870.
    [73] Senzi L, Anwu L, Sundaram K, et al. Effects of Zn, Cu, and K promoters on the structure and on the reduction, carburization, and catalytic behavior of iron-based Fischer-Tropsch synthesis catalysts[J]. Catalysis Letters, 2001, 77: 197–205.
    [74] Zhang C, Yang Y, Teng B, et al. Study of an iron-manganese Fischer–Tropsch synthesis catalyst promoted with copper[J]. Journal of Catalysis, 2006, 237(2):405–415.
    [75] Maiti G C, Malessa R, Baerns M. Iron/manganese oxide catalysts for Fischer-Tropsch synthesis– 1. Structural and textural changes by calcination, reduction and synthesis[J]. Appl. Catal., 1982, 5(2): 151-170.
    [76] Maiti G C, Malessa Lochner U, Papp H, Baerns M. Iron/manganese oxide catalysts for Fischer-Tropsch synthesis part II: Crystal phase composition, activity and selectivity[J]. Appl. Catal., 1985, 16(2): 215-225.
    [77] Jensen K B, Massoth F E. Studies on iron-manganese oxide carbon monoxide catalysts: I. Structure of reduced catalyst[J]. J. Catal., 1985, 92(1): 98-108.
    [78] Jensen K B, Massoth F E. Studies on iron-manganese oxide carbon monoxide catalysts: II. Carburization and catalytic activity[J]. J. Catal. 1985, 92(1): 109-118.
    [79] Deppe P, Papp H, Rosenberg M. Hyperfine Interactions, 1986, 28(1-4):903.
    [80] Van Dilk W L, Niemantsverdriet J W, van dar Kraan A M, van der Baan H S. Effects of manganese oxide and sulphate on the olefin selectivity of iron catalysts in the fischer tropsch reaction[J]. Appl. Catal., 1982, 2(1-2): 273-288.
    [81]沈俭一,林励吾,章素,梁东白.高分散费一托合成铁活性炭催化剂的研究锰的助剂作用[J].燃料化学学报, 1992,20(1):1-7.
    [82]王润平,毛树红,池永庆,段秀琴,刘军.费托合成铁基催化剂助剂的研究概述[J].天津化工,2008,22(1):17-19.
    [83]陈建刚,相宏伟,李永旺,等.费托法合成液体燃料关键技术研究进展[J].化工学报,2003,54(4):516.
    [84] Jager B, Espinoza R. Advances in low temperature fischer-tropsch synthesis[J]. Catal. Today, 1995, 23, 17-28.
    [85]代小平,余长春.沈师孔费-托合成制液态烃研究进展[J].化学进展. 2000, 12(3): 268-281.
    [86] Oukaci R, Singleton A H, Goodwin J G. CoMParison of patented Co F-T catalysts using fixed-bed and slurry bubble column reactors[J]. Appl. Catal. A:Gen., 1999, 186 (1-2): 129-144.
    [87] Iglesia E, Soled S L, Fiato R A, Via G H. Bimetallic Synergy in Cobalt Ruthenium Fischer-Tropsch Synthesis Catalysts[J]. J. Catal., 1993, 143(2): 345-368.
    [88] Iglesia E. Design, synthesis, and use of cobalt-based Fischer-Tropsch synthesis catalysts[J]. Appl. Catal. A: Gen., 1997, 161(1-2) : 59-78.
    [89] Gary J, Patricia M, Zhang Y, et al. Fischer–Tropsch synthesis: deactivation of noble metal-promoted Co/Al2O3 catalysts[J] .Applied Catalysis A: General, 2002, 233(1-2): 215–226.
    [90] Tsubaki N, Sun S, Fujimoto K. Different Functions of the Noble Metals Added to Cobalt Catalysts for Fischer–Tropsch Synthesis[J]. J. Catal., 2001, 199(2): 236–246.
    [91] Andrei Y. Khodakov Fischer-Tropsch synthesis: Relations between structure of cobalt catalysts and their catalytic performance[J]. Catalysis Today,2008:
    [92] Jager B. Developments in Fischer-Tropsch technology[J]. Stud. Surf. Sci. Catal., 1998, 119: 25-34.
    [93] Jager B, Espinoza R. Advances in low temperature Fischer-Tropsch synthesis[J]. Catal. Today, 1995, 23: 17-28.
    [94] Borg O, Storsaeter S, Eri S, Wigum H, Rytter E, Holmen A. The effect of water on the activity and selectivity forγ-alumina supported cobalt Fischer-Tropsch catalysts with different pore sizes[J]. Catal. Lett., 2006, 107 (1-2) 95-102.
    [95] Stors?ter S, Borg ?, Blekkan E A, Holmen A. Study of the effect of water on Fischer–Tropsch synthesis over supported cobalt catalysts[J]. J. Catal., 2005, 231 (2): 405-419.
    [96] Stors?ter S, Borg ?, Blekkan E A, T?tdal B, Holmen A. Fischer–Tropsch synthesis over Re-promoted Co supported on Al2O3, SiO2 and TiO2: Effect of water[J]. Catal. Today, 2005, 100 (3-4): 343-347.
    [97] Hilmen A M, Schanke D, Hanssen K F, Holmen A. Study of the effect of water on alumina supported cobalt Fischer–Tropsch catalysts[J]. Appl. Catal. A, 1999, 186 (1-2): 169-188.
    [98] Radstake P B, den Breejen J P, Bezemer G L, Bitter J H, de Jong Fr?seth K. P, Holmen V A. On the origin of the cobalt particle size effect in the fischer-tropsch synthesis[J]. Stud. Surf. Sci. Catal. 2007, 167: 85-90.
    [99]代小平,余长春,李然家,师海波,沈师孔. Co/ SiO2催化剂催化费托合成中CeO2助剂的作用[J].催化学报, 2006,27(10):904-910.
    [100] Wang Y, Hou B, Chen J, Jia L, Li D, SunY. Ethylenediamine modified Co/SiO2 sol-gel catalysts for non-ASF FT synthesis of middle distillates[J], Catalysis Communications, 2009,10:747-752.
    [101] Dunn BC, Covington D J, Cole P, Pugmire R J, Meuzelaar H L C, Ernst R D, Heider E C, Eyring E M, Shah N, Huffman G P, Seehra M S, Manivannan A, Dutta P. Silica xerogel supported cobalt metal Fischer-Tropsch catalysts for syngas to diesel range fuel conversion[J]. Energ. Fuel, 2004, 18 (5): 1519-1521.
    [102]歌平,史士东,李克健.煤炭液化技术[M].北京:煤炭工业出版社,2003.
    [103]徐振刚,罗伟,王乃继.肖翠微费托合成催化剂载体的研究进展[J].煤炭转化, 2008,31(3):92-95.
    [104] Khodakov A Y,Constant A G,Bechara R, et al. Pore size Effects in Fischer-Tropsch synthesis over cobalt—supported Mesoporous Silicas[J].J. catal., 2002,206:230.
    [105]陈建刚,相宏伟,孙予罕.硅胶来源对费一托合成用Co/SiO2催化荆性能的影响[J].催化学报,2000,21(2):169—171.
    [106] Iglesia E, Soled S L, Baumgartner J E, et al.. Synthesis and Catalytic Properties of EggshelI Cobalt CataIysts for the F-T Synthesis[J].J. catal.,1995, 153:108.
    [107]张俊岭,陈建刚,任杰等.钴基F—T合成重质烃催化剂载体效应的研究[J].催化学报,2001, 22(3):275—278.
    [108]代小平,余长春,沈师孔.助剂CeO2对Co/Al2O3催化剂上F-T合成反应性能的影响[J].催化学报,2001,22(2): 104—107.
    [109]王涛.博士学位论文活性炭负载钴基催化剂及其F-T合成反应的研究[D].中科院大连化学物理研究所, 2005.
    [110] Leendert B G, Bitter J H. Cobalt Particle Size Effects in the Fischer—Tropsch Reaction Studied with carbon Nanofiber supported catalysts[J].Journal of the American chemicaI Society, 2006, 128(1-2): 3956—3964.
    [111]徐振刚,罗伟,王乃继,肖翠微.费托合成催化剂载体的研究进展[J].煤炭转化,2008,31(3):92-95.
    [112]徐龙伢,陈国权,蔡光宇,王清遐.合成气在铁锰/沸石催化剂上合成低碳烯烃的研究不同沸石分子筛担载Fe-MnO催化剂反应性能的考察[J]..催化学报,1990,11(5):372-377.
    [113]徐文旸,李瑞丰,曹景慧,窦涛,马静红.硅沸石-2在合成气制低碳烯烃中的催化作用[J]..燃料化学学报,1989, 17(2): 104-111.
    [114]刘旦初.费-托合成反应机理研究的进展[J].化学通报, 1988, (8): 7-12.
    [115]马文平,刘全生,赵玉龙,周敬来,李永旺.费托合成反应机理的研究进展[J].内蒙古工业大学学报, 1999, 18(2): 220-226.
    [116] Burtron H. Davis. Fischer–Tropsch Synthesis: Reaction mechanisms for iron catalysts[J]. Catalysis Today, 2009,141:25–33.
    [117] Craxford S R, Rideal E K. The mechanism of the synthesis of hydrocarbons from water gas[J].J. Chem. Soc., (1939):1604-1614.
    [118] Maitlis P M. A new view of the Fischer-Tropsch polymerisation reaction[J]. Pure. Appl . Chem., 1989, 61 (10) :1747- 1754.
    [119] Richard W. Joyner, Catal. Lett[J]. 1988,1:307.
    [120] Yoshiro Morita化学工程(日)8,45(1981)
    [121]银董红,李文怀,杨文书,钟炳,彭少逸.钴基催化剂在Fischer-Tropsch合成烃中的研究进展[J] .化学进展,2001,13(2):118-127
    [122] Vanhove D, Zhuyong Z, Makamob L, Blanchard M. Hydrocarbon selectivity in fischer-tropsch synthesis in relation to textural properties of supported cobalt catalysts[J]. Appl. Catal. , 1984, 9(3): 327-342.
    [123] Lapszewicz J A, Loeh H J, Chipperfield J R. J. Chem. Soc., Chem. Commun., 1993.913
    [124]熊建民.博士学位论文合成气制液体燃料F-T合成Co/AC催化剂的研究[D].中科院大连化学物理研究所, 2005.
    [125]龙逢兴,刘明刚,路世武,吴勇. ZSM - 5分子筛的研究进展[J].泸天化科技, 2007, 4.
    [126]徐龙伢,陈国权,蔡光宇,王清遐.合成气在铁锰沸石催化剂上合成低碳烯烃的研究Ⅱ碱改性ZSM-5担载Fe-MnO催化剂反应性能的考察[J].催化学报,1990,11(5):379-385.
    [127] Rhee K H, RAO V U S, STENCEL J M, MELSON G A, CRAWFORD J. E. Supported transition metal compounds. Infrared studies on the acidity of Co/ZSM-5 and Fe/ZSM-5 catalysts[J]. Zeolites, 1983, 3(4): 337-343.
    [128] Xia H, Sun K, Liu Z, Feng Z, Ying P, Li C. The promotional effect of NO on N2O decomposition over the bi-nuclear Fe sites in Fe/ZSM-5[J]. J.Catal, ,2010, In Press.
    [129]张丽平,辛忠.合成气直接制低碳烯烃研究进展[J].应用化工,2009,38(5): 731-736.
    [130] Das D, Ravichandran G, Chakrabarty D K. Appl. Catal. A ,1995, 131 (2): 335-345.
    [131] Lee D, Ihm S. Hydrogenation of carbon monoxide over cobalt containing zeolite catalysts[J]. Appl. Catal., 1987, 32 (1-2), 85-102.
    [132] Nazar L F, Ozin G A, Hugues F,Godber J, Rancourt D. Solution-Phase Metal Atom Preparation of Catalytically Active Zeolite-Encapsulated Metal Clusters; Characterization and Application to the Selective Reduction of CO to Butene[J]. Angew. Chem. Int. Ed. Engl., 1983, 22 (8), 898-919.
    [133] Fornasari G, La Torretta T M G, Vaccari A, Bednarova S, Jiru P, Tvaruzkova Z. Investigation of bifunctional zeolite supported cobalt Fischer-Tropsch catalysts[J]. Stud. Surf. Sci. Catal., 1991, 61, 333-339.
    [134] Zhao J J, Zhong Y J, Xie Y L, Luo M F. Selective synthesis of acrylonitrile from acetonitrile and methanol over Mnx-Mg1-x /SiO2 Catalysts[J]. Petrochem. Technol., 2005, 34 (1), 30-33.
    [135]杨霞,王胜平,马新宾.微波技术在催化剂制备中的应用[J].化学通报,2004, 9:641-647.
    [136] Yuan H, Yang B L, and Zhu G L. Synthesis of Biodiesel Using Microwave Absorption Catalysts[J].Energy Fuels, 2009, 23(9) : 548–552.
    [137] Thostenson E T, Chou T W. Microwave processing: fundamentals and applications[J]. Composites: Part A , 1999, 30: 1055–1071.
    [138] Shu J, Ren L, Zhang T, Wang J, et.al. Application of microwave irradiation in the preparation of catalyst[J]. Chem. Ind. Engin. Prog., 2008,27(3): 352-357.
    [139] Vitidsant T, Liu Y, Yang G H, et al. Highly active Fischer-Tropschsynthesis Co/SiO2 catalysts prepared from microwave irradiation[J]. Catal. Commun., 2007, 8(3): 375-378.
    [140] Bond G, Moyes R B, Whan D A. Recent applications of microwave heating in catalysis[J]. Catalysis Today, 1993, 17(3): 427-437.
    [141] Bond G, Moyes R B, Pollington S D, Whan D A. The Advantageous use of Microwave Radiation in the Preparation of Supported Nickel Catalysts[J]. Studies in Surface Science and Catalysis, 1993, 75: 1805-1808.
    [142] Richard W, Joyner. The role of surface science studies in elucidating the mechanism of the Fischer-Tropsch hydrocarbon synthesis[J]. Vacuum, 1988, 38(4-5): 309-315.
    [143] Agustín M, Susana V, Raúl M, Henrique S C, Alexandre F C, Eduardo F S A. Catalytic behavior of hybrid Co/SiO2-(medium-pore) zeolite catalysts during the one-stage conversion of syngas to gasoline[J]. Applied Catalysis A: General, 2008, 346(1-2): 117-125.
    [144] Pe?a O’Shea V A, Campos-Martín J M, Fierro J L G. Strong enhancement of the Fischer–Tropsch synthesis on a Co/SiO2 catalyst activate in syngas mixture[J]. Catalysis Communications, 2004, 5(10): 635-638.
    [145] Liu Z W, Li X H, Asami K, Fujimoto K. Selective production of iso-paraffins from syngas over Co/SiO2 and Pd/beta hybrid catalysts[J]. Catalysis Communications, 2005, 6(8): 503-506.
    [146] Riedel T, Claeys M, Schulz H, Schaub G, Nam S S, et. al. CoMParative study of Fischer–Tropsch synthesis with H2/CO and H2/CO2 syngas using Fe- and Co-based catalysts[J]. Applied Catalysis A: General, 1999, 186(1-2): 201-213.
    [147] Medina C, García R, Reyes P, Fierro J L G, Escalona N. Fischer Tropsch synthesis from a simulated biosyngas feed over Co(x)/SiO2 catalysts: Effect of Co-loading[J]. Applied Catalysis A: General, 2010, 373(1-2): 71-75.
    [148] Ajay K Dalai, Narendra N Bakhshi, M Nabil Esmail. Conversion of syngas to hydrocarbons in a tube-wall reactor using Co---Fe plasma-sprayed catalyst: experimental and modeling studies[J]. Fuel Processing Technology, 1997, 51(3) : 219-238.
    [149] Ohtsuka Y, Xu C, Kong D, Tsubouchi N. Decomposition of ammonia with iron and calcium catalysts supported on coal chars[J]. Fuel, 2004, 83(6): 685-692.
    [150] McDonald M A, Storm D A, Boudart M. Hydrocarbon synthesis from CO---H2 on supported iron: Effect of particle size and interstitials[J]. Journal of Catalysis, 1986, 102(2): 386-400.
    [151] Venter J, Kaminsky M, Geoffroy G L and Vannice M A. Carbon-supported Fe-Mn and K-Fe-Mn clusters for the synthesis of C2-C4 olefins from CO and H2: I. Chemisorption and catalytic behavior[J]. J. Catal, 1987,103(2): 450-465.
    [152] Venter J, Kaminsky M, Geoffroy G L and Vannice M A. Carbon-supported Fe-Mn and K-Fe-Mn clusters for the synthesis of C2-C4 olefins from CO andH2: II. Activity and selectivity maintenance and regenerability[J]. J. Catal., 1987, 105(2): 155-162
    [153] Zhang J, Chen J, Ren J, Li Y, Sun Y. Support effect of Co/Al2O3 catalysts for Fischer–Tropsch synthesis[J]. Fuel, 2003, 82 (5): 581-586.
    [154] Zhang J, Chen J, Ren J, Sun Y. Chemical treatment ofγ-Al2O3 and its influence on the properties of Co-based catalysts for Fischer–Tropsch synthesis[J]. Applied Catalysis A: General, 2003, 243(1): 121-133.
    [155] Bechara R, Balloy D, Vanhove D. Catalytic properties of Co/Al2O3 system for hydrocarbon synthesis[J]. Applied Catalysis A: General, 2001, 207(1-2): 343-353.
    [156] Lapidus A, Krylova A, Rathousky J, Zukal A, Jancˇa′lkova′M. Hydrocarbon synthesis from carbon monoxide and hydrogen on impregnated cobalt catalysts II: Activity of 10% Co/Al2O3 and 10% Co/SiO2 catalysts in Fischer-Tropsch synthesis[J]. Applied Catalysis A: General, 1992, 80 (1): 1-11.
    [157] Bessell S. ZSM-5 as a support for cobalt Fischer-Tropsch catalysts[J]. Studies in Surface Science and Catalysis, 1994, 81: 461-466.
    [158] Guillermo C, Antonio de L, Rafael van G. Co/HZSM-5 catalyst for syngas conversion: influence of process variables[J]. Fuel, 1995, 74(3): 445-451.
    [159] Guillermo C, Antonio De L, Rafael Van G. Cobalt/HZSM-5 zeolite catalyst for the conversion of syngas to hydrocarbons[J]. Applied Catalysis, 1991, 68(1): Pages 11-29.
    [160] Shamsi A, Rao V U S, Gormley R J, Obermyer R T, Schehl R R, Stencel J M. Influence of preparative procedure on the activity and selectivity of FeZSM-5 catalysts in syngas conversion[J]. Applied Catalysis, 1986, 27, (1) : 55-68.
    [161] Rao V U S, Gormley R J, Shamsi A, Petrick T R, Stencel J M, Schehl R R, Chi R D H, Obermyer R T. Promotion and characterization of zeolitic catalysts used in the synthesis of hydrocarbons from syngas[J]. Journal of Molecular Catalysis, 1985, 29(2): 271-283.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700