用户名: 密码: 验证码:
等离子体催化二氧化碳经甲烷化制C_2烃反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化碳是碳及含碳化合物的最终氧化产物,它既是温室气体,同时也是一个巨大的一碳资源。因此,无论是从碳资源综合利用来说,还是从环境污染控制来讲,研究与开发CO_2利用意义都很大。但由于二氧化碳分子非常稳定,如采用热活化,则需温度较高,而高温又易导致催化剂失活。因此,积极探求新的技术或辅之以其它方法是二氧化碳转化反应研究的新动向。
     高压脉冲电晕等离子体是一种新型的非平衡等离子体技术,具有电子能量适中、有利于CO_2和CH_4等稳定分子的活化、可在常温常压下操作和能量利用效率高等优点,并已在SO_x和NO_x等小分子的活化研究中得到广泛应用。本论文利用脉冲电晕等离子体与催化剂结合共同作用,通过两步法成功的由CO_2高效地制备了C_2烃,为二氧化碳活化与转化提供了一条新的技术路线。
     论文的主要研究工作包括:(1)探索脉冲电晕等离子体与催化剂共同作用CO_2/H_2甲烷化和由CH_4/H_2合成C_2烃反应的可行性;(2)研制等离子体催化CO_2转化的反应器和适配的催化剂;(3)优化等离子体催化CO_2转化制C_2烃反应的工艺条件和电参数;
     (4)利用原子发射光谱原位技术对等离子体反应的诊断结果,对等离子体催化CO_2转化制C_2烃反应的机理进行推断;(5)通过对积碳催化剂的表征结果,分析积碳的类型及其成因,并探讨减少积碳的途径;(6)通过对等离子体催化CO_2转化制C_2烃反应能量效率的分析,探讨提高等离子体催化反应能量效率的途径。
     论文取得的主要结果如下:
     1.在常温常压下,脉冲电晕等离子体与Ni/γ-Al_2O_3催化剂共同作用CO_2/H_2反应能够高效地转化为甲烷。在V(CO_2)/V(H_2)=1:4,空速1500h~(-1)及等离子体输入功率26.5W/mlcat条件下,得到了CO_2转化率95%和甲烷选择性99%的好结果。在本论文实验条件下,影响CO_2转化的因素主要有原料气V(H_2)/V(CO_2)比值、空速和进气方式、反应器结构、催化剂种类及其负载量以及放电参数等。
     2.在常温常压下,利用脉冲电晕等离子体首次实现了CH_4临氢偶联反应,在CH_4/H_2等离子体反应中,CH_4转化率、C_2烃收率随H_2引入量的增加而升高,而且反应中积碳明显减少、产物C_2烃分布也能得到一定改善。当脉冲电晕等离子体与催化剂结合共同
    
    大连理工大学博士学位论文 摘要
    作用CH/H。转化时,能够有效的提高C。烃产物乙烯的产率。在反应试验过的催化剂中,
    对生成C。烃产率最高的催化剂是La。O。/SIO。,其C。烃收率大于30%;试验过的催化剂
    中以生成乙烯产率排序,其活性顺序为:P小*0/810。>PUS0。>*山S0。>2对川。0卜
    各自的乙烯产率均在10%以上:其中乙烯选择性最高的催化剂是Cu/SIOZ,可达86%。
     3,OES对等离子体作用COZ用2、CH4/HZ体系反应的原位光谱诊断结果表明,
    CO/H卜CH叶H。在脉冲电晕等离子体作用下的反应是自由基反应。在等离子体与催化剂
    共同作用CO。/H》CH4/H。反应过程中,等离子体主要起着活化反应物和催化剂的作用,
    而催化剂主要起着提高产物选择性的作用,同时催化剂对等离子体也有一定作用。
     4.TG、Xm、IR和 SEM等手段的表征结果表明,等离子体催化CH州。转化反应
    中催化剂积碳的成分主要是一些碳氢聚合物和无定型无机碳。催化剂积碳主要来源于等
    离子体中高能电子直接作用CH4产生的碳物种在催化剂表面复合产生的高碳烃聚合物。
    通过提高反应体系中氢气浓度、适当调整反应空速和优化等离子体放电参数等措施可减
    少催化剂积碳。
     5.通过调节反应物配比、选择适当反应空速、优化等离子体放电参数和引入高活性
    催化剂等措施可以提高等离子体催化反应的能量效率。其中将等离子体与适当的催化剂
    结合共同作用反应物转化是降低COZ/HZ、CHVHZ体系反应能耗、提高能量利用效率和
    产物选择性的一条特别有效的途径。
Carbon dioxide, the termination oxidation product of coal, petroleum and carbohydrates, is the largest single source of greenhouse gas, as well as one of the most important resources of C2. From the standpoint of environmental protection and resource utilization, the development of an environmentally benign process utilizing CO2 has drawn current interest in industrial chemistry. Due to its highly thermodynamic stability and kinetic inert, CO2 is usually activated at high temperature, in companion with the deactivation of the catalyst. Therefore, most attentions have been paid for exploring new means or ways to improve the activation of COi-
    The pulse corona plasma is a novel technology of non-equilibrium plasma generated by highly DC voltage, in which conditions the electron temperature is very high but the ionic or molecular temperature is low. So the great advantages of pulse corona plasma is that less energy goes into activating any stability simple molecular, such as CO2, CFLt, NOX and SOX. In this study, pulse corona plasma or pulse corona plasma combined with catalysts, was used to convert CO2 towards C2 hydrocarbons via two steps, and provides a new rout for activating CO2.
    The present dissertation deals with: (1) Exploring the feasibility of the CO2 methanation and the conversion CH4/H2 into C2 hydrocarbons under plasma with catalyst at ambient temperature and atmosphere. (2) Designing a reactor and preparing some catalysts suited for the conversion of carbon dioxide via the cooperation effect of plasma and catalysts. (3) Optimizing reaction conditions of conversion carbon dioxide to C2 hydrocarbons in the proposed process. (4) Studying the reaction mechanism of conversion carbon dioxide to C2 hydrocarbons under plasma by using in situ OES technology. (5) By the results of characterizing coked catalysts, exploring the reasons that result in the coking of catalyst and the paths for decreasing the deposit in the catalyst under plasma. (6) Analyzing the energy efficiency of the plasma catalysis and exploring the paths for improving the energy efficiency. The conclusions obtained from this study are summarized as follows: 1. At ambient temperature and atmosphere, carbon dioxide an
    d hydrogen can be
    
    
    effectively converted into methane under pulse corona plasma with a Ni/y-A^Os catalyst, at the conditions of the ratio of F(H2)/F(C02), the airspeed of feed gases and plasma power is 1:4, 1500h-1 and 26.5W/mlcat, respectively. The conversion of carbon dioxide is 95% and the selectivity of methane is 99%, The results are better than that of by conventional catalytic technique. At the present study, the conversion of carbon dioxide is affected by many factors, such as the ratio of F(H2)/K(CO2), the flow velocity and input manner of feed gas, the configuration of reactor, catalyst and discharge parameters.
    2. The methane coupling reaction in the hydrogen was realized under pulse corona plasma at ambient temperature and atmosphere. The conversion of CH4 and the yield of C2 hydrocarbons increase with the increase of hydrogen concentration and the coking of catalyst decreases greatly, as well as the distribution of C2 products can be a little extent adjusted. The conversion of methane and the yield of C2 hydrocarbons are largely affected with plasma power, but the distribution of C2 products are not affected. In the activation of CH4/H2 conversion with pulse corona plasma, the presence of catalyst can effectively improve the yield of ethylene, which catalytic activity are in the following order: Pd-La203/SiO2, Pd/SiO2>Cu/SiO2>Pt/Y-Al2O3. Under one of these catalysts with plasma, the yield of C2H4 is all higher than 10%. Among these catalysts, La2O3/SiO2 shows the highest catalytic activity, and yield of C2 hydrocarbons is 30%, while the highest selectivity of 86% for ethylene is obtained with the use of Cu/SiO2 catalyst.
    3. The analysis results of OES show that the conversion reaction of C02/H2 and CH4/H2 are both radical mechanisms under pulse corona plasma. While the conversion C02 into C2 hydrocarbons und
引文
[1] 杜元龙,苏俊华.二氧化碳综合利用的可行性,吉林工学院学报,1998,19(3):1—11
    [2] 周家贤.CO_2——21世纪的新碳源,化工进展,2001,20(1):1—3
    [3] 肖亚平,贝浼智.二氧化碳·温室效应·对策,现代化工,1995,14(9):34—36
    [4] 王建伟,钟顺和.CO_2吸附活化的研究进展,化学进展,1998,10(4):374—380
    [5] 张美华,李华儒,张毅安.二氧化碳生产与应用,第一版,西安:西北大学出版社,1988.4—9
    [6] 李士伦,张斌,唐晓东,戴磊.西部大开发中的天然气工业——加快天然气开发利用,培育新的经济增长点,天然气工业,2001,21(1):1—4
    [7] 杨伯伦,拥军.西部天然气资源化工利用的思考与建议,化工进展,2001,20(6):1—6
    [8] 阎子峰,宋林花.天然气有效利用途径回顾,石油大学学报(自然科学版),1997,21(1):103—108
    [9] W·剀姆[西德]主编,黄仲涛等译.C_1化学中的催化作用,第一版,北京:化学工业出版社,1989.48—50
    [10] Amenomiya Y, Birss V I, Goledzinowski M, Galuszka J, Sanger A R. Conversion of Methane by Oxidative Coupling, Catal. Rev. —Sci. Eng., 1990, 32(3): 163—227
    [11] Keller G E and Bhasin M M. Synthesis of Ethylene via Oxidative Coupling of Methane, J. Catal., 1982, 73(1): 9—19
    [12] 刘昌俊,何菲,韩森.二氧化碳的等离子体化学固定化,燃烧科学与技术,1999,5(2):128—140
    [13] 魏双绍.二氧化碳化学新进展,天然气化工(C_1化学与化工),1998,23(6):40—46
    [14] 张密林,刘顺隆,酒荣誉,张春雷,吴通好.直接把CO_2转化为碳的研究进展,化学与粘合,1999,4:189—192
    [15] 朱志良,路琼华,陈德康.负载型铑羰基簇催化剂对二氧化碳甲烷化催化性能的研究,分子催化,1993,7(4):299—305
    [16] 江琦,邓国才,陈荣悌等.二氧化碳甲烷化催化剂研究,催化学报,1997,18(1):42—45
    [17] Ando Naoisa. Preparation of Methane from Carbon Dioxide and Hydrogen [P]. JP08-127544(1996)
    [18] 华南理工大学.二氧化碳加氧甲烷化过程催化剂及其制备方法[P].CN1131582A(1996)
    [19] Tsuji M. Kotsuya T, Yoshida T, et al. Preparation and CO_2 methanation activity of an ultrafine Ni(Ⅱ) ferritc catalyst, J. Catal., 1996, 164(2): 315—321
    [20] Inui T. Highly effiective conversion of carbon dioxide to valuable compounds on composite catalysts, Catal. Today, 1996, 29:329—337
    [21] Tomoguki I. Structure and function of Cu-based composite catalysts for highly effective synthesis of
    
    methanol by hydrogenation of CO_2 and CO, Catal. Today, 1997, 36(1): 25—30
    [22] Sun Q, Zhang Y L, Chen H Y, et al. A novel process for preparation of Cu/ZnO and Cu/ZnO/Al_2O_3 ultrafine catalyst, J. Catal., 1997, 167(1): 92—105
    [23] Kou Yuan et al. Surface coordination geometry of iron catalysts, Catal. Lett., 1995, 35(3/4): 271—272
    [24] Fujiwara M, Kieffer R, Udron L, et al. Hydrogenation of carbon dioxide over copper-pyrochlore/zeolite composite catalysts, Catal. Today, 1996, 29:343—348
    [25] 徐龙伢,王清遐,林励吾,梁东白,徐奕德.CO_2加氢制低碳烯烃Fe/Silicalite-2催化剂研究,天然气化工,1997,22(4):14—17
    [26] 孟宪波,黄友梅,党中远等.CO_2/H_2合成低碳烯烃催化剂的制备方法及反应条件,石油化工,1996,25(4):267—270
    [27] Choudhary V R and Rajput A M. Simultaneous carbon dioxide and steam reforming of methane to syngas over NiO-CaO catalyst, Ind. Eng. Chem. Res., 1996, 35(11): 3934—3939
    [28] 纪红兵,宋一兵,林维明.CH_4、CO_2和O_2催化氧化重整制合成气的研究,天然气化工,1996,21(6):11—5
    [29] Takahito Nishiyama, Ken-ichi Aika. Mechanism of the oxidative coupling of metahne using CO_2 as an oxidant over PbO-MgO, J. Catal., 1990, 122:346—351
    [30] Kenji Asami, Taikyn Fujita, Ken-ichi et al., Conversion of methane with carbon dioxide into C_2 hydrocarbons over metal oxides, Appl. Catal. A: General, 1995, 126:245—255
    [31] Chen C L, Xu Y D, Li G J, et al., Oxidative coupling of methane by carbon dioxide: a highly C_2 selective La_2O_3/ZnO catalyst, Catal. Lett., 1996, 42(3/4): 149—153
    [32] Wang Y, Takahashi Y, Ohtsuka Y. Carbon dioxide-induced selective conversion of methane to C_2 hydrocarbons on CeO_2 modified with CaO, Appl. Catal., 1998, 172:203—206
    [33] Swanson R C. Process for catalytic conversion of water and carbon dioxide to low cost energy, hydrogen, carbon monoxide, oxygen and hydrocarbons[P], US 5710087(1998)
    [34] Yataka Tamaura and Masahiro Tabara. Complete reduction of carbon dioxide to carbon using cation-excess magnetite, Nature, 1990, 346(19): 255—256
    [35] 周忠清.二氧化碳催化还原成碳的进展,石油化工高等学校学报,1994,7(1):33—38
    [36] 张敏,陈立班,李卓美.CO_2催化转化研究进展,天然气化工(C_1化学与化工),2001,26(1):45—49
    [37] Liu S M, Tan X Y, Hughes R. Methane Coupling Using Catalytic Membrane Reactors, Catal. Rev.,
    
    2001, 43(1&2): 147—198
    [38] Tonkovich A L Y, Robert W C. Modeling of the Simulated Countercurrent Moving-Bed Chromatographic Reactors Using for the Oxidative Coupling of Methane, Chem. Eng. Sci., 1994, 49: 4657—4665
    [39] Do K T, Edwards J H, Tyler R J. The Catalytic Oxidative Coupling of Methane: Ⅰ. Comparison of Experimental Performance Data from Various Types of Reactors, Can. J. Chem. Eng., 1995, 73(3): 327—336
    [40] Pekediz A, De Laser H I. Methane Oxidative Coupling in a Novel Riser Simulator Reactor, Chem. Eng. Sci., 1994, 49:4759—4770
    [41] Choudhary V R, Chaudari S T, Rajput A M, et al. Beneficial Effect of Oxygen Distribution on Methane Conversion and C_2 Selectivity in Oxidative Coupling of Methane to C_2 Hydrocarbons over Lanthanum-Promoted Magnesium Oxide, J. Chem. Soc. Commun., 1989, 20:1526—1527
    [42] Jiang Y, Yentekatis I V, Vayenas C G. Methane to Ethylene with 85 Percent Yield in a Gas Recyle Electrocatalytic Reactor Separator, Science, 1994, 264(10): 1563—1566
    [43] Mleczko Leslaw, Gayko Guido, Niemi Vesa M, et al. Reaction engineering studies in a polytropic fixed-bed reactor over a highly active and selective catalyst for oxidative methane coupling, Chem. Eng. Technol., 1997, 20(1): 29—35
    [44] Xu S J, Thomson W J. Perovskite-Type Oxide Membrane for the Oxidative Coupling of Methane, AIChE J., 1997, 43(11A): 2731—2740
    [45] Zeng Y, Lin Y S, Swartz S L. Perovskite-Type Ceramic Membrane: Synthesis Oxygen Permeation and Membrane Reactor Performance for Oxidative Coupling of Methane, J. Membr. Sci., 1998, 150: 87—98
    [46] Ward T L, Dao T. Model of Hydrogen Permeation Behavior in Palladium Membranes, J. Membr. Sci., 1999, 153:211—231
    [47] 国家自然科学基金委员会主编.自然科学学科发展战略调研报告 等离子体物理学,北京:科学技术出版社,1994.1—2
    [48] Mactaggart F K. Plasma Chemistry in Electrical Discharges, Elsevier, 1967.
    [49] 陈杰培.低温等离子体化学及其应用,北京:科学出版社,2001.16—19
    [50] 赵于文.低温等离子体在化学合成中的应用,现代化工,1991,11(1):48—52
    [51] 赵化侨.等离子体化学与工艺,合肥:中国科学技术大学出版社,1993.11—12
    [52] Chang J S, Lawless P A, Yamamoto T. Corona Discharge Processes, IEEE Trans. Plasma Sci., 1991,
    
    19(6): 1152—1154
    [53] Masuda S, Hosokausa S, Tu X, et al. Novel plasma chemical technologies - PPCP and SPCP for control of gaseous pollutants and air toxics, Journal of Electrostatics, 1995, 34(4): 415—438
    [54] 代斌,宫为民,张秀玲,何仁.等离子体催化转化CO_2研究进展,化学进展,2002,14(3):225—230
    [55] Maezono I, Chang J S. Reduction of CO_2 from Combustion Gases by DC Corona Torches, IEEE Trans. on Ind. Appl., 1990, 26(4): 651—655
    [56] Xie Z, Jogan K, Chang J S. The effect of residential time on the reduction of CO_2 in combustion flue gases by a corona torch, in Conf. Rec. IEEE IAS M tg., Oct 7-12, 1990, 809—814
    [57] Jogan K, Mizuno A, Yamamoto T, et al. The Effect of Residence Time on the CO_2 Reduction from Combustion Flue Gasses by an AC Ferroelectric Packed Bed Reactor, IEEE Trans. on Ind. Appl., 1993, 29(5): 876—881
    [58] Brock S L, Shimojo T, Marquez M, et al. Factors Influencing the Decomposition of CO_2 in AC Fan-Type Plasma Reactors: Frequency, Waveform, and Concentration Effects, J. Catal., 1999, 184: 123—133
    [59] Wang J Y, Xia G G, Huang A M, et al. CO_2 Decomposition Using Glow Discharge Plasmas, J. Catal., 1999, 185:152—159
    [60] Brock S L, Marquez M, Suib S L. Plasma decomposition of CO_2 in the presence of metal catalysts, J. Catal., 1998, 180:225—233
    [61] Tsuji M, Tanoue T, Nakano K, et al. Decomposition of CO_ into CO and O in a Microwave-Excited Discharge Flow of CO_2/He or CO_2/Ar Mixtures, Chem. Lett., 2001, 349(1): 22—23
    [62] 代斌,宫为民,张秀玲,朱爱民,张报安.脉冲电晕等离子体活化纯CO_2的反应,中国环境科学,1999,19(5):410—412
    [63] 李明伟,许根慧,刘昌俊,姜涛.电晕放电二氧化碳冷等离子体转化特性研究,燃料化学学报,2001,29(3):243—246
    [64] Wen Y Z and Jiang X Z. Decomposition of CO_2 using pulsed corona discharges combined with catalyst, Plasma Chemistry and Plasma Processing, 2001, 21(4): 665-678
    [65] Seizo K, Yoshihiro Y, Motohiro O. Plasma Conversion Experiment of Carbon Dioxide into Fuel Species and Quantum Analysis of Plasma Reaction Associated with Oxygen Atom, Am. Soc. Mech. Eng. EC, 1997, 5(2-5): 497—502
    [66] Maya L. Plasma-assisted reduction of carbon dioxide in the gas phase, J. Vacuum Sci. & Tech. A, 2000,
    
    18(1): 285—287
    [67] 陈栋梁,李庆,于作龙,洪品杰,戴树珊.CO_2氢化转化制低碳烃,天然气化工(C_1化学与化工),1999,24(4):1—4
    [68] Elisson B, Kogelschatz U, Xue B, Zhou L. Hydrogenation of Carbon Dioxide to Methanol with a Discharge-Activated Catalyst, Ind. Eng. Chem. Res., 1998, 37:3350—3357
    [69] Finlayson D, Geoffrey J. US Patent, 1935, No1, 986, 885
    [70] Liu C J. Oxidative Synthesis of Higher Hydrocarbons from CO_2 and CH_4 by Streamer Discharges, Chemistry Letters, 1996, 297(9): 749—750
    [71] Hsieh L T, Lee W J, Li C T, et al. Decomposition of Carbon Dioxide in the RF Plasma Environment, J. Chem. Tech. & Biotech., 1998, 73(4): 432—442
    [72] 陈栋梁,雷正兰,刘万盈,张承聪,洪品杰,戴树珊.二氧化碳和天然气经过微波等离子体直接转化成C_2烃,合成化学,1997,5(2):131—132
    [73] Yao S L, Ouyang F, Nakayama A, et al. Oxidative Coupling and Reforming of Methane with Carbon Dioxide Using a High-Frequency Pulsed Plasma, Energy and Fuels, 2000, 14(4): 910—914
    [74] Kado S, Urasaki K, Sekine Y, et al. Low Temperature Reforming of Methane to Synthesis Gas with Direct Current Pulse Discharge Method, Chem. Comm., 2001,5: 415—416
    [75] Liu C J, Mallinson R, Lobban L. Comparative Investigations on Plasma Catalytic Methane Conversion to Higher Hydrocarbons over Zeolites, Appl. Catal. A, 1999, 178(1): 17—27
    [76] Eliasson B, Liu C J, Kogelschatz U. Direct Conversion of Methane and Carbon Dioxide to Higher Hydrocarbons Using Catalytic Dielectric-Barrier Discharges with Zeolites, Ind. Eng. Chem. Res., 2000, 39(5): 1221—1227
    [77] 姜涛,张,刘昌俊,李阳,许根慧,Eliasson B,Kogelschatz U.用无声放电转化甲烷和二氧化同时制备合成气与烃,燃料化学学报,2001,29(1):6—11
    [78] Li Y, Xu G H, Liu C J, et al. Co-generation of Syngas and Higher Hydrocarbons from CO_2 and CH_4 Using Dielectric-Barrier Discharge: Effect of Electrode Materials, Energy & Fuels, 2001,15: 299—302
    [79] Dai B, Zhang X L, Gong W M, He R. Study on the Methane Coupling under Pulse Corona Plasma by Using CO_2 as Oxidant, Plasma Science & Technology, 2000, 2(6): 577—580
    [80] Dai B, Zhang X L, Gong W M, He R. Dehydrogenation Coupling of Methane under Plasma over a Pd/γ-Al_2O_3 Catalyst, Chinese Journal of Natural Gas Chemistry, 2001, 10(4): 325—330
    [81] Zhang X L, Gong W M, Dai B, Liu C H. Effect of La_2O_3/γ-Al_2O_3 Catalyst on the Activation of CH_4
    
    and CO_2 to C_2 Hydrocarbons under Non-equilibrium Plasma, Chinese Chemical Letters, 2002, 13(2):175—176
    [82] Zhang X L, Dai B, Zhu A M, Gong W M, Liu C H. The simultaneous activation of methane and carbon dioxide to C_2 hydrocarbons under pulse corona plasma over La_2O_3/γ-Al_2O_3 Catalyst, Catal. Today, 2002, 72:223—227
    [83] 代斌,张秀玲,宫为民,何仁.等离子体催化转化甲烷的研究进展,石油化工,2002,31(2):141—144
    [84] Thanyachotpaiboon K, Chavadej S, Caldwell T A, et al. Conversion of Methane to Higher Hydrocarbons in AC Non-equilibrium Plasmas, AIChE Journal, 1998, 44(10): 2252—2257
    [85] Steven L Suib, Richard P Zerger. J Catal., 1993, 139:383
    [86] Kopytko N and Baronnet F. Valorisation Chimique du Methane par Plasmas Micro-ondes, Can J Chem, 1998, 76(12): 1875—1885
    [87] 朱爱民,宫为民,张秀玲,张报安.脉冲电晕等离子体作用下甲烷偶联—Ⅰ.无氧气氛下,中国科学(B),2000,30(2):208—214
    [88] 陈栋梁,李庆,于作龙,品红杰,戴树珊.甲烷和氮气在微波等离子体下的转化研究,天然气化工,2000,25(4):28—33
    [89] Tanabe S, Okitsu K, Matsumoto H, et al. Profiles of Methane Dimerization with a Glow Discharge Plasma System, Nagasaki Daigaku Kogakubu Kenkyu Hokoku, 1999, 29(53): 329—332
    [90] 朱爱民,张秀玲,宫为民,代斌,张报安.脉冲电晕等离子体作用下甲烷偶联反应的研究—Ⅱ.反应添加气的影响,应用化学,1999,16(4):70—73
    [91] Liu C J, Marafee A, Hill B, et al. Oxidative Coupling of Methane with AC and DC Corona Discharges, Ind Eng Chem Res, 1996, 35(10): 3295—3301
    [92] Huang J, Badani M V, Suib S L, et al. Partial oxidation of methane to methanol through microwave plasmas. Reactor design to control free-radical reactions, J Phys Chem, 1994, 98(1): 206—210
    [93] 朱爱民,张秀玲,宫为民,张报安.有氧气氛下等离子体甲烷偶联反应的研究,物理化学学报,2000,16(9):839—843
    [94] 张祥富,曾达权.天然气等离子体法制乙炔,天然气化工,1998,23(4):39—43
    [95] 陈栋梁,白玉新,王真,毕先均,洪品杰,戴树珊.甲烷在氢气助解下的脱氢偶联研究,天然气化工,2001,26(2):18—22
    [96] Wan J K S, Tse M, Husby H, et al. High-power pulsed microwave catalytic processes—Decomposition of methane, J. Microwave Power Electromagnetic Energy, 1990, 25(1): 32—38
    
    
    [97] Ioffe M S, Pollington S D, Wan J K S. High-Power Pulsed Radio-Frequency and Microwave Catalytic Processes: Selective Production of Acetylene from the Reaction of Methane over Carbon, J Catal, 1995, 151(2): 349—355
    [98] 杜莉萍,许根慧,孙洪伟,何菲.电场增强等离子体催化反应由天然气合成碳二烃,燃料化学学报,1997,25(4):313—317
    [99] Marafee A, Liu C J, Xu G H, et al. An Experimental Study on the Oxidative Coupling of Methane in a Direct Current Corona Discharge Reactor over Sr/La_2O_3 Catalyst, Ind Eng Chem Res, 1997, 36(3): 632—637
    [100] Liu C J, Marafee A, Mallinson R, et al. Methane Conversion to Higher Hydrocarbons in a Corona Discharge over Metal Oxide Catalysts with OH Groups, Appl. Catal. A, 1997, 164:21—33
    [101] Liu C J, Lance L L, Mallinson G R, et al. Experimental Investigations on the Interaction between Plasma and Catalyst for Plasma Catalytic Methane Conversion over Zeolites, Natural Gas Conversion B, 1998, 119:361—366
    [102] Cho Wonihl, Baek Youngsoon, Park Dalryung, et al. Conversion of Natural Gas to Higher Hydrocarbons Using a Microwave Plasma and Catalysts, Research on Chemical Intermediates, 1998, 24(1): 55—66
    [103] Gong W M, Zhu A M, Zhou J, et al. The Catalytic Coupling of Methane under Pulse Corona Plasma, in: W C K, ed. 13th Inter Syrup Plasma Chem. Beijing: Peking University Press, 1997. 1578—1583
    [104] 朱爱民,张秀玲,宫为民,张报安.脉冲电晕等离子体下甲烷偶联反应研究(Ⅲ)—金属氧化物的多相催化作用,高等学校化学学报,2000,21(1):120—123
    [105] Hiraoka K, Aoyama K, Morise K. Can. J. Chem,, 1985, 63(11): 2899—2950
    [106] Oumghar A, Legrand J C, Diamy A M. A kinetic study of conversion by a dinitrogen microwave plasma, plasma chemistry and plasma processing, 1994, 14(3): 229—249
    [107] Liu W Y, Huang D R, Lu W, Lei Z L. The reaction mechanism of methane oxidation in non-equilibrium plasma, J. Natural Gas Chem., 1992, 3:278—282
    [108] Hsieh Lien-Te, Lee Wen-Jhy, Chen Chuh-Yung, et al. Converting methane by using an RF plasma reactor, plasma chemistry and plasma processing, 1998, 18(2): 215—239
    [109] Savinov Sergey Y, Lee Hwaung, Song Hyung Heun, et al. Decomposition of methane and carbon dioxide in a radio-frequency discharge, Ind. Eng. Chem. Res., 1999, 38(10): 2540—2547
    [110] 陈栋梁,王真,洪品杰,于作龙,戴树珊.微波等离子体下甲烷脱氢偶联制C_2烃,石油与天然气化工,2000,29(1):1—4,14
    
    
    [111] 朱爱民,张秀玲,李小松,宫为民.脉冲电晕等离子体条件下甲烷“超平衡”转化制乙炔和氢,中国科学(B辑),2002,32(2):179—185
    [112] 王保伟,许根慧.介质阻挡放电等离子体催化天然气偶联制C_2烃,中国科学(B辑),2002,32(20:140—147

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700