用户名: 密码: 验证码:
高效深孔加工技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
深孔加工是机械加工中的一个重要分支,随着深孔加工自动化技术的同益发展,研究高效深孔加工过技术来提高生产效率具有十分重要的实际意义。随着现代数控机床增效工程的不断进展,在原有单管内排屑深孔喷吸加工技术(SIED技术)研究基础上,开展集成化高效深孔加工技术的研究具有重要的工程实际意义。
     本文提出了集成化高效深孔加工技术,达到提高效率、保证质量、增加效益,最大限度地发挥现有的深孔加工设备的作用。目前,数控深孔机床正朝着高效化、精密化、高可靠、智能化、模块化的方向发展,主要目标就是高效率。
     随着高效深孔加工技术的不断深人,高速刀具技术、刀具材料成为迫切解决的问题。采用新型超硬刀具材料,研发新的表面强化工艺,如涂层技术等,使我国的刀具技术尽快达到国际水平。刀具系统采用功能模块化设计,对配套刀具、刀杆及其导向装置进行成组化、功能化和模块化的设计,优化设计和配置,使设计及制造系列化、成组化,大大提高设计效率并缩短了工、辅具机床的制造周期。
     在高效深孔中切削速度与进给量的合理搭配是完成加工、保证质量、延长刀具寿命的重要因素。切削参数的选择取决于被加工材料的材质、孔径的大小及孔深与孔径之比。但高效深孔加工中进给量不能过分小,否则,切屑呈带状,易堵塞,将刀具打破。进给量一般选为0.01~0.1毫米/转,转速高达3000~12000转/分钟,从而优化高效深孔加工切削参数.高效深孔加工切削参数优化不能一概而论,需要具体情况具体对待。本文按DF系统设计的抽屑器和输油器两路油路的分流比和油压等参数也要进行优化,以满足高效深孔加工的要求。论文推导了DF结构流体特性方程并改进了喷嘴结构。在此基础上采用ANSYS workbench软件分析和对比了普通喷嘴和改进以后的喷嘴的性能,验证了改进后的喷嘴可以有效提高负压抽屑装置的排屑能力,从而提高了深孔加工效率。
     深孔加工是一种封闭式或半封闭状态下的加工,其加工过程很不稳定,存在着很多不利的因素,影响着加工过程。非常有必要对深孔加工过程进行一定的实时监测,识别加工过程的异常状态,及时改变切削用量或采取其他措施(如换刀),以排除故障。必要时应予以显示警报,以避免事故的发生。针对深孔工过程的特点,提取了功率和油压作为监测信号,建立了基于DSP的深孔钻削过程刀具磨损与排屑状态的在线实时监测系统,这种方法可以提高深孔加工的效率。
Deep processing is an important branch of the machining, with the developmentof automation technology with the deep hole processing, high efficiency deep holeprocessing technology to improve production efficiency has a very important practicalsignificance. With the progress of modern CNC machine tool efficiency project iscontinuing, on the basis of the original SIED technology research, to carry outintegrated high efficiency deep-hole processing technology research has importantpractical significance.
     In this paper, the integrated high efficiency deep hole processing technology toachieve greater efficiency, quality assurance, increase efficiency and maximize theeffect of the deep-hole processing equipment.maximize. Currently, CNC deep-holemachine is moving in the direction of efficiency, precision, highly reliable, intelligent,modular development, the main goal is high efficiency.
     With the depth of the high efficiency deep hole processing technology,high-speed tool technology, and tool materials become urgent problem. With thedevelopment of new surface hardening process,adapting new super hard cutting toolmaterials, such as coating technology, to make our tool technology to meetinternational standards as soon as possible. Tool system using modular design group,functionality and modular design, supporting tools, arbor guide to optimize the designand configuration, the design and manufacture series, into a group of greatly improvethe design efficiency and shorten the work, aids the manufacturing cycle of themachin.
     In high efficiency deep-hole cutting speed and feed rate with a reasonablecompletion of processing, quality assurance, tool life. The choice of cuttingparameters depending on the material being processed material, pore size and holedepth to aperture ratio. Efficient deep hole machining feed amount can not be toosmall, otherwise, the chip strip, easy to plug the tool to break. The feed is generallychosen as0.01-0.1mm/rev, speed up to3000-12000rev/min, in order to optimizehigh-efficiency deep-hole machining parameter. Efficient deep hole machiningparameter optimization can not be generalized to require specific conditions to treat.The hydraulic parameters of the DF system design pumping debris and oil of twoshould be optimized to meet the requirements of high efficiency deep hole processing.The paper derived the DF structure fluid characteristic equation and improved nozzle structure. The workbench based on ANSYS software to analyze and compare theperformance of ordinary nozzles and improved after the nozzle, to verify theimproved nozzle can greatly improve chip removal capacity of the vacuum pumpingdebris device, thereby increasing the efficiency of deep-hole processing.
     Deep processing is processing in a closed or semi-closed state, the process isvery unstable, there are many unfavorable factors impact on the processing. Verydeep hole machining process real-time monitoring, identification of the abnormalstate of the process in a timely manner to change the cutting parameters, or take othermeasures (such as tool change) in order to troubleshoot. Necessary should be alert toavoid accidents. The extracted power and hydraulic characteristics of the process fordeep-hole work, as a monitoring signal, set up online real-time monitoring systembased on the DSP of the process of deep hole drilling tool wear and the state, whichincreased the efficiency of the deep-hole machining.
引文
[1]王峻.现代深孔加工技术[M].哈尔滨:哈尔滨工业大学出版社,2005:1.120.
    [2]王世清,朱林,刘战锋,彭海.深孔加工技术[M].西安:西北工业大学出版社,2003:1.156.
    [3]霍尔登J斯温哈特.深孔加工[M].北京:国防工业出版社,1974:1.128.
    [4] Jih-hua Cnina,Li—Wei A study on the tool properties of BTA deep hole drilltheory and experiments[J]. International Journal of Machine tools&Manufacture,1995,35(1):29-49.
    [5] Jih-hua China,Chi-Ti Hesiehand,Li—Wei lee.The shaft behavior of BTA deephole drill tool[J]. International Journal of Machine Science,1996,38(5):461-482.
    [6]钮忻蔚.深孔的钻削加工[J].石油化工设备,2008,37(3):62.63.
    [7]王世清.深孔加工技术[M].西安:西北工业大学出版社,2003.10
    [8] Chyn-shu deng, Jen—Chen huang, Jin—hua China. Effects of supportmisalignments in deep-hole drill shafts on hole straightness[J].InternationalJournal of Machine Tools&Manufacture,2001,(41):1161.1181.
    [9]李晨元.钻削工具及切屑排除问题分析[J].农业科技与装备,2008,(2):38.40.
    [10] Gao Chi Cheng,K.Kirkwood.D.The investigation the machining process ofBTA deep hole drilling[J].Journal of Materials Processing Technology,2000(107):222—227.
    [11]王艳华.准干式切削在深孔加工应用的关键技术[J].机电技术,2008,(1):33.35.
    [12]樊铁镔.DF系统振动深孔钻的设计与应用[J].工具技术,1998,32(3):19.25.
    [13] K. Weinert, O. Webber, C. Peters. On the Influence of Drilling DepthDependent Modal Damping on Chatter Vibration in BTA Deep HoleDrilling[J].CIRP Annals-Manufacturing Technology,200554(1):363-366.
    [14]马文陡,郝庆兰,谢志刚."DF系统”加工液压集成块深孔[J].山西机械,1994,(2):23-25.
    [15]刘兆华,王爱玲,王峻,杨金辉.DF喷射泵内力学特性研究[J].现代制造工程,2005(12):112-113.
    [16] Gao Chi Cheng, K.Kirkwood.D. The investigation the machining process ofBTA deep hole drilling[J].Journal of Materials Processing Technology,2000(107):222-227.
    [17]韩占忠,王敬,兰小平,Fluent—流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004:17-25.
    [18]王福军.计算流体力学动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004:1-280.
    [19]屠大燕.流体力学与流体机械[M].北京:中国建筑工业出版社,1994:1-212.
    [20]徐向荣.流体力学[M].北京:科学出版社,2005:1-256.
    [21]高本河,吴序堂,熊镇芹,王世清.振动钻削改善排屑效果机理的研究「J].机械科学与设计,200019(2):281-283.
    [22] J刘兆华,王爱玲,王峻,杨金辉.创新思维与SIED刀具设计理念〔J].机电产品开发与创新,200518(4):9-11.
    [23]艾小凯.米志德.内排屑小深孔加工技术的研究现状[J].新技术新工艺,1999(1):15-16.
    [24]王世清.孔加工技术[M].北京:石油工业出版社,1993.10:120-240.
    [25]郑建明,肖继明,李言等,振动深孔钻削技术的应用[J],新技术新工艺,1998,(2)15-16
    [26]郑建明.基于HMM的多特征融合钻头磨损监测技术的研究[D].西安:西安理工大学,2004,9:5-40.
    [27]邵华等,王海丽等.SJ-FMS刀具状态功率监控系统[J].机械设计与研究,1997,(3):44-17.
    [28]张顺军.BTA深孔钻削排屑与刀具状态监测技术研究[D].西安:西安理工大学,2007,03:40-60.
    [29] T. I. EL-WARDANY, D. GAO and M. A. ELBESTAWI. TOOL CONDITIONMONITORING INDRILLING USING VIBRATION SIGNATUREANALYSIS [J]. Int. J. Mach.Tools Manufact,1996,36(6):687-711.
    [30]苏奎峰,吕强,耿庆锋等.TMS320F2812原理与开发[M].北京:电子工业出版社,2005:59-115.
    [31]张雄伟,陈亮,徐光辉.DSP芯片的原理与开发应用(第3版)[M].北京:电子工业出版社,2003:135-200.
    [32]奚刚,吴清华.TMS320F2812内存管理与FLASH引导模式实现.现代电子技术,2007,22:58-60.
    [33]张龙,周端,司栋等.基于TMS320F2812高速数据采集系统的设计与实现[J].电光与控制,2007.01:129-132.
    [34]王勇,马建仓.基于TMS320F2812的陀螺信号实时采集处理系统[J].计算机测量与控制,2007.09:1253-1255.
    [35]吕雪锋,吴书朝.一种基于TMS320F2812的数据采集系统.工业控制计算机,2006,01:12-13.
    [36]李同彩,陈计信.基于TMS320F2812的数据采集及处理系统.世界电子元器件,2006,04:62-64.
    [37] Jantunen,A summary of methods applied to tool condition monitoring indrilling[JJ.IntemationalJournal of MachineTools&Manufacture,2002(44):997-1010.
    [38] Coussy, P.Corre, G. A more efficient and flexible DSP designflow fromMatlab-Simulink. Institute of Electrical andElectronics EngineersInc.2005,03:18-23.
    [39]徐春,王信义,肖定国.切削状态在线监测的新方法[J].北京理工大学学报,1994(2)48-50.
    [40」王福军.计算流体力学动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004:1-280.
    [41」白万民,贾培刚,白展平.深孔钻削时的力学特性分析[J].新技术新工艺,2000(6):19-21.
    [42] Jih-Hua Chin Jang-Shyong Wu. Mathematical models and experiments for chipsignals of single-edge deep hole drilling [J].International Journal ofMachineTools&Manufacture,1993,(33):507-509.
    [43]汪志明,米志德,王峻.DF深孔钻削技术及其负压抽屑装置[J].新技术新工艺,1990.(2):30-31.
    [44]王峻.20世纪深孔加工技术的兴衰及新突破—介绍SIED深孔加工集成技术[J].机械管理开发,2004,(4):1-3.
    [45]蒋炳炎.DF系统深孔钻的分流比[J].中南矿冶学院学报,1994,25:(4):502-505.
    [46]李文亮,王爱玲,刘兆华.利用FLIUENT研究DF系统的负压装置[J].现代制造工程,2009,(2):77-79.
    [47]关世玺,范国勇,常兴.深孔加工关键技术研究[J].新技术新工艺,2007,(8):29-31
    [48] Jih-Hua Chin Li-Wei. A study on the tool Eigen properties of BTA deep holedrill theory and experiments [J].International Journal of MachineTools&Manufacture199535(1):29-49.
    [49]王慧霖,张平宽,深孔加工负压排屑、断屑的分析[J].工具技术,1999(2):14-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700