用户名: 密码: 验证码:
平移建筑隔震体系分析与性能化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于城市规划或建筑物历史价值需求,整体平移技术在建筑物搬迁中应用越来越广泛。平移建筑物到位后,就位连接是保证其后续使用年限内安全可靠的关键要素。传统连接方式仍然将上部结构与基础固结在一起,建筑物抵御地震的能力没有本质提高。与此同时,基础隔震应对地震的高效性与可靠性已经被世界各地的大量工程实例所验证。平移建筑物与新建基础的分离状态使基础隔震在平移工程中的实施成为可能。采用加设隔震层的方式进行就位连接,不但可以充分利用建筑迁移过程中的滚轴、滑块等移动设备,而且形成了安全性和可靠度更有保证的基础隔震体系,是性能化设计思想的实现。由于叠层橡胶垫与平移装置并联隔震层不同于传统的叠层橡胶隔震体系,隔震层的耗能机制与滞回特性已经改变,因此有必要对其进行系统的试验研究与理论分析。本文以平移后的既有建筑与新建基础进行隔震连接而形成的并联基础隔震体系为研究对象,根据平移装置的不同,分析了两种并联基础隔震形式,通过模型试验与有限元分析对其进行了研究,对隔震装置下部结构的竖向承载构件进行了抗震性能评估。主要研究内容如下
     1.首先分析利用滚轴与叠层橡胶支座并联形成的隔震装置。根据滚轴装置的特点设计并进行了结构振动台试验。试验给出了该并联基础隔震体系加速度反应特点,层间变形特点以及不同方向的滞回特性。根据试验结果分析这种并联隔震连接的特点,给出利用滚轴进行隔震连接的建议。
     2.考虑利用平移过程中的聚四氟乙烯滑块,设计了滑块与叠层橡胶支座并联隔震模型的拟静力试验。试验结果表明,该并联隔震支座滞回曲线较规则,曲线具有很好的饱满度,体现了其良好的滞回耗能能力。试验结果为后续并联隔震体系的能量分析建立了基础。试验同时分析了不同竖向荷载、不同承载比例骨架曲线对滞回特性的影响。
     3.基于能量平衡方程定义了三个能量比系数,根据滑块并联叠层橡胶支座拟静力试验的结果,分析了该并联隔震支座的耗能特点。建立了上部结构为砌体和框架结构的有限元分析模型,对比了不同结构类型、不同结构层数以及隔震层装置的不同比例对地震输入能量分配的影响规律。
     4.平移建筑采用隔震连接后,体系抗震性能提高的同时,隔震装置下竖向承载构件重要性更为突出。本文提出了一种衡量P-Δ效应的方法,通过静力推覆分析,证实了该方法的有效性。探讨了长细比、配筋率以及轴压比对抗震能力的影响,以悬臂柱为例推导出构件的能力谱曲线,建立了8度地震下不同场地条件的需求谱,利用能力谱法得到不同场地类别悬臂柱的抗震性能点。
Due to the demand of city planning or the requirement of historic building, monolithic moving technique in the buildings transit has more and more application. After the structure is moved to the location, connection at the destination is the key element can guarantee the building's safety and reliability in the subsequent service life. The superstructure and the foundation are fixed connection all the same in the conventional joint construction process, which has not any enhancement to ant-seismic capacity of the moving structure. At the same time, the high availability and reliability of isolation system have been confirmed by a great deal of actual projects in the world. Adoption of the isolation layer in the joint at the destination can make full use of the steel roller or Teflon slider during the building removal, if adding certain position-limit device, such as rubber isolator etc., can form the base isolation system, which is a more safe and security system through the isolated connection. This is the implement of performance design mentality. Utilize the moving material paralleled with rubber isolator form new isolation layer, which is different with the traditional rubber isolation system. Energy dissipation mechanism and hysteretic characteristic have changed much, so systemic investigation and theoretic analysis are pre-requisite. The research object of this paper is the paralleled isolation system formed by the connection of the existing translation building and the new foundation. According to the different of translation device, two kinds of paralleled base isolation system are analysis. Anti-seismic performance of the vertical bearing component under the isolation device is also evaluated. This paper mainly focuses on the following things:
     1. Firstly, the steel roller paralleled with laminated rubber isolator is analyzed. According to the characteristics of this system, the shaking table test is designed and proposed. Responses of acceleration and stratified deformation of the system are obtained through this test; the hysteretic energy dissipation also can be gained. Based on the test results, features of this paralleled isolation system are concluded; and make suggestions of using steel roller paralleled with laminated isolators formed isolation system.
     2. Considering making full use of the Teflon slider in building integral migration, pseudo-static test of slider paralleled with rubber isolator is implemented. Hysteretic curve and energy dissipation of the paralleled isolator can be obtained through the experimental process. The isolation system has regular hysteretic curve, which is spindle shaped and has very good plumpness, embodies preferable energy dissipation capacity. The results of test can established the base of following energy response analysis about paralleled isolation system. Effects on the hysteretic curve of varying vertical load and different load ratio are also analyzed in this paper.
     3. Three energy ratio coefficients are put forward from the equation of energy balance in this paper. Energy dissipation of this paralleled isolation is analyzed through the result of pseudo-static test of slider paralleled with rubber isolator system. FEM of masonry and frame structure are established, then influence law of which can be obtained under factors such as the upper structure form; numbers of stories; relative amount of isolators; various seismic wave etc.
     4. Anti-seismic capacity of monolithic moving structure has enhanced much after connection at the destination use isolation layer, at the same time, significance of vertical bearing member stand out. A method of balance the P-Δ effects is proposed in this paper, effective of this method is confirmed by Pushover analysis. Effect rule on the capacity of anti-seismic of design parameters such as slenderness ratio; reinforcement ratio; axial compression ratio are discussed in detail. Demand spectra of8degree seismic in different site conditions are established. The capacity curve of cantilever column is taken as example to obtain the anti-seismic performance points of this component in four site condition through the capacity spectrum method.
引文
[1]胡聿贤.地震工程学.北京:地震出版社.2005
    [2]FEMA-273, NEHRP Guidelines for the seismic Rehabilitation of Buildings, FEMA, Washington,D.C.1997
    [3]FEMA-274, NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of Buildings, FEMA, Washington,D.C.1997
    [4]建筑抗震设计规范.GB50011-2001(2001),北京:中国建筑工业出版社,2001
    [5]陆新征,叶列平,缪志伟.建筑抗震弹塑性分析.北京:中国建筑工业出版社,2009.12
    [6]张鑫,贾留东,魏焕卫,夏风敏.建筑物平移与纠倾技术.北京:中国水利水电出版社;知识产权出版社,2008.3
    [7]樊爱武.滑移隔震结构的滑移位移研究:[华中科技大学博士论文].武汉:华中科技大学,2005
    [8]Lsmar Kay, Pan Deitz and Stan Barber, University of IOWA Work. The structure mover.1999,17(1)
    [9]Kim Brownie, From Boca Raton to Fort Pierce. The structural mover. 1999,17(1)
    [10]Etalco. The Shubert theater was self-propelled. The structural mover. 1999,17(2)
    [11]姚忠国,黄自新,陈高瞻,鲍裕贵.房屋整体平移技术及模拟试验研究.建筑结构,1995,25(11):40-41
    [12]张新中,解伟,李友琳.建筑物整体迁移技术应用与发展.建筑技术开发,1 999,26(3):39-41
    [13]贾留东,张鑫,孙剑平,徐向东.临沂市国家安全局8层办公楼整体平移设计.工业建筑,2002,32(7):7-13
    [14]张鑫,贾留东,贾强,王守建等.临沂市国家安全局8层办公楼整体平移施工及现场监测.工业建筑,2002,32(7):11-13
    [15]赵世峰,李爱群,卫龙武,郭彤,吴二军.江南大酒店平移工程基础隔震设计与地震反应分析.建筑结构,2001(12):7-12
    [16]章明,陈绩明.上海音乐厅整体平移和修缮工程.建筑学报,2005,11:36-38
    [17]陈松江,宋文龙,杜传宝.上海音乐厅顶升工艺.山西建筑,2005,31(23):106-107
    [18]贾留东,夏风敏,张鑫,张爱社.莱芜高新区15层综合楼平移设计与现场监测.建筑结构学报,2009,30(6):134-141
    [19]夏风敏,贾留东,张鑫等.建筑物平移牵引系统的设计.建筑结构,2006,36(9):8-10.
    [20]张青.滚轴与橡胶垫隔震结构震动台试验研究:[山东建筑大学硕士论文].济南:山东建筑大学,2007:23-65
    [21]郑鑫,范夕森,胡春华,李海丰.某保护性建筑隔震加固技术研究.工程抗震与加固研究,2009,31(6):64-69
    [22]刘涛,张鑫,夏风敏.历史建筑平移保护与加固改造的研究.工程抗震与加固研究,2009,31(5):84-87
    [23]唐家祥,刘再华.建筑结构基础隔震.武汉:华中理工大学出版社,1993
    [24]周福霖,武晓星.橡胶支座国家标准理解与实施.北京:中国标准出版社,2009
    [25]刘文光译.隔震结构设计.北京:地震出版社,2006
    [26]世界建筑结构设计精品选-日本篇编委会.世界建筑结构设计精品选-日本篇.北京:中国建筑工业出版社.2001:297-303
    [27]R.I. Skinner, W.H. Robinson, G.H. Mcverry谢礼立,周雍年,赵兴权译.工程抗震概论.北京:地震出版社,1996
    [28]James. M. Kelly. Earthquake-Rsistant Design with Rubber London: Springer-Verlag London,1997
    [29]Farazad Naeim, James. M. Kelly. Design of Seismic Isolation Structures: From Theory to Practice. New York:John Willey & Sons,1999
    [30]Masahiko. Higasino, Shin Okamato. Response Control and Seismic Isolation of Buildings. Taylor & Francis,2006
    [31]S. Nagarajaiah, A.M. Reinhorn, M.C. Constantinou. Nonlinear Dynamic Analysis of Three Base Isolated Structures. Journal of Structural Engineering, ASCE.1991,117(7):2035-2054
    [32]苏经宇,曾德民.我国建筑结构隔震技术的研究与应用.地震工程与工程振动,2001,21 (4):94-101
    [33]叠层橡胶隔震支座隔震技术规程(CECS126:2000).北京:中国工程建设标准协会.2001
    [34]刘文光.橡胶隔震支座力学性能及隔震结构地震反应分析研究:北京工业大学博士论文.北京:北京工业大学,2003.4:55-161
    [35]曾德民.橡胶隔震支座的刚度特征与隔震建筑的性能试验研究:[中国建筑科学研究院博士论文].北京:中国建筑科学研究院,2007.6:50-145
    [36]Ivo Calio, Massimo Marletta and Francesco Vinciprova Seismic response of multi-storey buildings base-isolated by friction devices with restoring properties Computers and structures 2003(81): 2589-2599
    [37]李大望,李桂青,周锡元.FPS隔震结构的水平和竖向振动响应分析.建筑结构,2000(7):61-64
    [38]王建强,管品武,李大望.摩擦摆基础隔震结构双向地震反应分析.世界地震工程,2005,21(3)11-15
    [39]王建强,丁永刚,李大望.摩擦摆支座恢复力模型研究.四川建筑科学研究,2007 33(3)25-27
    [40]姜婷,王俊峰,李大望.摩擦摆隔震结构振动台试验及结果分析.华南港工,2009.9,39-43
    [41]杨林,周锡元,苏幼坡,常永平.FPS摩擦摆隔震体系振动台试验研究与理论分析.特种结构,2005,22(4):43-49
    [42]麦敬波.复合隔震体系研究:[广州大学硕士论文].广州:广州大学,2006.5:23-45
    [43]Naeim,F., and Kelly,J.M.. Design of Seismic Isolated Structures:From Theory to Practice. U.K.:Wiley Chichester,1999:1-23
    [44]Anoop S. Mokha, Navinchandra Amin,Michael C. Constantinou, et al. Seismic Isolation Retrofit of Large Historic Building. Structural Engineering,1996,V122(3):298-308
    [45]Vasant A. Marsagar and R.S.Jangid Base isolation for seismic retrofitting of structures Practice Periodical on Structural Design and Construction ASCE/November 2008:175-185
    [46]李爱群,毛利军.并联基础隔震体系地震反应特征与隔震层参数的优选.工程抗震与加固改造,2005,22(2):27-31
    [47]毛利军,李爱群,艾军.基础隔震体系地震反应特征与方案优选.南京航空航天大学学报,2005,37(4):504-508
    [48]毛利军,李爱群.基础滑移隔震体系的地震反应谱.土木工程学报.2004,37(2):58-65
    [49]毛利军,李爱群.多层滑移隔震建筑结构的简化模型及其分析精度.建筑结构学报,2005,26(2):117-123
    [50]张青,张鑫,叶列平.滚轴与橡胶垫隔震结构模型振动台试验研究.四川建筑科学研究.2009,35(1):172-175
    [51]建筑抗震设计规范及条文说明(GB50011-2001).北京:中国建筑工业出版社,2001
    [52]周锡元,韩淼,李大望,曾德民.并联和串联基础隔震体系地震反应的某些特征.工程抗震,1995 12:1-5
    [53]吕西林,朱玉华,施卫星,上田荣,冯德民,三山刚史.组合基础隔震房屋模型振动台试验研究.土木工程学报,2001,34(2):43-49
    [54]朱玉华,吕西林.组合基础隔震系统地震反应分析.土木工程学报,2006.37(4):77-81.
    [55]杨树标,孙武,别慧中等.并联复合隔震支座性能的试验研究.煤炭工程,2003,1:62-64.
    [56]孙武,杨树标,吴斌等.并联复合隔震结构地震反应时程分析.河北建筑科技学院学报,2004,21(1):52-55
    [57]孙武,杨树标.并联复合隔震结构的简化计算分析.徐州建筑职业技术学院学报,2007,7(1):20-22
    [58]张富有,陈雪昕.奎山小区住宅楼并联基础隔震结构设计研究.广州土木建筑,2005,7:3-4
    [59]张富有,刘汉龙,崔艺斌.并联基础隔震结构的地震随机响应分析.岩石力学,2006,27(11):1927-1934
    [60]张富有,张涛.考虑轴力转移的并联基础隔震结构地震反应分析.岩石力学与工程学报.2007,26(增1):3237-3241
    [61]Koh, C.G.. and Kelly, J.M..A simple mechanical model for elastomeric isolation bearings, int. J.mech,Sci,1988,30(12):933-943
    [62]Koh, C.G.. and Kelly, J.M. Viscoelastic stability model for Elastomeric isolation bearings. J. Struct. Engrg. ASCE,1989,115(2):285-302
    [63]Keri L.Ryan and Anil K. Chopra. Estimating Seismic Demands for Isolation Bearings with Building Overturning Effects Journal of Structure Engineering July 2006:1118-1128
    [64]周锡元,韩淼,马东辉,曾德民.叠层钢板橡胶垫的稳定性分析与强度验算.建筑科学1997.6:13-19
    [65]周锡元,韩淼,曾德民,马东辉.组合橡胶支座及橡胶支座与柱串联系统的水平刚度计算方法.地震工程与工程振动,1999,19(4):67-75
    [66]周锡元,马东辉,曾德民,韩淼.用刚性板连接的组合橡胶支座水平刚度计算方法.土木工程学报,2000,33(6):38-44
    [67]李慧,姚云龙,杜永峰等.叠层橡胶支座与柱串联体系动力失稳特性探讨.世界地震工程,2005,21(1):18-23
    [68]姚云龙.叠层橡胶支座与悬臂柱串联体系动力稳定性分析:[甘肃工业大学硕士论文],兰州:甘肃工业大学,2003.7:25-65
    [69]杜永峰,李慧.橡胶支座与柱串联系统的动力稳定性分析的半解析解法.四川建筑科学研究,2007.12,33卷增刊:126-130
    [70]杨静成.叠层橡胶支座与柱串联隔震体系稳定性分析:[兰州理工大学硕士论文].兰州:兰州理工大学,2009.5:35-65
    [71]尹维祥.叠层橡胶支座稳定性及其受低温环境的影响:[甘肃工业大学硕士论文].兰州:甘肃工业大学,2001.7:21-47
    [72]寇佳亮.高温后叠层橡胶支座串联体系抗震性能试验研究与分析:[州理工大学硕士论文].兰州:兰州理工大学,2009.5:20-61
    [73]寇巍巍.高温后叠层橡胶支座及串联隔震体系性能研究:[兰州理工大学硕士论文].兰州:兰州理工大学,2009.5:23-45
    [74]赵亚敏,苏经宇等.国内外建筑隔震设计标准比较分析.地震研究,2006.4,29(4):396-400
    [75]王松涛,曹资.现代抗震设计方法.北京:中国建筑工业出版社,1997
    [76]www.earthquakeprotection.com
    [77]http.//peer.berkeley.edu/
    [78]史红福.滚动基础隔震的动力特性研究:[华中科技大学硕士学位论文].武汉:华中科技大学2005,4:31-63
    [79]张鑫,张青,叶列平.建筑物整体平移与隔振技术研究.工程抗震与加固改造,2007,29(5):17-20
    [80]曹国辉.土木工程结构试验.北京:中国电力出版社,2009
    [81]建筑抗震设计规范(GB 50011-2001)北京:中国建筑工业出版社,2001
    [82]张迪.叠层橡胶支座基础隔震结构计算实用模型及工程应用.[甘肃工业大学硕士论文].兰州:甘肃工业大学,2001.7:22-53
    [83]范夕森,苏小卒,张鑫等.组合隔震系统力学性能试验研究.建筑结构学报2009,(增刊2):50-55
    [84]Housner,G.W. Characteristic of strong motion earthquakes. Bulletin of Seismic Society, Am.1947,37:17-31
    [85]周云,周福霖.耗能减震体系的能量设计方法.世界地震工程,1997,13(4):7-13
    [86]周云,徐彤,贺明玄.基础隔震结构的能量设计方法.地震工程与工程振动,2000,20(3):123-129
    [87]朱玉华,施卫星,吕西林等.基础隔震房屋模型振动台对比试验与分析.同济大学学报2001,29(5):505-509
    [88]Kelly, J. M.. (1999) The role of damping in seismic isolation, Earthquake Energy and Structure Dynamic,28(1):3-20
    [89]程光煜,叶列平.弹塑性SDOF系统的地震输入能力谱.工程力学,200825(2):28-39
    [90]Soong, T.T. and Dargush, G..F. Passive Energy Dissipation System in Strctural Engineering. Chichester:Wiley,1997.
    [91]Marano, G.C. and Greco, R. Efficiency of base isolation system in structural seismic protection and energetic assessment. Earthquake Engineering and Structural Dynamics,2003(32):1505-1531
    [92]杜永峰,李慧.智能隔震:基于能量响应和可靠度的前景分析.工程力学,2006,23卷增刊Ⅱ:5-13
    [93]杜永峰,刘凯雁,邵云飞.大震下智能隔震结构的能量响应分析.工程抗震与加固改造,2008,30(1):14-18
    [94]杜永峰.被动与智能隔震结构地震响应分析及控制算法.[大连理工大学博士论文].大连:大连理工大学,2003.4:62-120
    [95]陈世民,何琳,陈卓.sap2000结构分析简明教程.人民交通出版社,2005
    [96]彭俊生,罗永坤.结构概念分析与sap2000应用.西南交通大学出版社,2006
    [97]彭俊生,罗永坤,彭地.结构动力学、抗震计算与sap2000应用.西南交通大学出版社,2007
    [98]党育,杜永峰,李慧.基础隔震结构设计及施工指南.北京:中国水利水电出版社,知识产权出版社.2006
    [99]朱丽佳,张俊发,闻建军.钢筋混凝土框架结构考虑P-Δ效应的Push-over分析.西安理工大学学报,2005,21(2):212-215
    [100]混凝土结构设计规范,GB50010-2002(2002).北京:中国建筑工业出版社,2002
    [101]高层建筑混凝土结构技术规程,JGJ3-2002(2002).北京:中国建筑工业出版社
    [102]江见鲸,陆新征,叶列平混凝土结构有限元分析.北京:清华大学出版社,2004
    [103]陈火红,杨剑,薛小香等新编Marc有限元实例教程.北京:机械工业出版社,2007
    [104]Freman S.A., Nicoletti J.P., Tyrell J.V. Evaluation of existing building for seismic risk-A case study of Puget Sound Naval Shipyard, Bremerton, Washington, Proc.1st U.S. National Conf. Earthquake Engng., EERI, Berkeley,1975:113-122
    [105]Saiidi M, Sozen MA, Simple non-linear seismic analysis of RC structures. Journal of Structural Division, ASCE 1981, 107(ST5):937-951
    [106]ATC-40, (1996) Seismic Evaluation and Retrofit of Concrete Building, Redwood City, CA.
    [107]FEMA-356, (2000) Pre-standard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency. Washington D.C.
    [108]FEMA-450, (2004) NEHRP Recommended Provisions and Commentary for Seismic Regulations for New Buildings and Other Structures. Washington, D.C.:BSSC
    [109]BSL2000, Building Standard Law,2000
    [110]方德平,王全凤.基于改进能力谱法的砼框架Pushover分析.工程力学,2008,25(1):150-154
    [111]潘文.Pushover方法的理论与应用.[西安建筑科技大学博士论文].西安:西安建筑科技大学,2004
    [112]魏巍,冯启民.几种Pushover分析方法对比研究.地震工程与工程振动,2002,22(4):66-73
    [113]谭皓,刘钊.能力谱方法在桥梁抗震性能评估中的应用研究.世界地震工程2009,25(4):174-180
    [114]卢华.性能设计中的能力谱方法研究与工程应用.[大连理工大学硕士学位论文].大连:大连理工大学2005.6:15-60
    [115]魏欢庆.基于性能的桥梁抗震设计分析方法研究.[华中科技大学硕士论文].武汉:华中科技大学2007.5:28-52
    [116]钱稼茹,罗文斌.静力弹塑性分析-基于性能/位移抗震设计的分析工具.建筑结构,2000,30(6):23-26
    [117]段安,钱稼茹.CNP 1000核电厂安全壳模型结构抗震安全分析.工程力学,2009.4,26(4):151-196
    [118]欧进萍,侯纲领,吴斌.概率Pushover分析方法及其在结构体系抗震可靠度评估中的应用.建筑结构学报,2001,22(6):81-86
    [119]陆新征,缪志伟,江见鲸,叶列平.静力和动力荷载作用下混凝土高层结构的倒塌模拟.山西地震,2006.4:7-18
    [120]叶列平.体系能力设计法与基于性态/位移抗震设计.建筑结构,2004,34(6):10-14
    [121]缪志伟,马千里,叶列平,陆新征Pushover方法的准确性和适用性研究.工程抗震与加固改造,2008,30(1):55-59
    [122]Fajfar P., Gaspersic P. The N2 method for the seismic damage analysis of RC buildings, Earthquake Engineering & Structural Dynamics,1996,25(1):31-46
    [123]Gupta A., Krawinkleer H. Estimation of seismic drift demands for frame structures. Earthquake Engineering & Structural Dynamics,2000, 29(9):1287-1305
    [124]Gupta B. Kunnath S.K. Adaptive spectra-based pushover analysis of seismic evaluation of structures. Earthquake Spectra,2000, 16(2):367-391
    [125]Vidic T., Fajar P. Consistent inelastic design spectra:strength and displacement. Earthquake Engineering & Structural Dynamics,1994, 24(5):507-521
    [126]Chopra A.K. Capacity-Demand-Diagram methods for estimating seismic deformation of inelastic structure:SDF system, PEER report. Pacific Earthquake Engineering Research center, College of Engineering University of California Berkeley.1999
    [127]唐代远,陆新征,叶列平,施炜.柱轴压比对我国RC框架结构抗地震倒塌能力的影响.北京:第十二届高层建筑抗震技术交流会论文集,2009.10 35-45
    [128]容柏生.高层住宅建筑中的短肢剪力墙体系.建筑结构学报,1 997,18(6):14-19
    [129]Paulay,T. Coupling Beams of Reinforced Concrete Shear Walls Journal of structural division,1971,97(3):843-862
    [130]宋建学,彭少民,刘立新.短肢剪力墙低周反复试验研究.华中科技大学学报(城市科学版),2002,19(1):91-94.
    [131]张守军,李青宁,徐杰年.短肢剪力墙结构弹塑性静力性能仿真分析西安建筑科技大学学报(自然科学版)2006,38(2):199-226
    [132]季静,雷磊,杨志强,韩小雷等.基于性能的抗震设计方法在剪力墙结构中的应用,地震工程与工程振动,2006,26(3):60-63
    [133]Miranda, E.,Evaluation of site-dependent inelastic seismic spectra, Journal of structural engineering, ASCE,1993,119(5):1319-1338
    [134]吕西林,周定松.考虑场地类别与设计分组的延性需求谱和弹塑性位移反应谱.地震工程与工程振动,2004,24(1):39-47
    [135]何浩祥,李宏男.基于规范弹性反应谱建立需求谱的方法.世界地震工程,2002,18(2):57-63
    [136]缪志伟,陆新征,李易,叶列平.基于通用有限元程序和微平面模型分析复杂应力混凝士结构.沈阳建筑大学学报(自然科学版),24(1):49-53

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700